Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant J ; 107(2): 448-466, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33932060

RESUMEN

The xyloglucan endotransglucosylase/hydrolases (XTHs) are enzymes involved in cell wall assembly and growth regulation, cleaving and re-joining hemicellulose chains in the xyloglucan-cellulose network. Here, in a homologous system, we compare the secretion patterns of XTH11, XTH33 and XTH29, three members of the Arabidopsis thaliana XTH family, selected for the presence (XTH11 and XTH33) or absence (XTH29) of a signal peptide, and the presence of a transmembrane domain (XTH33). We show that XTH11 and XTH33 reached, respectively, the cell wall and plasma membrane through a conventional protein secretion (CPS) pathway, whereas XTH29 moves towards the apoplast following an unconventional protein secretion (UPS) mediated by exocyst-positive organelles (EXPOs). All XTHs share a common C-terminal functional domain (XET-C) that, for XTH29 and a restricted number of other XTHs (27, 28 and 30), continues with an extraterminal region (ETR) of 45 amino acids. We suggest that this region is necessary for the correct cell wall targeting of XTH29, as the ETR-truncated protein never reaches its final destination and is not recruited by EXPOs. Furthermore, quantitative real-time polymerase chain reaction analyses performed on 4-week-old Arabidopsis seedlings exposed to drought and heat stress suggest a different involvement of the three XTHs in cell wall remodeling under abiotic stress, evidencing stress-, organ- and time-dependent variations in the expression levels. Significantly, XTH29, codifying the only XTH that follows a UPS pathway, is highly upregulated with respect to XTH11 and XTH33, which code for CPS-secreted proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Glicosiltransferasas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Brefeldino A/farmacología , Membrana Celular/metabolismo , Deshidratación , Glicosiltransferasas/fisiología , Aparato de Golgi/metabolismo , Respuesta al Choque Térmico , Sistemas de Translocación de Proteínas/efectos de los fármacos
2.
Plant Physiol ; 173(3): 1844-1863, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28082716

RESUMEN

Infection by necrotrophs is a complex process that starts with the breakdown of the cell wall (CW) matrix initiated by CW-degrading enzymes and results in an extensive tissue maceration. Plants exploit induced defense mechanisms based on biochemical modification of the CW components to protect themselves from enzymatic degradation. The pectin matrix is the main CW target of Botrytis cinerea, and pectin methylesterification status is strongly altered in response to infection. The methylesterification of pectin is controlled mainly by pectin methylesterases (PMEs), whose activity is posttranscriptionally regulated by endogenous protein inhibitors (PMEIs). Here, AtPMEI10, AtPMEI11, and AtPMEI12 are identified as functional PMEIs induced in Arabidopsis (Arabidopsis thaliana) during B. cinerea infection. AtPMEI expression is strictly regulated by jasmonic acid and ethylene signaling, while only AtPMEI11 expression is controlled by PME-related damage-associated molecular patterns, such as oligogalacturonides and methanol. The decrease of pectin methylesterification during infection is higher and the immunity to B. cinerea is compromised in pmei10, pmei11, and pmei12 mutants with respect to the control plants. A higher stimulation of the fungal oxalic acid biosynthetic pathway also can contribute to the higher susceptibility of pmei mutants. The lack of PMEI expression does not affect hemicellulose strengthening, callose deposition, and the synthesis of structural defense proteins, proposed as CW-remodeling mechanisms exploited by Arabidopsis to resist CW degradation upon B. cinerea infection. We show that PME activity and pectin methylesterification are dynamically modulated by PMEIs during B. cinerea infection. Our findings point to AtPMEI10, AtPMEI11, and AtPMEI12 as mediators of CW integrity maintenance in plant immunity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Botrytis/fisiología , Hidrolasas de Éster Carboxílico/clasificación , Hidrolasas de Éster Carboxílico/metabolismo , Pared Celular/metabolismo , Pared Celular/microbiología , Inhibidores Enzimáticos/clasificación , Inhibidores Enzimáticos/metabolismo , Interacciones Huésped-Patógeno , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopía Confocal , Mutación , Pectinas/metabolismo , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
3.
J Exp Bot ; 69(1): 79-90, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29096031

RESUMEN

Due to the numerous roles plant vacuoles play in cell homeostasis, detoxification, and protein storage, the trafficking pathways to this organelle have been extensively studied. Recent evidence, however, suggests that our vision of transport to the vacuole is not as simple as previously imagined. Alternative routes have been identified and are being characterized. Intricate interconnections between routes seem to occur in various cases, complicating the interpretation of data. In this review, we aim to summarize the published evidence and link the emerging data with previous findings. We discuss the current state of information on alternative and classical trafficking routes to the plant vacuole.


Asunto(s)
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Vías Secretoras , Vacuolas/metabolismo , Transporte de Proteínas
4.
Plant Cell Rep ; 36(9): 1361-1373, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28577236

RESUMEN

KEY MESSAGE: Triticum durum Glutathione S-transferase Z1 is specifically responsive to glyphosate. Its expression influences the receptor-mediated vacuolar sorting mechanisms involved in tolerance mechanisms. A zeta subfamily glutathione S-transferase gene from Triticum durum (cv Cappelli) (TdGSTZ1) was characterized as part of a complex detoxification mechanism. The effect of different abiotic stresses on TdGSTZ1 revealed that the gene is unexpectedly responsive to glyphosate (GLY) herbicide despite it should not be part of tolerance mechanisms. Its role in the non-target-site mechanism of GLY resistance was then investigated. To analyze the GLY and the TdGSTZ1 overexpression effects on vacuolar sorting mechanisms, we performed transient transformation experiments in Nicotiana tabacum protoplasts using two vacuolar markers, AleuGFPgl133 and GFPgl133Chi, labeling the Sar1 dependent or independent sorting, respectively. We observed that the adaptive reaction of tobacco protoplasts vacuolar system to the treatment with GLY could be partially mimicked by the overexpression of TdGSTZ1 gene. To confirm the influence of GLY on the two vacuolar markers accumulation and the potential involvement of the secretion pathway activity in detoxification events, Arabidopsis thaliana transgenic plants overexpressing the non-glycosylated versions of the two markers were analyzed. The results suggested that GLY treatment specifically altered different vacuolar sorting characteristics, suggesting an involvement of the receptor-mediated AleuGFP sorting mechanism in GLY resistance. Finally, the expression analysis of selected genes confirmed that the non-target-site GLY resistance mechanisms are related to vacuolar sorting.


Asunto(s)
Glutatión Transferasa/metabolismo , Inactivación Metabólica , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Triticum/metabolismo , Vacuolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa/genética , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/farmacología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transporte de Proteínas/efectos de los fármacos , Protoplastos/metabolismo , Nicotiana/citología , Nicotiana/genética , Nicotiana/metabolismo , Triticum/efectos de los fármacos , Triticum/genética , Glifosato
5.
Int J Mol Sci ; 18(2)2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28146116

RESUMEN

The immediate visual comparison of platinum chemotherapeutics' effects in eukaryotic cells using accessible plant models of transgenic Arabidopsis thaliana is reported. The leading anticancer drug cisplatin, a third generation drug used for colon cancer, oxaliplatin and kiteplatin, promising Pt-based anticancer drugs effective against resistant lines, were administered to transgenic A. thaliana plants monitoring their effects on cells from different tissues. The transgenic plants' cell cytoskeletons were labelled by the green fluorescent protein (GFP)-tagged microtubule-protein TUA6 (TUA6-GFP), while the vacuolar organization was evidenced by two soluble chimerical GFPs (GFPChi and AleuGFP) and one transmembrane GFP-tagged tonoplast intrinsic protein 1-1 (TIP1.1-GFP). The three drugs showed easily recognizable effects on plant subcellular organization, thereby providing evidence for a differentiated drug targeting. Genetically modified A. thaliana are confirmed as a possible rapid and low-cost screening tool for better understanding the mechanism of action of human anticancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Compuestos Organoplatinos/farmacología , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Arabidopsis , Transporte Biológico/efectos de los fármacos , Citoesqueleto/metabolismo , Expresión Génica , Genes Reporteros , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Oxaliplatino , Plantas Modificadas Genéticamente , Vacuolas/metabolismo
6.
Int J Mol Sci ; 16(1): 2174-86, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25608652

RESUMEN

In this work we explored the possibility of using genetically modified Arabidopsis thaliana plants as a rapid and low-cost screening tool for evaluating human anticancer drugs action and efficacy. Here, four different inhibitors with a validated anticancer effect in humans and distinct mechanism of action were screened in the plant model for their ability to interfere with the cytoskeletal and endomembrane networks. We used plants expressing a green fluorescent protein (GFP) tagged microtubule-protein (TUA6-GFP), and three soluble GFPs differently sorted to reside in the endoplasmic reticulum (GFPKDEL) or to accumulate in the vacuole through a COPII dependent (AleuGFP) or independent (GFPChi) mechanism. Our results demonstrated that drugs tested alone or in combination differentially influenced the monitored cellular processes including cytoskeletal organization and endomembrane trafficking. In conclusion, we demonstrated that A. thaliana plants are sensitive to the action of human chemotherapeutics and can be used for preliminary screening of drugs efficacy. The cost-effective subcellular imaging in plant cell may contribute to better clarify drugs subcellular targets and their anticancer effects.


Asunto(s)
Antineoplásicos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Costos y Análisis de Costo , Evaluación Preclínica de Medicamentos/economía , Evaluación Preclínica de Medicamentos/métodos , Células Vegetales/efectos de los fármacos , Arabidopsis/citología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Vegetales/metabolismo , Epidermis de la Planta/citología , Plantas Modificadas Genéticamente
7.
ScientificWorldJournal ; 2014: 792420, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24558328

RESUMEN

Cellulose synthase-like (Csl) genes are believed to encode enzymes for the synthesis of cell wall matrix polysaccharides. The subfamily of CslA is putatively involved in the biosynthesis of ß -mannans. Here we report a study on the cellular localization and the enzyme activity of an Arabidopsis CslA family member, AtCslA2. We show that the fluorescent protein fusion AtCslA2-GFP, transiently expressed in tobacco leaf protoplasts, is synthesized in the ER and it accumulates in the Golgi stacks. The chimera is inserted in the Golgi membrane and is functional since membrane preparations obtained by transformed protoplasts carry out the in vitro synthesis of a 14C-mannan starting from GDP-D-[U-14C]mannose as substrate. The enzyme specific activity is increased by approximately 38% in the transformed protoplasts with respect to wild-type. Preliminary tests with proteinase K, biochemical data, and TM domain predictions suggest that the catalytic site of AtCslA2 faces the Golgi lumen.


Asunto(s)
Arabidopsis , Quimera , Colorantes Fluorescentes/química , Glucosiltransferasas/química , Red trans-Golgi/química , Arabidopsis/enzimología , Fenómenos Bioquímicos , Quimera/metabolismo , Colorantes Fluorescentes/metabolismo , Glucosiltransferasas/metabolismo , Hojas de la Planta/enzimología , Nicotiana/enzimología , Red trans-Golgi/enzimología
8.
Int J Mol Sci ; 15(3): 4565-82, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24642879

RESUMEN

We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response.


Asunto(s)
Acetilcolina/farmacología , Tamaño de la Célula/efectos de los fármacos , Células Vegetales/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Ácido 2,4-Diclorofenoxiacético/farmacología , Endocitosis/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hipocótilo/citología , Hipocótilo/efectos de los fármacos , Hipocótilo/genética , Ácidos Indolacéticos/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Solanum lycopersicum/citología , Solanum lycopersicum/genética , Microscopía Confocal , Células Vegetales/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Transporte de Proteínas/efectos de los fármacos , Protoplastos/citología , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vacuolas/metabolismo
9.
BMC Genomics ; 14: 781, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24219562

RESUMEN

BACKGROUND: Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. RESULTS: Total carotenoids progressively increased during fruit ripening up to ~55 µg g(-1) fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. CONCLUSIONS: Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening.


Asunto(s)
Carotenoides/genética , Citrullus/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Redes y Vías Metabólicas/genética , Carotenoides/metabolismo , Citrullus/efectos de los fármacos , Citrullus/metabolismo , Etilenos/farmacología , Frutas/efectos de los fármacos , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Licopeno , Redes y Vías Metabólicas/efectos de los fármacos , Proteínas de Plantas/biosíntesis , Plantas Modificadas Genéticamente
10.
Int J Syst Evol Microbiol ; 63(Pt 1): 72-79, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22328613

RESUMEN

Strain SPC-1(T) was isolated from the phyllosphere of Cynara cardunculus L. var. sylvestris (Lamk) Fiori (wild cardoon), a Mediterranean native plant considered to be the wild ancestor of the globe artichoke and cultivated cardoon. This Gram-stain-negative, catalase-positive, oxidase-negative, non-spore-forming, rod-shaped and non-motile strain secreted copious amounts of an exopolysaccharide, formed slimy, viscous, orange-pigmented colonies and grew optimally at around pH 6.0-6.5 and 26-30 °C in the presence of 0-0.5 % NaCl. Phylogenetic analysis based on comparisons of 16S rRNA gene sequences demonstrated that SPC-1(T) clustered together with species of the genus Sphingomonas sensu stricto. The G+C content of the DNA (66.1 mol%), the presence of Q-10 as the predominant ubiquinone, sym-homospermidine as the predominant polyamine, 2-hydroxymyristic acid (C(14 : 0) 2-OH) as the major hydroxylated fatty acid, the absence of 3-hydroxy fatty acids and the presence of sphingoglycolipid supported this taxonomic position. 16S rRNA gene sequence analysis showed that SPC-1(T) was most closely related to Sphingomonas hankookensis ODN7(T), Sphingomonas insulae DS-28(T) and Sphingomonas panni C52(T) (98.19, 97.91 and 97.11 % sequence similarities, respectively). However, DNA-DNA hybridization analysis did not reveal any relatedness at the species level. Further differences were apparent in biochemical traits, and fatty acid, quinone and polyamine profiles leading us to conclude that strain SPC-1(T) represents a novel species of the genus Sphingomonas, for which the name Sphingomonas cynarae sp. nov. is proposed; the type strain is SPC-1(T) ( = JCM 17498(T) = ITEM 13494(T)). A component analysis of the exopolysaccharide suggested that it represents a novel type of sphingan containing glucose, rhamnose, mannose and galactose, while glucuronic acid, which is commonly found in sphingans, was not detected.


Asunto(s)
Cynara/microbiología , Filogenia , Polisacáridos Bacterianos/biosíntesis , Sphingomonas/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Poliaminas/análisis , ARN Ribosómico 16S/genética , Sphingomonas/genética , Sphingomonas/aislamiento & purificación , Ubiquinona/análisis
11.
Biology (Basel) ; 12(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36979136

RESUMEN

Drought causes massive crop quality and yield losses. Limiting the adverse effects of water deficits on crop yield is an urgent goal for a more sustainable agriculture. With this aim, six chicory varieties were subjected to drought conditions during seed germination and at the six week-old plant growth stage, in order to identify some morphological and/or molecular markers of drought resistance. Selvatica, Zuccherina di Trieste and Galatina varieties, with a high vegetative development, showed a major germination index, greater seedling development (6 days of growth) and a greater dehydration resistance (6 weeks of growth plus 10 days without water) than the other ones (Brindisina, Esportazione and Rossa Italiana). Due to the reported involvement, in the abiotic stress response, of xyloglucan endotransglucosylase/hydrolases (XTHs) and late embryogenesis abundant (LEA) multigene families, XTH29 and LEA4 expression profiles were investigated under stress conditions for all analyzed chicory varieties. We showed evidence that chicory varieties with high CiXTH29 and CiLEA4 basal expression and vegetative development levels better tolerate drought stress conditions than varieties that show overexpression of the two genes only in response to drought. Other specific morphological traits characterized almost all chicory varieties during dehydration, i.e., the appearance of lysigen cavities and a general increase of the amount of xyloglucans in the cell walls of bundle xylem vessels. Our results highlighted that high CiXTH29 and CiLEA4 basal expression, associated with a high level of vegetative growth, is a potential marker for drought stress tolerance.

12.
Plant Physiol Biochem ; 201: 107865, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37467533

RESUMEN

Plants involve a fine modulation of pectin methylesterase (PME) activity against microbes. PME activity can promote the cell wall stiffening and the production of damage signals able to induce defense responses and plant resistance to pathogens. However, the molecular mechanisms underlying PME activation during disease remain largely unknown. In this study, we explored the role of subtilases (SBTs) as PME activators in Arabidopsis immunity. By using biochemical and reverse genetic approaches, we found that the expression of SBT3.3 and SBT3.5 influences the induction of defense-related PME activity and resistance to the fungus Botrytis cinerea. Arabidopsis sbt3.3 and sbt3.5 knockout mutants showed decreased induction of PME activity and increased susceptibility to the fungus. SBT3.3 expression was stimulated by oligogalacturonides. Overexpression of SBT3.3 overactivated PME activity during fungal infection and enhanced resistance to B. cinerea. A negative correlation was observed between SBT3.3 expression and cell wall methyl ester content in the genotypes analyzed after B. cinerea infection. Increased expression of defense-related genes, including PAD3, CYP81F2 and WAK2, was also revealed in SBT3.3 overexpressing lines. We also demonstrated that SBT3.3 and pro-PME17 are both secreted into the cell wall using distinct protein secretion pathways and different kinetics. Our results propose SBT3.3 and SBT3.5 as modulators of PME activity in Arabidopsis against Botrytis to promptly boost immunity limiting the growth-defense trade-off.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Botrytis/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Inmunidad , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
13.
Plant J ; 65(2): 295-308, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21223393

RESUMEN

The secretory pathway in plants involves sustained traffic to the cell wall, as matrix components, polysaccharides and proteins reach the cell wall through the endomembrane system. We studied the secretion pattern of cell-wall proteins in tobacco protoplasts and leaf epidermal cells using fluorescent forms of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2). The two most representative protein fusions, secGFP-PMEI1 and PGIP2-GFP, reached the cell wall by passing through ER and Golgi stacks but using distinct mechanisms. secGFP-PMEI1 was linked to a glycosylphosphatidylinositol (GPI) anchor and stably accumulated in the cell wall, regulating the activity of the endogenous pectin methylesterases (PMEs) that are constitutively present in this compartment. A mannosamine-induced non-GPI-anchored form of PMEI1 as well as a form (PMEI1-GFP) that was unable to bind membranes failed to reach the cell wall, and accumulated in the Golgi stacks. In contrast, PGIP2-GFP moved as a soluble cargo protein along the secretory pathway, but was not stably retained in the cell wall, due to internalization to an endosomal compartment and eventually the vacuole. Stable localization of PGIP2 in the wall was observed only in the presence of a specific fungal endopolygalacturonase ligand in the cell wall. Both secGFP-PMEI1 and PGIP2-GFP sorting were distinguishable from that of a secreted GFP, suggesting that rigorous and more complex controls than the simple mechanism of bulk flow are the basis of cell-wall growth and differentiation.


Asunto(s)
Pared Celular/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Poligalacturonasa/metabolismo , Biomarcadores , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/metabolismo , Proteínas Ligadas a GPI/metabolismo , Aparato de Golgi/metabolismo , Hexosaminas/efectos adversos , Hexosaminas/metabolismo , Mutación , Proteínas de Plantas/farmacología , Plantas Modificadas Genéticamente , Poligalacturonasa/antagonistas & inhibidores , Unión Proteica , Estabilidad Proteica , Transporte de Proteínas , Protoplastos/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Nicotiana/citología , Nicotiana/genética
14.
Biology (Basel) ; 11(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36009766

RESUMEN

Improved cellulose biosynthesis and plant biomass represent important economic targets for several biotechnological applications including bioenergy and biofuel production. The attempts to increase the biosynthesis of cellulose by overexpressing CesAs proteins, components of the cellulose synthase complex, has not always produced consistent results. Analyses of morphological and molecular data and of the chemical composition of cell walls showed that tobacco plants (F31 line), stably expressing the Arabidopsis CesA6 fused to GFP, exhibits a "giant" phenotype with no apparent other morphological aberrations. In the F31 line, all evaluated growth parameters, such as stem and root length, leaf size, and lignified secondary xylem, were significantly higher than in wt. Furthermore, F31 line exhibited increased flower and seed number, and an advance of about 20 days in the anthesis. In the leaves of F31 seedlings, the expression of primary CesAs (NtCesA1, NtCesA3, and NtCesA6) was enhanced, as well as of proteins involved in the biosynthesis of non-cellulosic polysaccharides (xyloglucans and galacturonans, NtXyl4, NtGal10), cell wall remodeling (NtExp11 and XTHs), and cell expansion (NtPIP1.1 and NtPIP2.7). While in leaves the expression level of all secondary cell wall CesAs (NtCesA4, NtCesA7, and NtCesA8) did not change significantly, both primary and secondary CesAs were differentially expressed in the stem. The amount of cellulose and matrix polysaccharides significantly increased in the F31 seedlings with no differences in pectin and hemicellulose glycosyl composition. Our results highlight the potentiality to overexpress primary CesAs in tobacco plants to enhance cellulose synthesis and biomass production.

15.
Plants (Basel) ; 11(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35956446

RESUMEN

Dittrichia viscosa (L.) Greuter is gaining attention for its high genetic plasticity and ability to adapt to adverse environmental conditions, including heavy metal and metalloid pollution. Uptake and translocation of cadmium, copper, iron, nickel, lead, and zinc to the shoots have been characterized, but its performance with arsenic is less known and sometimes contradictory. Tolerance to As is not related to a reduced uptake, but the null mutation of the aquaporin Nip1.1 gene in Arabidopsis makes the plant completely resistant to the metalloid. This aquaporin, localized in the endoplasmic reticulum, is responsible for arsenite and antimony (Sb) membrane permeation, but the uptake of arsenite occurs also in the null mutant, suggesting a more sophisticated action mechanism than direct uptake. In this study, the DvNip1 gene homologue is cloned and its expression profile in roots and shoots is characterized in different arsenic stress conditions. The use of clonal lines allowed to evidence that DvNip1.1 expression level is influenced by arsenic stress. The proportion of gene expression in roots and shoots can be used to generate an index that appears to be a promising putative selection marker to predict arsenic-resistant lines of Dittrichia viscosa plants.

16.
Membranes (Basel) ; 11(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924184

RESUMEN

Plants rely on both actin and microtubule cytoskeletons to fine-tune sorting and spatial targeting of membranes during cell growth and stress adaptation. Considerable advances have been made in recent years in the comprehension of the relationship between the trans-Golgi network/early endosome (TGN/EE) and cytoskeletons, but studies have mainly focused on the transport to and from the plasma membrane. We address here the relationship of the cytoskeleton with different endoplasmic reticulum (ER) export mechanisms toward vacuoles. These emergent features of the plant endomembrane traffic are explored with an in vivo approach, providing clues on the traffic regulation at different levels beyond known proteins' functions and interactions. We show how traffic of vacuolar markers, characterized by different vacuolar sorting determinants, diverges at the export from the ER, clearly involving different components of the cytoskeleton.

17.
Plants (Basel) ; 10(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34834884

RESUMEN

The increasing popularity of pomegranate (Punica granatum L.), driven by the awareness of its nutraceutical properties and excellent environmental adaptability, is promoting a global expansion of its production area. This investigation reports the variability in the weight, moisture, pH, total soluble solids, carbohydrates, organic acids, phenolic compounds, fatty acids, antioxidant activities, and element composition of different fruit parts (juices, peels, and kernels) from four (Ako, Emek, Kamel, and Wonderful One) of the most widely cultivated Israeli pomegranate varieties in Salento (South Italy). To the best of our knowledge, this is the first systematic characterization of different fruit parts from pomegranate cultivars grown simultaneously in the same orchard and subjected to identical agronomic and environmental conditions. Significant genotype-dependent variability was observed for many of the investigated parameters, though without any correlation among fruit parts. The levels of phenols, flavonoids, anthocyanins, and ascorbic and dehydroascorbic acids of all samples were higher than the literature-reported data, as was the antioxidant activity. This is likely due to positive interactions among genotypes, the environment, and good agricultural practices. This study also confirms that pomegranate kernels and peels are, respectively, rich sources of punicic acid and phenols together, with several other bioactive molecules. However, the variability in their levels emphasizes the need for further research to better exploit their agro-industrial potential and thereby increase juice-production chain sustainability. This study will help to assist breeders and growers to respond to consumer and industrial preferences and encourage the development of biorefinery strategies for the utilization of pomegranate by-products as nutraceuticals or value-added ingredients for custom-tailored supplemented foods.

18.
J Sci Food Agric ; 90(10): 1709-18, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20564441

RESUMEN

BACKGROUND: Lycopene is used for several industrial applications. Supercritical CO(2) (SC-CO(2)) extraction from red-ripe tomato fruits is an excellent technique to replace the use of harmful solvents. In this study, starting from red-ripe tomatoes of ordinary and high-lycopene cultivars, the effect of different agronomical and technical aspects on lycopene content, stability and yield was evaluated throughout the production process from fresh tomatoes to the final SC-CO(2)-extracted oleoresin containing lycopene. RESULTS: Red-ripe tomato cultivars differed in their lycopene content. Irrigation excess or deficit caused an increase in the amount of lycopene in the fruits. Fresh tomatoes were processed into a lyophilised matrix suitable for SC-CO(2) extraction, which could be stored for more than 6 months at -20 degrees C without lycopene loss. Under the optimal extraction conditions, efficiencies of up to 80% were achieved, but the recovery of lycopene in the extracted oleoresin was very low (approximately 24%). Co-extraction of the tomato matrix mixed with a lipid co-matrix allowed the recovery of approximately 90% of lycopene in the oleoresin. Using the high-lycopene cultivars, the yield of total extracted lycopene increased by approximately 60% with respect to the ordinary cultivars. Lipids and other biologically active molecules were present in the oleoresin. CONCLUSION: A method for extracting, from a tomato matrix, a natural and solvent-free oleoresin containing lycopene dissolved in a highly unsaturated vegetable oil has been described. The oleoresin represents an excellent product for testing on cancer and cardiovascular disease prevention.


Asunto(s)
Carotenoides/aislamiento & purificación , Frutas/química , Extractos Vegetales/química , Aceites de Plantas , Solanum lycopersicum/química , Dióxido de Carbono , Química Farmacéutica/métodos , Sequías , Liofilización , Licopeno , Solanum lycopersicum/clasificación , Pigmentos Biológicos , Agua
19.
Foods ; 9(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121076

RESUMEN

Cyclodextrins (CDs) are oligosaccharides, comprising 6 (α), 7 (ß), or 8 (γ) glucose residues, used to prepare oil-in-water emulsions and improve oil stability towards degradation. In this research, the aptitude of α-, ß-, and γ-CDs to form complexes with a supercritical CO2 extracted lycopene-rich tomato oil (TO) was comparatively assessed. TO/CD emulsions and the resulting freeze-dried powders were characterized by microscopy, Fourier transform infrared-attenuated total reflection (FTIR-ATR), and differential scanning calorimetry (DSC), as well as for their antioxidant activity. Furthermore, carotenoid stability was monitored for 90 days at 25 and 4 °C. Confocal and SEM microscopy revealed morphological differences among samples. α- and ß-CDs spontaneously associated into microcrystals assembling in thin spherical shells (cyclodextrinosomes, Ø ≈ 27 µm) at the oil/water interface. Much smaller (Ø ≈ 9 µm) aggregates were occasionally observed with γ-CDs, but most TO droplets appeared "naked". FTIR and DSC spectra indicated that most CDs did not participate in TO complex formation, nevertheless structurally different interfacial complexes were formed. The trolox equivalent antioxidant capacity (TEAC) activity of emulsions and powders highlighted better performances of α- and ß-CDs as hydrophobic antioxidants-dispersing agents across aqueous media. Regardless of CDs type, low temperature slowed down carotenoid degradation in all samples, except all-[E]-lycopene, which does not appear efficiently protected by any CD type in the long storage period.

20.
Front Plant Sci ; 11: 350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292410

RESUMEN

Endocytosis is an essential process for the internalization of plasma membrane proteins, lipids and extracellular molecules into the cells. The mechanisms underlying endocytosis in plant cells involve several endosomal organelles whose origins and specific role needs still to be clarified. In this study we compare the internalization events of a GFP-tagged polygalacturonase-inhibiting protein of Phaseolus vulgaris (PGIP2-GFP) to that of a GFP-tagged subunit of cellulose synthase complex of Arabidopsis thaliana (secGFP-CesA6). Through the use of endocytic traffic chemical inhibitors (tyrphostin A23, salicylic acid, wortmannin, concanamycin A, Sortin 2, Endosidin 5 and BFA) it was evidenced that the two protein fusions were endocytosed through distinct endosomes with different mechanisms. PGIP2-GFP endocytosis is specifically sensitive to tyrphostin A23, salicylic acid and Sortin 2; furthermore, SYP51, a tSNARE with interfering effect on late steps of vacuolar traffic, affects its arrival in the central vacuole. SecGFP-CesA6, specifically sensitive to Endosidin 5, likely reaches the plasma membrane passing through the trans Golgi network (TGN), since the BFA treatment leads to the formation of BFA bodies, compatible with the aggregation of TGNs. BFA treatments determine the accumulation and tethering of the intracellular compartments labeled by both proteins, but PGIP2-GFP aggregated compartments overlap with those labeled by the endocytic dye FM4-64 while secGFP-CesA6 fills different compartments. Furthermore, secGFP-CesA6 co-localization with RFP-NIP1.1, marker of the direct ER-to-Vacuole traffic, in small compartments separated from ER suggests that secGFP-CesA6 is sorted through TGNs in which the direct contribution from the ER plays an important role. All together the data indicate the existence of a heterogeneous population of Golgi-independent TGNs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA