Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Gut ; 72(10): 1838-1847, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36788014

RESUMEN

OBJECTIVES: Ulcerative colitis (UC) is a chronic inflammatory disorder of unknown aetiology. Gut virome dysbiosis is fundamental in UC progression, although its role in the early phases of the disease is far from fully understood. Therefore, we sought to investigate the role of a virome-associated protein encoded by the Orthohepadnavirus genus, the hepatitis B virus X protein (HBx), in UC aetiopathogenesis. DESIGN: HBx positivity of UC patient-derived blood and gut mucosa was assessed by RT-PCR and Sanger sequencing and correlated with clinical characteristics by multivariate analysis. Transcriptomics was performed on HBx-overexpressing endoscopic biopsies from healthy donors.C57BL/6 mice underwent intramucosal injections of liposome-conjugated HBx-encoding plasmids or the control, with or without antibiotic treatment. Multidimensional flow cytometry analysis was performed on colonic samples from HBx-treated and control animals. Transepithelial electrical resistance measurement, proliferation assay, chromatin immunoprecipitation assay with sequencing and RNA-sequencing were performed on in vitro models of the gut barrier. HBx-silencing experiments were performed in vitro and in vivo. RESULTS: HBx was detected in about 45% of patients with UC and found to induce colonic inflammation in mice, while its silencing reverted the colitis phenotype in vivo. HBx acted as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering both innate and adaptive mucosal immunity ex vivo and in vivo. CONCLUSION: This study described HBx as a contributor to the UC pathogenesis and provides a new perspective on the virome as a target for tailored treatments.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Colitis Ulcerosa/patología , Viroma , Ratones Endogámicos C57BL , Colon/patología , Colitis/metabolismo , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Modelos Animales de Enfermedad , Sulfato de Dextran
2.
Haematologica ; 104(9): 1789-1797, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30819912

RESUMEN

Despite the advent of tyrosine kinase inhibitors, a proportion of chronic myeloid leukemia patients in chronic phase fail to respond to imatinib or to second-generation inhibitors and progress to blast crisis. Until now, improvements in the understanding of the molecular mechanisms responsible for chronic myeloid leukemia transformation from chronic phase to the aggressive blast crisis remain limited. Here we present a large parallel sequencing analysis of 10 blast crisis samples and of the corresponding autologous chronic phase controls that reveals, for the first time, recurrent mutations affecting the ubiquitin-conjugating enzyme E2A gene (UBE2A, formerly RAD6A). Additional analyses on a cohort of 24 blast crisis, 41 chronic phase as well as 40 acute myeloid leukemia and 38 atypical chronic myeloid leukemia patients at onset confirmed that UBE2A mutations are specifically acquired during chronic myeloid leukemia progression, with a frequency of 16.7% in advanced phases. In vitro studies show that the mutations here described cause a decrease in UBE2A activity, leading to an impairment of myeloid differentiation in chronic myeloid leukemia cells.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Mutación , Enzimas Ubiquitina-Conjugadoras/genética , Crisis Blástica/genética , Diferenciación Celular , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Femenino , Células HEK293 , Humanos , Mesilato de Imatinib/uso terapéutico , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mieloide Aguda/patología , Masculino , Inhibidores de Proteínas Quinasas/farmacología , Análisis de Secuencia de ADN , Secuenciación del Exoma
4.
Blood ; 125(3): 499-503, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25343957

RESUMEN

Despite the recent identification of recurrent SETBP1 mutations in atypical chronic myeloid leukemia (aCML), a complete description of the somatic lesions responsible for the onset of this disorder is still lacking. To find additional somatic abnormalities in aCML, we performed whole-exome sequencing on 15 aCML cases. In 2 cases (13.3%), we identified somatic missense mutations in the ETNK1 gene. Targeted resequencing on 515 hematological clonal disorders revealed the presence of ETNK1 variants in 6 (8.8%) of 68 aCML and 2 (2.6%) of 77 chronic myelomonocytic leukemia samples. These mutations clustered in a small region of the kinase domain, encoding for H243Y and N244S (1/8 H243Y; 7/8 N244S). They were all heterozygous and present in the dominant clone. The intracellular phosphoethanolamine/phosphocholine ratio was, on average, 5.2-fold lower in ETNK1-mutated samples (P < .05). Similar results were obtained using myeloid TF1 cells transduced with ETNK1 wild type, ETNK1-N244S, and ETNK1-H243Y, where the intracellular phosphoethanolamine/phosphocholine ratio was significantly lower in ETNK1-N244S (0.76 ± 0.07) and ETNK1-H243Y (0.37 ± 0.02) than in ETNK1-WT (1.37 ± 0.32; P = .01 and P = .0008, respectively), suggesting that ETNK1 mutations may inhibit the catalytic activity of the enzyme. In summary, our study shows for the first time the evidence of recurrent somatic ETNK1 mutations in the context of myeloproliferative/myelodysplastic disorders.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielomonocítica Crónica/genética , Mutación/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Secuencia de Aminoácidos , Estudios de Casos y Controles , Estudios de Seguimiento , Humanos , Datos de Secuencia Molecular , Pronóstico , Homología de Secuencia de Aminoácido
5.
Mol Cancer ; 14: 132, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26179066

RESUMEN

BACKGROUND: Chronic Myeloid Leukaemia (CML) is caused by the BCR/ABL1 fusion gene. Both the presence and the levels of BCR/ABL1 expression seem to be critical for CML progression from chronic phase (CP) to blast crisis (BC). After the oncogenic translocation, the BCR/ABL1 gene is under the transcriptional control of BCR promoter but the molecular mechanisms involved in the regulation of oncogene expression are mostly unknown. METHODS: A region of 1443bp of the functional BCR promoter was studied for transcription factor binding sites through in-silico analysis and Chromatin Immunoprecipitation experiments. BCR and BCR/ABL1 expression levels were analysed in CML cell lines after over-expression or silencing of MYC transcription factor. A luciferase reporter assay was used to confirm its activity on BCR promoter. RESULTS: In the present study we demonstrate that MYC and its partner MAX bind to the BCR promoter, leading to up-regulation of BCR and BCR/ABL1 at both transcriptional and protein levels. Accordingly, silencing of MYC expression in various BCR/ABL1 positive cell lines causes significant downregulation of BCR and BCR/ABL1, which consequently leads to decreased proliferation and induction of cell death. CONCLUSIONS: Here we describe a regulatory pathway modulating BCR and BCR/ABL1 expression, showing that the BCR promoter is under the transcriptional control of the MYC/MAX heterodimer. Since MYC is frequently over-expressed in BC, this phenomenon could play a critical role in BCR/ABL1 up-regulation and blast aggressiveness acquired during CML evolution.


Asunto(s)
Proteínas de Fusión bcr-abl/genética , Regulación Leucémica de la Expresión Génica , Proteínas Proto-Oncogénicas c-bcr/genética , Proteínas Proto-Oncogénicas c-myc/genética , Transcripción Genética , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Sitios de Unión , Línea Celular Tumoral , Silenciador del Gen , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-bcr/química , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Regulación hacia Arriba
6.
Am J Hematol ; 90(10): 910-4, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26178642

RESUMEN

Imatinib is effective for the treatment of chronic myeloid leukemia (CML). However even undetectable BCR-ABL1 by Q-RT-PCR does not equate to eradication of the disease. Digital-PCR (dPCR), able to detect 1 BCR-ABL1 positive cell out of 10(7) , has been recently developed. The ISAV study is a multicentre trial aimed at validating dPCR to predict relapses after imatinib discontinuation in CML patients with undetectable Q-RT-PCR. CML patients under imatinib therapy since more than 2 years and with undetectable PCR for at least 18 months were eligible. Patients were monitored by standard Q-RT-PCR for 36 months. Patients losing molecular remission (two consecutive positive Q-RT-PCR with at least 1 BCR-ABL1/ABL1 value above 0.1%) resumed imatinib. The study enrolled 112 patients, with a median follow-up of 21.6 months. Fifty-two of the 108 evaluable patients (48.1%), relapsed; 73.1% relapsed in the first 9 months but 14 late relapses were observed between 10 and 22 months. Among the 56 not-relapsed patients, 40 (37.0% of total) regained Q-RT-PCR positivity but never lost MMR. dPCR results showed a significant negative predictive value ratio of 1.115 [95% CI: 1.013-1.227]. An inverse relationship between patients age and risk of relapse was evident: 95% of patients <45 years relapsed versus 42% in the class ≥45 to <65 years and 33% of patients ≥65 years [P(χ(2) ) < 0.0001]. Relapse rates ranged between 100% (<45 years, dPCR+) and 36% (>45 years, dPCR-). Imatinib can be safely discontinued in the setting of continued PCR negativity; age and dPCR results can predict relapse.


Asunto(s)
Proteínas de Fusión bcr-abl/metabolismo , Mesilato de Imatinib/administración & dosificación , Leucemia Mielógena Crónica BCR-ABL Positiva , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto , Factores de Edad , Anciano , Femenino , Estudios de Seguimiento , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/epidemiología , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Recurrencia
7.
Nucleic Acids Res ; 40(16): e123, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22570408

RESUMEN

Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2-ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data.


Asunto(s)
Fusión Génica , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mieloide Aguda/genética , Programas Informáticos , Translocación Genética , Secuencia de Bases , Gráficos por Computador , Genómica/métodos , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia , Transcriptoma
8.
Carcinogenesis ; 34(12): 2767-73, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23978379

RESUMEN

Lung adenocarcinoma patients of similar clinical stage and undergoing the same treatments often have marked interindividual variations in prognosis. These clinical discrepancies may be due to the genetic background modulating an individual's predisposition to fighting cancer. Herein, we hypothesized that the lung microenvironment, as reflected by its expression profile, may affect lung adenocarcinoma patients' survival. The transcriptome of non-involved lung tissue, excised from a discovery series of 204 lung adenocarcinoma patients, was evaluated using whole-genome expression microarrays (with probes corresponding to 28 688 well-annotated coding sequences). Genes associated with survival status at 60 months were identified by Cox regression analysis (adjusted for gender, age and clinical stage) and retested in a validation series of 78 additional cases. RNA-Seq analysis from non-involved lung tissue of 12 patients was performed to characterize the different isoforms of candidate genes. Ten genes for which the loge-transformed hazard ratios expressed the same direction of effect in the discovery (P < 1.0 × 10(-3)) and validation series comprised the gene expression signature associated with survival: CNTNAP1, PKNOX1, FAM156A, FRMD8, GALNTL1, TXNDC12, SNTB1, PPP3R1, SNX10 and SERPINH1. RNA sequencing highlighted the complex expression pattern of these genes in non-involved lung tissue from different patients and permitted the detection of a read-through gene fusion between PPP3R1 and the flanking gene (CNRIP1) as well as a novel isoform of CNTNAP1. Our findings support the hypothesis that individual genetic characteristics, evidenced by the expression pattern of non-involved tissue, influence the outcome of lung adenocarcinoma patients.


Asunto(s)
Adenocarcinoma/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pulmonares/genética , Transcriptoma/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Pronóstico , ARN Mensajero/genética
9.
Vet Sci ; 10(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37505882

RESUMEN

Intestinal microbiota alterations were described in allergic individuals and may improve with diets. Farmina Ultra Hypo (FUH), a hydrolyzed fish/rice starch hypoallergenic diet, is able to improve clinical signs in allergic dogs. Study objectives were to determine microbiota differences in allergic dogs before and after feeding with FUH for eight weeks. Forty skin allergic dogs were evaluated clinically before and after the diet. Unresponsive dogs were classified as canine atopic dermatitis (CAD); responsive dogs relapsing after challenge with previous foods were classified as being food reactive (AFR), and those not relapsing as doubtful (D). Sequencing of feces collected pre- and post-diet was performed, with comparisons between and within groups, pre- and post-diet, and correlations to possible altered metabolic pathways were sought. Microbiota in all dogs was dominated by Bacteroidota, Fusobacteriota, Firmicutes and Proteobacteria, albeit with large interindividual variations and with some prevalence changes after the diet. In general, bacteria producing short-chain fatty acids were increased in all samples. CAD dogs showed pre-and post-diet microbiota patterns different from the other two groups. Bacteria taxa were enriched post-diet only in the AFR group. Changes in metabolic pathways were observed mainly in the CAD group. FUH may be able to improve intestinal microbiota and thus clinical signs of skin allergy.

12.
Sci Rep ; 10(1): 542, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953506

RESUMEN

Nausea and vomiting are often associated with opioid analgesia in cancer patients; however, only a subset of patients develop such side effects. Here, we tested the hypothesis that the occurrence of nausea and vomiting is modulated by the genetic background of the patients. Whole exome sequencing of DNA pools from patients with either low (n = 937) or high (n = 557) nausea and vomiting intensity, recruited in the European Pharmacogenetic Opioid Study, revealed a preliminary association of 53 polymorphisms. PCR-based genotyping of 45 of these polymorphisms in the individual patients of the same series confirmed the association for six SNPs in AIM1L, CLCC1, MUC16, PDE3A, POM121L2, and ZNF165 genes. Genotyping of the same 45 polymorphisms in 264 patients of the Italian CERP study, also treated with opioids for cancer pain, instead confirmed the association for two SNPs in ZNF568 and PDE3A genes. Only one SNP, rs12305038 in PDE3A, was confirmed in both series, although with opposite effects of the minor allele on the investigated phenotype. Overall, our findings suggest that genetic factors are indeed associated with nausea and vomiting in opioid-treated cancer patients, but the role of individual polymorphisms may be weak.


Asunto(s)
Analgésicos Opioides/efectos adversos , Dolor en Cáncer/tratamiento farmacológico , Náusea/inducido químicamente , Náusea/genética , Polimorfismo de Nucleótido Simple , Vómitos/inducido químicamente , Vómitos/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Analgésicos Opioides/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
13.
Hemasphere ; 4(6): e497, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33196013

RESUMEN

Atypical chronic myeloid leukemia (aCML) is a BCR-ABL1-negative clonal disorder, which belongs to the myelodysplastic/myeloproliferative group. This disease is characterized by recurrent somatic mutations in SETBP1, ASXL1 and ETNK1 genes, as well as high genetic heterogeneity, thus posing a great therapeutic challenge. To provide a comprehensive genomic characterization of aCML we applied a high-throughput sequencing strategy to 43 aCML samples, including both whole-exome and RNA-sequencing data. Our dataset identifies ASXL1, SETBP1, and ETNK1 as the most frequently mutated genes with a total of 43.2%, 29.7 and 16.2%, respectively. We characterized the clonal architecture of 7 aCML patients by means of colony assays and targeted resequencing. The results indicate that ETNK1 variants occur early in the clonal evolution history of aCML, while SETBP1 mutations often represent a late event. The presence of actionable mutations conferred both ex vivo and in vivo sensitivity to specific inhibitors with evidence of strong in vitro synergism in case of multiple targeting. In one patient, a clinical response was obtained. Stratification based on RNA-sequencing identified two different populations in terms of overall survival, and differential gene expression analysis identified 38 significantly overexpressed genes in the worse outcome group. Three genes correctly classified patients for overall survival.

14.
Neoplasia ; 20(5): 467-477, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29605720

RESUMEN

BRAF is the most frequently mutated gene in melanoma. Constitutive activation of mutant BRAFV600E leads to aberrant Ras-independent MAPK signaling and cell transformation. Inhibition of mutant BRAF is a current frontline therapy for such cases, with improved survival compared with chemotherapy. Unfortunately, reactivation of MAPK signaling by several mechanisms has been shown to cause drug resistance and disease recurrence. In this work, we describe the co-occurrence of an in-frame deletion within an amplified BRAFV600E locus and a missense point mutation of the transcriptional repressor BCORL1 in vemurafenib-resistant A375 melanoma cells. Functional data confirmed that truncated p47BRAFV600E and mutant BCORL1Q1076H both contribute to resistance. Interestingly, either endogenous BCORL1 silencing or ectopic BCORL1Q1076H expression mimicked the effects of a CRISPR/Cas9-edited BCORL1Q1076H locus, suggesting a complex mixture of loss- and gain-of-function effects caused by the mutation. Transcriptomic data confirmed this hypothesis. Finally, we show that the pan-RAF inhibitor sorafenib is not affected by expression of BRAF deletion variant and effectively synergizes with vemurafenib to block resistant cells, suggesting a possible intervention for this class of mutants.


Asunto(s)
Melanoma/tratamiento farmacológico , Melanoma/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Represoras/genética , Vemurafenib/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/efectos de los fármacos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Mutación Missense/efectos de los fármacos , Mutación Missense/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Inhibidores de Proteínas Quinasas/farmacología
15.
Nat Commun ; 9(1): 2192, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875417

RESUMEN

SETBP1 variants occur as somatic mutations in several hematological malignancies such as atypical chronic myeloid leukemia and as de novo germline mutations in the Schinzel-Giedion syndrome. Here we show that SETBP1 binds to gDNA in AT-rich promoter regions, causing activation of gene expression through recruitment of a HCF1/KMT2A/PHF8 epigenetic complex. Deletion of two AT-hooks abrogates the binding of SETBP1 to gDNA and impairs target gene upregulation. Genes controlled by SETBP1 such as MECOM are significantly upregulated in leukemias containing SETBP1 mutations. Gene ontology analysis of deregulated SETBP1 target genes indicates that they are also key controllers of visceral organ development and brain morphogenesis. In line with these findings, in utero brain electroporation of mutated SETBP1 causes impairment of mouse neurogenesis with a profound delay in neuronal migration. In summary, this work unveils a SETBP1 function that directly affects gene transcription and clarifies the mechanism operating in myeloid malignancies and in the Schinzel-Giedion syndrome caused by SETBP1 mutations.


Asunto(s)
Proteínas Portadoras/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Mutación , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Anomalías Múltiples/genética , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Anomalías Craneofaciales/genética , Ontología de Genes , Células HEK293 , Deformidades Congénitas de la Mano/genética , Humanos , Discapacidad Intelectual/genética , Leucemia/genética , Leucemia/patología , Ratones , Uñas Malformadas/genética , Neurogénesis/genética , Proteínas Nucleares/metabolismo , Unión Proteica
17.
Sci Rep ; 7: 46290, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387367

RESUMEN

The complicated, evolving landscape of cancer mutations poses a formidable challenge to identify cancer genes among the large lists of mutations typically generated in NGS experiments. The ability to prioritize these variants is therefore of paramount importance. To address this issue we developed OncoScore, a text-mining tool that ranks genes according to their association with cancer, based on available biomedical literature. Receiver operating characteristic curve and the area under the curve (AUC) metrics on manually curated datasets confirmed the excellent discriminating capability of OncoScore (OncoScore cut-off threshold = 21.09; AUC = 90.3%, 95% CI: 88.1-92.5%), indicating that OncoScore provides useful results in cases where an efficient prioritization of cancer-associated genes is needed.


Asunto(s)
Genes Relacionados con las Neoplasias , Neoplasias/genética , Programas Informáticos , Humanos , Mutación
18.
Oncotarget ; 7(45): 72886-72897, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27662658

RESUMEN

ALK-positive Anaplastic Large Cell Lymphoma (ALCL) represents a subset of Non-Hodgkin Lymphoma whose treatment benefited from crizotinib development, a dual ALK/MET inhibitor. Crizotinib blocks ALK-triggered pathways such as PI3K/AKT/mTOR, indispensable for survival of ALK-driven tumors.Despite the positive impact of targeted treatment in ALCL, resistant clones are often selected during therapy. Strategies to overcome resistance include the design of second generation drugs and the use of combined therapies that simultaneously target multiple nodes essential for cells survival. We investigated the effects of combined ALK/mTOR inhibition. We observed a specific synergistic effect of combining ALK inhibitors with an mTOR inhibitor (temsirolimus), in ALK+ lymphoma cells. The positive cooperation resulted in an increased inhibition of mTOR effectors, compared to single treatments, a block in G0/G1 phase and induction of apoptosis. The combination was able to prevent the selection of resistant clones, while long-term exposure to single agents led to the establishment of resistant cell lines, with either ALK inhibitor or temsirolimus. In vivo, mice injected with Karpas 299 cells and treated with low dose combination showed complete regression of tumors, while only partial inhibition was obtained in single agents-treated mice. Upon treatment stop the combination was able to significantly delay tumor relapses. Re-challenge of relapsed tumors at a higher dose led to full regression of xenografts in the combination group, but not in mice treated with lorlatinib alone. In conclusion, our data suggest that the combination of ALK and mTOR inhibitors could be a valuable therapeutic option for ALK+ ALCL patients.


Asunto(s)
Antineoplásicos/farmacología , Linfoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Humanos , Linfoma/tratamiento farmacológico , Linfoma/genética , Linfoma/patología , Ratones , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , Recurrencia , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Oncotarget ; 7(19): 27889-98, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27058892

RESUMEN

Read-through transcripts result from the continuous transcription of adjacent, similarly oriented genes, with the splicing out of the intergenic region. They have been found in several neoplastic and normal tissues, but their pathophysiological significance is unclear. We used high-throughput sequencing of cDNA fragments (RNA-Seq) to identify read-through transcripts in the non-involved lung tissue of 64 surgically treated lung adenocarcinoma patients. A total of 52 distinct read-through species was identified, with 24 patients having at least one read-through event, up to a maximum of 17 such transcripts in one patient. Sanger sequencing validated 28 of these transcripts and identified an additional 15, for a total of 43 distinct read-through events involving 35 gene pairs. Expression levels of 10 validated read-through transcripts were measured by quantitative PCR in pairs of matched non-involved lung tissue and lung adenocarcinoma tissue from 45 patients. Higher expression levels were observed in normal lung tissue than in the tumor counterpart, with median relative quantification ratios between normal and tumor varying from 1.90 to 7.78; the difference was statistically significant (P < 0.001, Wilcoxon's signed-rank test for paired samples) for eight transcripts: ELAVL1-TIMM44, FAM162B-ZUFSP, IFNAR2-IL10RB, INMT-FAM188B, KIAA1841-C2orf74, NFATC3-PLA2G15, SIRPB1-SIRPD, and SHANK3-ACR. This report documents the presence of read-through transcripts in apparently normal lung tissue, with inter-individual differences in patterns and abundance. It also shows their down-regulation in tumors, suggesting that these chimeric transcripts may function as tumor suppressors in lung tissue.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Pulmonares/genética , Pulmón/patología , Proteínas Mutantes Quiméricas/genética , Empalme del ARN , Proteínas Supresoras de Tumor/genética , Adenocarcinoma/patología , Adenocarcinoma/cirugía , Adenocarcinoma del Pulmón , Anciano , ADN Complementario/genética , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Masculino , Persona de Mediana Edad , Neumonectomía , ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
20.
Oncotarget ; 6(8): 5720-34, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25749034

RESUMEN

ALK is involved in the onset of several tumors. Crizotinib (XalkoriTM), a potent ALK inhibitor, represents the current front-line treatment for ALK+ NSCLC and shows great clinical efficacy. However, resistant disease often develops after initial response. ASP3026 is a novel second-generation ALK inhibitor with activity on crizotinib-resistant ALK-L1196M gatekeeper mutant. As resistance is likely to be a relevant hurdle for any drug, we sought to determine the resistance profile of ASP3026 in the context of NPM/ALK+ ALCL. We selected six ASP3026-resistant cell lines by culturing human ALCL cells in the presence of increasing concentrations of drug. The established resistant cell lines carry several point mutations in the ALK kinase domain (G1128S, C1156F, I1171N/T, F1174I, N1178H, E1210K and C1156F/D1203N were the most frequent) that are shown to confer resistance to ASP3026 in the Ba/F3 cell model. All mutants were profiled for cross-resistance against a panel of clinically relevant inhibitors including ceritinib, alectinib, crizotinib, AP26113 and PF-06463922. Finally, a genetically heterogeneous ASP3026-resistant cell line was exposed to second-line treatment simulations with all inhibitors. The population evolved according to relative sensitivity of its mutant subclones to the various drugs. Compound PF-06463922 did not allow the outgrowth of any resistant clone, at non-toxic doses.


Asunto(s)
Lactamas Macrocíclicas/farmacología , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Sulfonas/farmacología , Triazinas/farmacología , Aminopiridinas , Quinasa de Linfoma Anaplásico , Animales , Apoptosis/efectos de los fármacos , Células CHO , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cricetulus , Humanos , Lactamas , Lactamas Macrocíclicas/química , Linfoma Anaplásico de Células Grandes/enzimología , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patología , Modelos Moleculares , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleofosmina , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Pirazoles , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Sulfonas/química , Triazinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA