Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(2): e1011202, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36827461

RESUMEN

The complex retrovirus, human T-cell leukemia virus type 1 (HTLV-1), primarily infects CD4+ T-cells in vivo. Infectious spread within this cell population requires direct contact between virally-infected and target cells. The HTLV-1 accessory protein, HBZ, was recently shown to enhance HTLV-1 infection by activating intracellular adhesion molecule 1 (ICAM-1) expression, which promotes binding of infected cells to target cells and facilitates formation of a virological synapse. In this study we show that HBZ additionally enhances HTLV-1 infection by activating expression of myoferlin (MyoF), which functions in membrane fusion and repair and vesicle transport. Results from ChIP assays and quantitative reverse transcriptase PCR indicate that HBZ forms a complex with c-Jun or JunB at two enhancer sites within the MYOF gene and activates transcription through recruitment of the coactivator p300/CBP. In HTLV-1-infected T-cells, specific inhibition of MyoF using the drug, WJ460, or shRNA-mediated knockdown of MyoF reduced infection efficiency. This effect was associated with a decrease in cell adhesion and an intracellular reduction in the abundance of HTLV-1 envelope (Env) surface unit (SU) and transmembrane domain (TM). Lysosomal protease inhibitors partially restored SU levels in WJ460-treated cells, and SU localization to LAMP-2 sites was increased by MyoF knockdown, suggesting that MyoF restricts SU trafficking to lysosomes for degradation. Consistent with these effects, less SU was associated with cell-free virus particles. Together, these data suggest that MyoF contributes to HTLV-1 infection through modulation of Env trafficking and cell adhesion.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Virus Linfotrópico T Tipo 1 Humano , Proteínas de los Retroviridae , Humanos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Linfocitos T CD4-Positivos/metabolismo , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Virus Linfotrópico T Tipo 1 Humano/fisiología , Proteínas de los Retroviridae/metabolismo
2.
Blood ; 140(13): 1522-1532, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35687761

RESUMEN

Adult T-cell leukemia (ATL) is a lymphoid neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1), which encodes the transcriptional activator Tax, which participates in the immortalization of infected T cells. ATL is classified into 4 subtypes: smoldering, chronic, acute, and lymphoma. We determined whether natural killer receptors (NKRs) were expressed in ATL. NKR expression (KIR2DL1/2DS1, KIR2DL2/2DL3/2DS2, KIR3DL2, NKG2A, NKG2C, and NKp46) was assessed in a discovery cohort of 21 ATL, and KIR3DL2 was then assessed in 71 patients with ATL. KIR3DL2 was the only NKR among those studied frequently expressed by acute-type vs lymphoma- and chronic/smoldering-type ATL (36 of 40, 4 of 16, and 1 of 15, respectively; P = .001), although acute- and lymphoma-type ATL had similar mutation profiles by targeted exome sequencing. The correlation of KIR3DL2 expression with promoter demethylation was determined by microarray-based DNA methylation profiling. To explore the role of HTLV-1, KIR3DL2 and TAX messenger RNA (mRNA) expression levels were assessed by PrimeFlow RNA in primary ATL and in CD4+ T cells infected with HTLV-1 in vitro. TAX mRNA and KIR3DL2 protein expressions were correlated on ATL cells. HTLV-1 infection triggered KIR3DL2 by CD4+ cells but Tax alone did not induce KIR3DL2 expression. Ex vivo, autologous, antibody-dependent cell cytotoxicity using lacutamab, a first-in-class anti-KIR3DL2 humanized antibody, selectively killed KIR3DL2+ primary ATL cells ex vivo. To conclude, KIR3DL2 expression is associated with acute-type ATL. Transcription of KIR3DL2 may be triggered by HTLV-1 infection and correlates with hypomethylation of the promoter. The benefit of targeting KIR3DL2 with lacutamab is being further explored in a randomized phase 2 study in peripheral T-cell lymphoma, including ATL (registered on https://clinicaltrials.gov as #NCT04984837).


Asunto(s)
Infecciones por HTLV-I , Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Productos del Gen tax/genética , Productos del Gen tax/metabolismo , Infecciones por HTLV-I/complicaciones , Infecciones por HTLV-I/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Leucemia-Linfoma de Células T del Adulto/patología , ARN , ARN Mensajero , Receptores KIR3DL2/genética
3.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32024775

RESUMEN

Human T-cell lymphotropic virus type 1 (HTLV-1) Tax oncoprotein is required for viral gene expression. Tax transactivates the viral promoter by recruiting specific transcription factors but also by interfering with general transcription factors involved in the preinitiation step, such as TFIIA and TFIID. However, data are lacking regarding Tax interplay with TFIIH, which intervenes during the last step of preinitiation. We previously reported that XPB, the TFIIH subunit responsible for promoter opening and promoter escape, is required for Tat-induced human-immunodeficiency virus promoter transactivation. Here, we investigated whether XPB may also play a role in HTLV-1 transcription. We report that Tax and XPB directly interact in vitro and that endogenous XPB produced by HTLV-1-infected T cells binds to Tax and is recruited on proviral LTRs. In contrast, XPB recruitment at the LTR is not detected in Tax-negative HTLV-1-infected T cells and is strongly reduced when Tax-induced HTLV-1 LTR transactivation is blocked. XPB overexpression does not affect basal HTLV-1 promoter activation but enhances Tax-mediated transactivation in T cells. Conversely, downregulating XPB strongly reduces Tax-mediated transactivation. Importantly, spironolactone (SP)-mediated inhibition of LTR activation can be rescued by overexpressing XPB but not XPD, another TFIIH subunit. Furthermore, an XPB mutant defective for the ATPase activity responsible for promoter opening does not show rescue of the effect of SP. Finally, XPB downregulation reduces viability of Tax-positive but not Tax-negative HTLV-1-transformed T cell lines. These findings reveal that XPB is a novel cellular cofactor hijacked by Tax to facilitate HTLV-1 transcription.IMPORTANCE HTLV-1 is considered the most potent human oncovirus and is also responsible for severe inflammatory disorders. HTLV-1 transcription is undertaken by RNA polymerase II and is controlled by the viral oncoprotein Tax. Tax transactivates the viral promoter first via the recruitment of CREB and its cofactors to the long terminal repeat (LTR). However, how Tax controls subsequent steps of the transcription process remains unclear. In this study, we explore the link between Tax and the XPB subunit of TFIIH that governs, via its ATPase activity, the promoter-opening step of transcription. We demonstrate that XPB is a novel physical and functional partner of Tax, recruited on HTLV-1 LTR, and required for viral transcription. These findings extend the mechanism of Tax transactivation to the recruitment of TFIIH and reinforce the link between XPB and transactivator-induced viral transcription.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/fisiología , Transactivadores/metabolismo , Factor de Transcripción TFIIH/metabolismo , Regulación Viral de la Expresión Génica , Productos del Gen tax/metabolismo , Células HEK293 , Infecciones por HTLV-I/virología , Humanos , Regiones Promotoras Genéticas , Secuencias Repetidas Terminales , Factores de Transcripción/metabolismo , Transcripción Genética , Replicación Viral
4.
PLoS Pathog ; 13(2): e1006224, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28222186

RESUMEN

During infection by invasive bacteria, epithelial cells contribute to innate immunity via the local secretion of inflammatory cytokines. These are directly produced by infected cells or by uninfected bystanders via connexin-dependent cell-cell communication. However, the cellular pathways underlying this process remain largely unknown. Here we perform a genome-wide RNA interference screen and identify TIFA and TRAF6 as central players of Shigella flexneri and Salmonella typhimurium-induced interleukin-8 expression. We show that threonine 9 and the forkhead-associated domain of TIFA are necessary for the oligomerization of TIFA in both infected and bystander cells. Subsequently, this process triggers TRAF6 oligomerization and NF-κB activation. We demonstrate that TIFA/TRAF6-dependent cytokine expression is induced by the bacterial metabolite heptose-1,7-bisphosphate (HBP). In addition, we identify alpha-kinase 1 (ALPK1) as the critical kinase responsible for TIFA oligomerization and IL-8 expression in response to infection with S. flexneri and S. typhimurium but also to Neisseria meningitidis. Altogether, these results clearly show that ALPK1 is a master regulator of innate immunity against both invasive and extracellular gram-negative bacteria.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Inmunidad Innata/inmunología , Factor 6 Asociado a Receptor de TNF/inmunología , Quimiocinas/biosíntesis , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/inmunología , Técnica del Anticuerpo Fluorescente , Bacterias Gramnegativas/inmunología , Células HEK293 , Células HeLa , Heptosas/inmunología , Humanos , Procesamiento de Imagen Asistido por Computador , Immunoblotting , Inmunoprecipitación , Neisseria meningitidis/inmunología , Salmonella typhimurium/inmunología , Shigella flexneri/inmunología
5.
PLoS Pathog ; 13(7): e1006518, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28742148

RESUMEN

The viral Tax oncoprotein plays a key role in both Human T-cell lymphotropic virus type 1 (HTLV-1)-replication and HTLV-1-associated pathologies, notably adult T-cell leukemia. Tax governs the transcription from the viral 5'LTR, enhancing thereby its own expression, via the recruitment of dimers of phosphorylated CREB to cAMP-response elements located within the U3 region (vCRE). In addition to phosphorylation, CREB is also the target of O-GlcNAcylation, another reversible post-translational modification involved in a wide range of diseases, including cancers. O-GlcNAcylation consists in the addition of O-linked-N-acetylglucosamine (O-GlcNAc) on Serine or Threonine residues, a process controlled by two enzymes: O-GlcNAc transferase (OGT), which transfers O-GlcNAc on proteins, and O-GlcNAcase (OGA), which removes it. In this study, we investigated the status of O-GlcNAcylation enzymes in HTLV-1-transformed T cells. We found that OGA mRNA and protein expression levels are increased in HTLV-1-transformed T cells as compared to control T cell lines while OGT expression is unchanged. However, higher OGA production coincides with a reduction in OGA specific activity, showing that HTLV-1-transformed T cells produce high level of a less active form of OGA. Introducing Tax into HEK-293T cells or Tax-negative HTLV-1-transformed TL-om1 T cells is sufficient to inhibit OGA activity and increase total O-GlcNAcylation, without any change in OGT activity. Furthermore, Tax interacts with the OGT/OGA complex and inhibits the activity of OGT-bound OGA. Pharmacological inhibition of OGA increases CREB O-GlcNAcylation as well as HTLV-1-LTR transactivation by Tax and CREB recruitment to the LTR. Moreover, overexpression of wild-type CREB but not a CREB protein mutated on a previously described O-GlcNAcylation site enhances Tax-mediated LTR transactivation. Finally, both OGT and OGA are recruited to the LTR. These findings reveal the interplay between Tax and the O-GlcNAcylation pathway and identify new key molecular actors involved in the assembly of the Tax-dependent transactivation complex.


Asunto(s)
Productos del Gen tax/metabolismo , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Linfocitos T/virología , beta-N-Acetilhexosaminidasas/metabolismo , Acetilglucosamina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación Viral de la Expresión Génica , Productos del Gen tax/genética , Infecciones por HTLV-I/enzimología , Infecciones por HTLV-I/genética , Infecciones por HTLV-I/metabolismo , Interacciones Huésped-Patógeno , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , N-Acetilglucosaminiltransferasas/genética , Procesamiento Proteico-Postraduccional , Linfocitos T/enzimología , Linfocitos T/metabolismo , Transcripción Genética , beta-N-Acetilhexosaminidasas/genética
6.
J Virol ; 88(18): 10655-61, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24991007

RESUMEN

UNLABELLED: Whether NF-κB promoter transactivation by the human T-cell leukemia virus type 1 (HTLV-1) Tax protein requires Tax SUMOylation is still a matter of debate. In this study, we revisited the role of Tax SUMOylation using a strategy based on the targeting of Ubc9, the unique E2 SUMO-conjugating enzyme. We show that either a catalytically inactive form of Ubc9 (Ubc9-C93S) or Ubc9 small interfering RNA (siRNA) dramatically reduces Tax conjugation to endogenous SUMO-1 or SUMO-2/3, demonstrating that as expected, Tax SUMOylation is under the control of the catalytic activity of Ubc9. We further report that a non-SUMOylated Tax protein produced in 293T cells is still able to activate either a transfected or an integrated NF-κB reporter promoter and to induce expression of an NF-κB-regulated endogenous gene. Importantly, blocking Ubc9 activity in T cells also results in the production of a non-SUMOylated Tax that is still fully functional for the activation of a NF-κB promoter. These results provide the definitive evidence that Tax SUMOylation is not required for NF-κB-driven gene induction. IMPORTANCE: Human T-cell leukemia virus type 1 is able to transform CD4(+) T lymphocytes. The viral oncoprotein Tax plays a key role in this process by promoting cell proliferation and survival, mainly through permanent activation of the NF-κB pathway. Elucidating the molecular mechanisms involved in NF-κB pathway activation by Tax is therefore a key issue to understand HTLV-1-mediated transformation. Tax SUMOylation was initially proposed to be critical for Tax-induced NF-κB promoter activation, which was challenged by our later observation that a low-level-SUMOylated Tax mutant was still functional for activation of NF-κB promoters. To clarify the role of Tax SUMOylation, we set up a new approach based on the inhibition of the SUMOylation machinery in Tax-expressing cells. We show that blocking the SUMO-conjugating enzyme Ubc9 abolishes Tax SUMOylation and that a non-SUMOylated Tax still activates NF-κB promoters in either adherent cells or T cells.


Asunto(s)
Productos del Gen tax/metabolismo , Infecciones por HTLV-I/metabolismo , Virus Linfotrópico T Tipo 1 Humano/metabolismo , FN-kappa B/genética , Activación Transcripcional , Productos del Gen tax/genética , Infecciones por HTLV-I/enzimología , Infecciones por HTLV-I/genética , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , Sumoilación , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
7.
J Virol ; 87(2): 1123-36, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23135727

RESUMEN

Permanent activation of the NF-κB pathway by the human T cell leukemia virus type 1 (HTLV-1) Tax (Tax1) viral transactivator is a key event in the process of HTLV-1-induced T lymphocyte immortalization and leukemogenesis. Although encoding a Tax transactivator (Tax2) that activates the canonical NF-κB pathway, HTLV-2 does not cause leukemia. These distinct pathological outcomes might be related, at least in part, to distinct NF-κB activation mechanisms. Tax1 has been shown to be both ubiquitinated and SUMOylated, and these two modifications were originally proposed to be required for Tax1-mediated NF-κB activation. Tax1 ubiquitination allows recruitment of the IKK-γ/NEMO regulatory subunit of the IKK complex together with Tax1 into centrosome/Golgi-associated cytoplasmic structures, followed by activation of the IKK complex and RelA/p65 nuclear translocation. Herein, we compared the ubiquitination, SUMOylation, and acetylation patterns of Tax2 and Tax1. We show that, in contrast to Tax1, Tax2 conjugation to endogenous ubiquitin and SUMO is barely detectable while both proteins are acetylated. Importantly, Tax2 is neither polyubiquitinated on lysine residues nor ubiquitinated on its N-terminal residue. Consistent with these observations, Tax2 conjugation to ubiquitin and Tax2-mediated NF-κB activation is not affected by overexpression of the E2 conjugating enzyme Ubc13. We further demonstrate that a nonubiquitinable, non-SUMOylable, and nonacetylable Tax2 mutant retains a significant ability to activate transcription from a NF-κB-dependent promoter after partial activation of the IKK complex and induction of RelA/p65 nuclear translocation. Finally, we also show that Tax2 does not interact with TRAF6, a protein that was shown to positively regulate Tax1-mediated activation of the NF-κB pathway.


Asunto(s)
Productos del Gen tax/metabolismo , Virus Linfotrópico T Tipo 2 Humano/patogenicidad , FN-kappa B/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitina/metabolismo , Acetilación , Células HeLa , Humanos , Células Jurkat , Procesamiento Proteico-Postraduccional
8.
Blood ; 117(1): 190-9, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-20959607

RESUMEN

The human T-lymphotropic virus type I oncoprotein Tax is critical for T-cell transformation, acting mainly through nuclear factor kappa B essential modulator (NEMO) binding and subsequent nuclear factor-κB activation. Tax localizes to Tax nuclear bodies and to the centrosome and is subjected to ubiquitylation and small ubiquitin-like modifier (SUMO)ylation, which are both necessary for complete transcriptional activation. Using the photoconvertible fluorophore Dendra-2 coupled with live video confocal microscopy, we show for the first time that the same Tax molecule shuttles among Tax nuclear bodies and between these nuclear bodies and the centrosome, depending on its posttranslational modifications. Ubiquitylation targets Tax to nuclear bodies to which NEMO is recruited and subsequently SUMOylated. We also demonstrate that Tax nuclear bodies contain the SUMOylation machinery including SUMO and the SUMO conjugating enzyme Ubc9, strongly suggesting that these nuclear bodies represent sites of active SUMOylation. Finally, both ubiquitylation and SUMOylation of Tax control NEMO targeting to the centrosome. Altogether, we are proposing a model where both ubiquitylation and SUMOylation of Tax control the shuttling of Tax and NEMO between the cytoplasmic and nuclear compartments.


Asunto(s)
Núcleo Celular/metabolismo , Centrosoma/fisiología , Productos del Gen tax/fisiología , Quinasa I-kappa B/metabolismo , Sumoilación , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Western Blotting , Células Cultivadas , Citoplasma/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Quinasa I-kappa B/genética , Riñón/citología , Riñón/metabolismo , Pulmón/citología , Pulmón/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Activación Transcripcional , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
9.
Retrovirology ; 9: 77, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23009398

RESUMEN

BACKGROUND: The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1) is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4⁺ T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK) complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. RESULTS: In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4⁺ primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not SUMOylation. CONCLUSIONS: These data reveal that the formation of Tax nuclear bodies, previously associated to transcriptional activities in Tax-transfected cells, is dispensable for NF-κB promoter activation, notably in CD4⁺ T cells. They also provide the first evidence that Tax SUMOylation is not a key determinant for Tax-induced NF-κB activation.


Asunto(s)
Productos del Gen tax/metabolismo , Espacio Intranuclear/metabolismo , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Activación Transcripcional , Sustitución de Aminoácidos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Productos del Gen tax/genética , Genes Reporteros , Interacciones Huésped-Patógeno , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Virus Linfotrópico T Tipo 1 Humano/fisiología , Humanos , Quinasa I-kappa B/metabolismo , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , Microscopía Confocal , FN-kappa B/fisiología , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Proteína SUMO-1/metabolismo , Transducción de Señal , Sumoilación , Transcripción Genética , Ubiquitinación
10.
Blood ; 115(11): 2177-85, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20007807

RESUMEN

A recent report demonstrated that free human T-cell leukemia virus 1 (HTLV-1) could infect plasmacytoid dendritic cells (pDCs). The major role of pDCs is to secrete massive levels of interferon-alpha (IFN-alpha) upon virus exposure; however, the induction of IFN-alpha by HTLV-1 remains unknown. We demonstrate here that cell-free HTLV-1 generated a pDC innate immune response by producing massive levels of IFN-alpha that were inhibited by anti-HTLV-1 antibodies. HTLV-1 induced costimulatory molecules and rapid expression of the apoptotic ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Furthermore, HTLV-1 stimulated pDC-induced apoptosis of CD4(+) T cells expressing DR5, transforming pDCs into IFN-producing killer pDCs. We also observed that an endosomal acidification inhibitor and a Toll-like receptor-7 (TLR7)-specific blocker drastically inhibited pDC response to HTLV-1. Three-dimensional microscopy analysis revealed that unstimulated pDCs were "dormant" IFN-producing killer pDCs with high levels of intracellular TRAIL that could be rapidly mobilized to the surface in response to TLR7 activation. Inhibition of viral degradation in endosomes by chloroquine maintained viral integrity, allowing virus detection by 3-dimensional microscopy. We demonstrate that pDCs respond to cell-free HTLV-1 by producing high levels of IFN-alpha and by mobilizing TRAIL on cell surface after TLR7 triggering. This is the first demonstration of an innate immune response induced by free HTLV-1.


Asunto(s)
Citotoxicidad Inmunológica , Células Dendríticas/inmunología , Células Dendríticas/virología , Virus Linfotrópico T Tipo 1 Humano/inmunología , Inmunidad Innata/inmunología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptor Toll-Like 7/inmunología , Sistema Libre de Células , Humanos , Interferón gamma/biosíntesis , Microscopía , Fenotipo , Transporte de Proteínas , Virión/inmunología
11.
Virologie (Montrouge) ; 16(3): 148-157, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065871

RESUMEN

The identification of the cellular receptor used by viruses to enter their target cells is always a challenge and to date entry receptors remain to be identified for a variety of pathogenic human viruses. Human T-lymphotropic virus type 1 (HTLV-1), the unique oncogenic retrovirus in human, was identified in the early 1980 's. The nature of its entry receptor has remained a mystery for over 20 years, until the independent identification of three proteins presenting the expected criteria, the glucose transporter Glut1, Neuropilin 1, a VEGF receptor, and heparan sulfate proteoglycans. In this review, we summarize the data pertaining to HTLV-1 entry molecules and present a new model, in which these three proteins successively intervene during the entry process.

12.
Med Sci (Paris) ; 38(4): 359-365, 2022 Apr.
Artículo en Francés | MEDLINE | ID: mdl-35485896

RESUMEN

Retroviruses exploit the RNA polymerase II transcription machinery for the transcription of their genes. This is the case of Human T-lymphotropic virus type 1 (HTLV-1), the retrovirus responsible for adult T-cell leukemia and for various inflammatory diseases. HTLV-1 transcription is under the control of the viral protein Tax, which exhibits an original mode of action since it does not rely on direct promoter interaction but rather on the recruitment of various cellular factors and cofactors of transcription. The factors that Tax recruits are involved in the initial step of promoter activation but also in the subsequent steps of the transcription process itself. This review describes this particular mechanism of viral transcription, from the epigenetic release of the viral promoter to the elongation of the neosynthesized viral silencing transcripts.


Title: Tax, marionnettiste de la transcription du HTLV-1. Abstract: Les rétrovirus sont des virus dont le génome est constitué d'un ARN rétrotranscrit en ADN dans la cellule, qui s'intègre alors dans le génome cellulaire. La transcription du génome rétroviral intégré est ensuite réalisée par la machinerie de transcription de l'ARN polymérase II. Dans le cas du virus T-lymphotrope humain de type 1 (HTLV-1, pour human T-lymphotropic virus type 1), rétrovirus responsable de la leucémie aiguë de l'adulte et de maladies inflammatoires, la transcription est contrôlée par la protéine virale Tax. Celle-ci agit selon un mode d'action original car le mécanisme activateur ne repose pas sur une interaction directe avec le promoteur viral, mais sur le recrutement de différents facteurs et cofacteurs cellulaires de la transcription. Les facteurs cellulaires recrutés par Tax sont impliqués dans l'activation initiale du promoteur, mais également dans les étapes ultérieures du processus de transcription lui-même. Cette revue décrit ce mécanisme particulier de transcription virale, de la levée de la répression transcriptionnelle jusqu'à l'élongation des transcrits viraux néosynthétisés.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Línea Celular , Productos del Gen tax/genética , Productos del Gen tax/metabolismo , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Regiones Promotoras Genéticas
13.
Blood ; 113(21): 5176-85, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19270265

RESUMEN

Human T-cell lymphotropic virus type 1 (HTLV-1) entry involves the interaction between the surface (SU) subunit of the Env proteins and cellular receptor(s). Previously, our laboratories demonstrated that heparan sulfate proteoglycans (HSPGs) and neuropilin-1 (NRP-1), a receptor of VEGF(165), are essential for HTLV-1 entry. Here we investigated whether, as when binding VEGF(165), HSPGs and NRP-1 work in concert during HTLV-1 entry. VEGF(165) binds to the b domain of NRP-1 through both HSPG-dependent and -independent interactions, the latter involving its exon 8. We show that VEGF(165) is a selective competitor of HTLV-1 entry and that HTLV-1 mimics VEGF(165) to recruit HSPGs and NRP-1: (1) the NRP-1 b domain is required for HTLV-1 binding; (2) SU binding to target cells is blocked by the HSPG-binding domain of VEGF(165); (3) the formation of Env/NRP-1 complexes is enhanced by HSPGs; and (4) the HTLV SU contains a motif homologous to VEGF(165) exon 8. This motif directly binds to NRP-1 and is essential for HTLV-1 binding to, internalization into, and infection of CD4(+) T cells and dendritic cells. These findings demonstrate that HSPGs and NRP-1 function as HTLV-1 receptors in a cooperative manner and reveal an unexpected mimicry mechanism that may have major implications in vivo.


Asunto(s)
Proteoglicanos de Heparán Sulfato/metabolismo , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Neuropilina-1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Acoplamiento Viral , Unión Competitiva , Células Cultivadas , Productos del Gen env/metabolismo , Infecciones por HTLV-I/virología , Humanos , Imitación Molecular , Unión Proteica , Receptores Virales/metabolismo
14.
Leukemia ; 35(3): 764-776, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32555298

RESUMEN

Adult T-cell leukemia/lymphoma (ATL) carries a poor prognosis even in indolent subtypes. We performed targeted deep sequencing combined with mapping of HTLV-1 proviral integration sites of 61 ATL patients of African and Caribbean origin. This revealed mutations mainly affecting TCR/NF-kB (74%), T-cell trafficking (46%), immune escape (29%), and cell cycle (26%) related pathways, consistent with the genomic landscape previously reported in a large Japanese cohort. To examine the evolution of mutational signatures upon disease progression while tracking the viral integration architecture of the malignant clone, we carried out a longitudinal study of patients who either relapsed or progressed from an indolent to an aggressive subtype. Serial analysis of relapsing patients identified several patterns of clonal evolution. In progressing patients, the longitudinal study revealed NF-kB/NFAT mutations at progression that were present at a subclonal level at diagnosis (allelic frequency < 5%). Moreover, the presence in indolent subtypes of mutations affecting the TCR/NF-kB pathway, whether clonal or subclonal, was associated with significantly shorter time to progression and overall survival. Our observations reveal the clonal dynamics of ATL mutational signatures at relapse and during progression. Our study defines a new subgroup of indolent ATLs characterized by a mutational signature at high risk of transformation.


Asunto(s)
Biomarcadores de Tumor/genética , Evolución Clonal , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucemia-Linfoma de Células T del Adulto/genética , Leucemia-Linfoma de Células T del Adulto/patología , Mutación , Adolescente , Adulto , Anciano , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia , Adulto Joven
15.
Retrovirology ; 7: 99, 2010 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-21114861

RESUMEN

The identity of the Human T lymphotropic Virus type 1 (HTLV-1) receptor remained an unsolved puzzle for two decades, until the recent demonstration that three molecules, Glucose Transporter 1, Neuropilin-1 and Heparan Sulfate Proteoglycans are involved in HTLV-1 binding and entry. Despite these advances, several questions remain unanswered, including the precise role of each of these molecules during virus entry. In light of the most recent data, we propose a model of the HTLV-1 receptor complex and discuss its potential impact on HTLV-1 infection.


Asunto(s)
Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Receptores Virales/metabolismo , Transportador de Glucosa de Tipo 1/fisiología , Proteoglicanos de Heparán Sulfato/fisiología , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Humanos , Neuropilina-1/fisiología , Acoplamiento Viral
16.
PLoS Pathog ; 4(11): e1000205, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19008946

RESUMEN

The blood-brain barrier (BBB), which forms the interface between the blood and the cerebral parenchyma, has been shown to be disrupted during retroviral-associated neuromyelopathies. Human T Lymphotropic Virus (HTLV-1) Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a slowly progressive neurodegenerative disease associated with BBB breakdown. The BBB is composed of three cell types: endothelial cells, pericytes and astrocytes. Although astrocytes have been shown to be infected by HTLV-1, until now, little was known about the susceptibility of BBB endothelial cells to HTLV-1 infection and the impact of such an infection on BBB function. We first demonstrated that human cerebral endothelial cells express the receptors for HTLV-1 (GLUT-1, Neuropilin-1 and heparan sulfate proteoglycans), both in vitro, in a human cerebral endothelial cell line, and ex vivo, on spinal cord autopsy sections from HAM/TSP and non-infected control cases. In situ hybridization revealed HTLV-1 transcripts associated with the vasculature in HAM/TSP. We were able to confirm that the endothelial cells could be productively infected in vitro by HTLV-1 and that blocking of either HSPGs, Neuropilin 1 or Glut1 inhibits this process. The expression of the tight-junction proteins within the HTLV-1 infected endothelial cells was altered. These cells were no longer able to form a functional barrier, since BBB permeability and lymphocyte passage through the monolayer of endothelial cells were increased. This work constitutes the first report of susceptibility of human cerebral endothelial cells to HTLV-1 infection, with implications for HTLV-1 passage through the BBB and subsequent deregulation of the central nervous system homeostasis. We propose that the susceptibility of cerebral endothelial cells to retroviral infection and subsequent BBB dysfunction is an important aspect of HAM/TSP pathogenesis and should be considered in the design of future therapeutics strategies.


Asunto(s)
Barrera Hematoencefálica/patología , Barrera Hematoencefálica/virología , Virus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical/patología , Infecciones por Retroviridae/patología , Autopsia , Línea Celular , Células Endoteliales/patología , Células Endoteliales/virología , Humanos , Receptores Virales/análisis , Médula Espinal/patología , Uniones Estrechas/patología , Uniones Estrechas/virología
17.
Retrovirology ; 6: 28, 2009 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-19284574

RESUMEN

BACKGROUND: HIV-1 uses cellular co-factors for virion formation and release. The virus is able to incorporate into the viral particles host cellular proteins, such as tetraspanins which could serve to facilitate HIV-1 egress. Here, we investigated the implication of several tetraspanins on HIV-1 formation and release in chronically infected T-lymphoblastic cells, a model that permits the study of the late steps of HIV-1 replication. RESULTS: Our data revealed that HIV-1 Gag and Env structural proteins co-localized with tetraspanins in the form of clusters. Co-immunoprecipitation experiments showed that Gag proteins interact, directly or indirectly, with CD81, and less with CD82, in tetraspanin-enriched microdomains composed of CD81/CD82/CD63. In addition, when HIV-1 producing cells were treated with anti-CD81 antibodies, or upon CD81 silencing by RNA interference, HIV-1 release was significantly impaired, and its infectivity was modulated. Finally, CD81 downregulation resulted in Gag redistribution at the cell surface. CONCLUSION: Our findings not only extend the notion that HIV-1 assembly can occur on tetraspanin-enriched microdomains in T cells, but also highlight a critical role for the tetraspanin CD81 on the late steps of HIV replication.


Asunto(s)
Antígenos CD/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Linfocitos T/virología , Replicación Viral/fisiología , Línea Celular , Regulación hacia Abajo , VIH-1/patogenicidad , Inmunoprecipitación , Proteínas de la Membrana/metabolismo , Interferencia de ARN , Tetraspanina 28 , Proteínas Virales/metabolismo , Virión/aislamiento & purificación , Virión/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
18.
Front Microbiol ; 10: 819, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31080441

RESUMEN

Human T cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a subset of infected subjects. Two viral proteins, Tax-1 and HTLV-1 basic leucine zipper factor (HBZ), play important roles in the pathogenesis of both diseases. We recently demonstrated that HBZ, previously considered a nuclear protein, is exclusively localized in the cytoplasm of peripheral blood mononuclear cells (PBMCs) of HAM/TSP patients. Here, the analysis of a larger panel of HAM/TSP cases confirmed that HBZ is a cytoplasmic protein, while Tax-1 preferentially localized in the cytoplasm with fewer speckle-like dots in the nucleus. More importantly, here we report for the first time that HBZ, when expressed in asymptomatic carriers (AC), is also confined in the cytoplasm. Similarly, Tax-1 was preferentially expressed in the cytoplasm in a significant proportion of AC. Interestingly, in both HAM/TSP and AC patients, the expression of HBZ and Tax-1 was rarely found in the same cell. We observed only few cases coexpressing the two oncoprotein in a very limited number of cells. In representative AC and HAM/TSP patients, cells expressing cytoplasmic HBZ were almost exclusively found in the CD4+ T cell compartment and very rarely in CD8+ T cells. Interestingly, at least in the cases analyzed, the expression of thymocite-expressed molecule involved in selection (THEMIS) is dispensable for the cytoplasmic localization of HBZ in both AC and HAM/TSP. The study of an HTLV-1-immortalized cell line established from an HAM/TSP patient confirmed HBZ as a resident cytoplasmic protein not shuttling between the cytoplasm and nucleus. These results extend our previous observation on the dichotomy of HBZ localization between HAM/TSP and ATL, pointing to the exclusive either cytoplasmic or nuclear localization in the two diseased states, respectively. Moreover, they show a rather selective expression in distinct cells of either HBZ or Tax-1. The unprecedented observation that HBZ is expressed only in the cytoplasm in AC strongly suggests a progressive modification of HBZ localization during the disease states associated to HTLV-1 infection. Future studies will clarify whether the distinct HBZ intracellular localization is a marker or a causative event of disease evolution.

19.
Oncotarget ; 8(32): 52256-52268, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28881727

RESUMEN

Mutations in TET2, encoding one of the TET members responsible for the conversion of DNA cytosine methylation to hydroxymethylation (5-hmc), have been recently described in Human T-lymphotropic virus type 1-associated adult T-cell leukemia/lymphoma (ATLL). However, neither the amount of genomic 5-hmc in ATLL tumor cells nor TET2 expression has been studied yet. In this study, we analyzed these two parameters as well as the mutational status of TET2 in ATLL patients. By employing a direct in situ approach, we documented that tumor T cells infiltrating lymph nodes exhibit low level of 5-hmc compared to residual normal T cells. Furthermore, this 5-hmc defect was more pronounced in tumor T cells from acute patients than from chronic ones and correlated with reduced expression of TET2 protein. TET2 variations were found in 14 patients (20%), including 13 with aggressive forms. Strikingly, 9 of the 14 patients showed the same variation (SNP rs72963007), whose frequency in ATLL patients was significantly higher than that of an ethnically matched control population (13% vs. 5%). However, no reduction of 5-hmc was found in PBMC from individuals possessing the variant rs72963007 TET2 allele, as compared to wild-type individuals. In contrast, a robust correlation was observed between 5-hmc and the levels of TET2 mRNA. Finally, loss of 5-hmc and TET2 downregulation both correlated with poor survival. These findings demonstrate that ATLL progression coincides with loss of genomic 5-hmc and indicate that downregulation of TET2, rather than TET2 mutations, is the key mechanism involved in 5-hmc modulation during ATLL progression.

20.
Retrovirology ; 3: 62, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16978406

RESUMEN

BACKGROUND: Retrovirus particles emerge from the assembly of two structural protein components, Gag that is translated as a soluble protein in the cytoplasm of the host cells, and Env, a type I transmembrane protein. Because both components are translated in different intracellular compartments, elucidating the mechanisms of retrovirus assembly thus requires the study of their intracellular trafficking. RESULTS: We used a CD25 (Tac) chimera-based approach to study the trafficking of Moloney murine leukemia virus and Mason-Pfizer monkey virus Env proteins. We found that the cytoplasmic tails (CTs) of both Env conserved two major signals that control a complex intracellular trafficking. A dileucine-based motif controls the sorting of the chimeras from the trans-Golgi network (TGN) toward endosomal compartments. Env proteins then follow a retrograde transport to the TGN due to the action of a tyrosine-based motif. Mutation of either motif induces the mis-localization of the chimeric proteins and both motifs are found to mediate interactions of the viral CTs with clathrin adaptors. CONCLUSION: This data reveals the unexpected complexity of the intracellular trafficking of retrovirus Env proteins that cycle between the TGN and endosomes. Given that Gag proteins hijack endosomal host proteins, our work suggests that the endosomal pathway may be used by retroviruses to ensure proper encountering of viral structural Gag and Env proteins in cells, an essential step of virus assembly.


Asunto(s)
Productos del Gen env/fisiología , Leucina/química , Virus de la Leucemia Murina/metabolismo , Virus del Mono Mason-Pfizer/metabolismo , Tirosina/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , Productos del Gen env/genética , Células HeLa , Humanos , Datos de Secuencia Molecular , Receptores de Interleucina-2/biosíntesis , Homología de Secuencia de Aminoácido , Red trans-Golgi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA