Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 135(7): 1237-50, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-19109895

RESUMEN

Eukaryotic protein synthesis begins with assembly of 48S initiation complexes at the initiation codon of mRNA, which requires at least seven initiation factors (eIFs). First, 43S preinitiation complexes comprising 40S ribosomal subunits, eIFs 3, 2, 1, and 1A, and tRNA(Met)(i) attach to the 5'-proximal region of mRNA and then scan along the 5' untranslated region (5'UTR) to the initiation codon. Attachment of 43S complexes is mediated by three other eIFs, 4F, 4A, and 4B, which cooperatively unwind the cap-proximal region of mRNA and later also assist 43S complexes during scanning. We now report that these seven eIFs are not sufficient for efficient 48S complex formation on mRNAs with highly structured 5'UTRs, and that this process requires the DExH-box protein DHX29. DHX29 binds 40S subunits and hydrolyzes ATP, GTP, UTP, and CTP. NTP hydrolysis by DHX29 is strongly stimulated by 43S complexes and is required for DHX29's activity in promoting 48S complex formation.


Asunto(s)
Regiones no Traducidas 5' , Biosíntesis de Proteínas , ARN Helicasas/metabolismo , ARN Mensajero/genética , Animales , Células HeLa , Humanos , Conejos , Reticulocitos/metabolismo
2.
RNA ; 24(7): 939-949, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29678925

RESUMEN

Platelets are anucleate and mostly ribosome-free cells within the bloodstream, derived from megakaryocytes within bone marrow and crucial for cessation of bleeding at sites of injury. Inherited thrombocytopenias are a group of disorders characterized by a low platelet count and are frequently associated with excessive bleeding. SLFN14 is one of the most recently discovered genes linked to inherited thrombocytopenia where several heterozygous missense mutations in SLFN14 were identified to cause defective megakaryocyte maturation and platelet dysfunction. Yet, SLFN14 was recently described as a ribosome-associated protein resulting in rRNA and ribosome-bound mRNA degradation in rabbit reticulocytes. To unveil the cellular function of SLFN14 and the link between SLFN14 and thrombocytopenia, we examined SLFN14 (WT/mutants) in in vitro models. Here, we show that all SLFN14 variants colocalize with ribosomes and mediate rRNA endonucleolytic degradation. Compared to SLFN14 WT, expression of mutants is dramatically reduced as a result of post-translational degradation due to partial misfolding of the protein. Moreover, all SLFN14 variants tend to form oligomers. These findings could explain the dominant negative effect of heterozygous mutation on SLFN14 expression in patients' platelets. Overall, we suggest that SLFN14 could be involved in ribosome degradation during platelet formation and maturation.


Asunto(s)
Endorribonucleasas/genética , Endorribonucleasas/metabolismo , ARN Ribosómico/metabolismo , Trombocitopenia/genética , Animales , Células Cultivadas , Células HEK293 , Humanos , Mutación Missense , ARN Ribosómico 5.8S/análisis , Conejos , Ribosomas/química , Ribosomas/metabolismo
3.
RNA ; 22(12): 1859-1870, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27733651

RESUMEN

Eukaryotic translation initiation is a complex process involving many components. eIF3 is a scaffold for multiple initiation factors and plays multiple roles in initiation, and DHX29 helicase enhances the formation of the 48S initiation complex on structured mRNAs. Because DHX29 is not a processive helicase, the mechanism underlying its activity is unclear. Here, we show that DHX29 establishes many points of contact with eIF3. In particular, the unique N terminus of DHX29 associates with the RNA recognition motif of eIF3b and the C terminus of the eIF3a subunits of eIF3, and the disruption of either contact impairs DHX29 activity. In turn, DHX29 has weak points of contact with mRNA in the 48S initiation complex, and the pathway taken by mRNA remains unchanged. These results exclude the direct role for this protein in unwinding. Thus, DHX29 and eIF3 cooperate in scanning on structured mRNAs. Our findings support previous genetic data on the role of eIF3 during scanning.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Biosíntesis de Proteínas , ARN Helicasas/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Humanos
4.
Mol Cell ; 37(2): 196-210, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20122402

RESUMEN

After termination, eukaryotic 80S ribosomes remain associated with mRNA, P-site deacylated tRNA, and release factor eRF1 and must be recycled by dissociating these ligands and separating ribosomes into subunits. Although recycling of eukaryotic posttermination complexes (post-TCs) can be mediated by initiation factors eIF3, eIF1, and eIF1A (Pisarev et al., 2007), this energy-free mechanism can function only in a narrow range of low Mg(2+) concentrations. Here, we report that ABCE1, a conserved and essential member of the ATP-binding cassette (ABC) family of proteins, promotes eukaryotic ribosomal recycling over a wide range of Mg(2+) concentrations. ABCE1 dissociates post-TCs into free 60S subunits and mRNA- and tRNA-bound 40S subunits. It can hydrolyze ATP, GTP, UTP, and CTP. NTP hydrolysis by ABCE1 is stimulated by post-TCs and is required for its recycling activity. Importantly, ABCE1 dissociates only post-TCs obtained with eRF1/eRF3 (or eRF1 alone), but not post-TCs obtained with puromycin in eRF1's absence.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Ribosomas/metabolismo , Adenosina Trifosfato/metabolismo , Citidina Trifosfato/metabolismo , Factores Eucarióticos de Iniciación/fisiología , Guanosina Trifosfato/metabolismo , Humanos , Magnesio/metabolismo , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Subunidades Ribosómicas/metabolismo , Uridina Trifosfato/metabolismo
5.
Nucleic Acids Res ; 44(9): 4252-65, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27067542

RESUMEN

During eukaryotic translation initiation, the 43S preinitiation complex (43S PIC), consisting of the 40S ribosomal subunit, eukaryotic initiation factors (eIFs) and initiator tRNA scans mRNA to find an appropriate start codon. Key roles in the accuracy of initiation codon selection belong to eIF1 and eIF1A, whereas the mammalian-specific DHX29 helicase substantially contributes to ribosomal scanning of structured mRNAs. Here, we show that DHX29 stimulates the recognition of the AUG codon but not the near-cognate CUG codon regardless of its nucleotide context during ribosomal scanning. The stimulatory effect depends on the contact between DHX29 and eIF1A. The unique DHX29 N-terminal domain binds to the ribosomal site near the mRNA entrance, where it contacts the eIF1A OB domain. UV crosslinking assays revealed that DHX29 may rearrange eIF1A and eIF2α in key nucleotide context positions of ribosomal complexes. Interestingly, DHX29 impedes the 48S initiation complex formation in the absence of eIF1A perhaps due to forming a physical barrier that prevents the 43S PIC from loading onto mRNA. Mutational analysis allowed us to split the mRNA unwinding and codon selection activities of DHX29. Thus, DHX29 is another example of an initiation factor contributing to start codon selection.


Asunto(s)
ARN Helicasas/fisiología , Iniciación de la Transcripción Genética , Codón Iniciador , Escherichia coli , Factor 1 Eucariótico de Iniciación/química , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Helicasas/química , ARN Mensajero/química , ARN de Transferencia/química
6.
Genes Dev ; 23(9): 1106-18, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19417105

RESUMEN

Eukaryotic translation termination is mediated by two interacting release factors, eRF1 and eRF3, which act cooperatively to ensure efficient stop codon recognition and fast polypeptide release. The crystal structures of human and Schizosaccharomyces pombe full-length eRF1 in complex with eRF3 lacking the GTPase domain revealed details of the interaction between these two factors and marked conformational changes in eRF1 that occur upon binding to eRF3, leading eRF1 to resemble a tRNA molecule. Small-angle X-ray scattering analysis of the eRF1/eRF3/GTP complex suggested that eRF1's M domain contacts eRF3's GTPase domain. Consistently, mutation of Arg192, which is predicted to come in close contact with the switch regions of eRF3, revealed its important role for eRF1's stimulatory effect on eRF3's GTPase activity. An ATP molecule used as a crystallization additive was bound in eRF1's putative decoding area. Mutational analysis of the ATP-binding site shed light on the mechanism of stop codon recognition by eRF1.


Asunto(s)
Codón de Terminación/metabolismo , Modelos Moleculares , Factores de Terminación de Péptidos/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces , Adenosina Trifosfato/metabolismo , GTP Fosfohidrolasas/metabolismo , Orden Génico , Humanos , Mutación , Factores de Terminación de Péptidos/genética , Unión Proteica , Biosíntesis de Proteínas/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Ribosomas/metabolismo , Dispersión del Ángulo Pequeño , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
7.
Mol Cell ; 30(5): 599-609, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18538658

RESUMEN

Organisms that use the standard genetic code recognize UAA, UAG, and UGA as stop codons, whereas variant code species frequently alter this pattern of stop codon recognition. We previously demonstrated that a hybrid eRF1 carrying the Euplotes octocarinatus domain 1 fused to Saccharomyces cerevisiae domains 2 and 3 (Eo/Sc eRF1) recognized UAA and UAG, but not UGA, as stop codons. In the current study, we identified mutations in Eo/Sc eRF1 that restore UGA recognition and define distinct roles for the TASNIKS and YxCxxxF motifs in eRF1 function. Mutations in or near the YxCxxxF motif support the cavity model for stop codon recognition by eRF1. Mutations in the TASNIKS motif eliminated the eRF3 requirement for peptide release at UAA and UAG codons, but not UGA codons. These results suggest that the TASNIKS motif and eRF3 function together to trigger eRF1 conformational changes that couple stop codon recognition and peptide release during eukaryotic translation termination.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Secuencias de Aminoácidos/genética , Animales , Codón de Terminación/genética , Euplotes/genética , Modelos Biológicos , Factores de Terminación de Péptidos/genética , Péptidos/metabolismo , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Supresión Genética
8.
Nucleic Acids Res ; 42(19): 12052-69, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25260592

RESUMEN

48S initiation complex (48S IC) formation is the first stage in the eukaryotic translation process. According to the canonical mechanism, 40S ribosomal subunit binds to the 5'-end of messenger RNA (mRNA) and scans its 5'-untranslated region (5'-UTR) to the initiation codon where it forms the 48S IC. Entire process is mediated by initiation factors. Here we show that eIF5 and eIF5B together stimulate 48S IC formation influencing initiation codon selection during ribosomal scanning. Initiation on non-optimal start codons--following structured 5'-UTRs, in bad AUG context, within few nucleotides from 5'-end of mRNA and CUG start codon--is the most affected. eIF5-induced hydrolysis of eIF2-bound GTP is essential for stimulation. GTP hydrolysis increases the probability that scanning ribosomal complexes will recognize and arrest scanning at a non-optimal initiation codon. Such 48S ICs are less stable owing to dissociation of eIF2*GDP from initiator tRNA, and eIF5B is then required to stabilize the initiator tRNA in the P site of 40S subunit. Alternative model that eIF5 and eIF5B cause 43S pre-initiation complex rearrangement favoring more efficient initiation codon recognition during ribosomal scanning is equally possible. Mutational analysis of eIF1A and eIF5B revealed distinct functions of eIF5B in 48S IC formation and subunit joining.


Asunto(s)
Factor 5 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Regiones no Traducidas 5' , Codón Iniciador , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 5 Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/genética , Guanosina Trifosfato/metabolismo , Mutación , ARN de Transferencia de Metionina/metabolismo
9.
Biochemistry ; 54(21): 3286-301, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25996083

RESUMEN

Turnover of mRNA is a critical step that allows cells to control gene expression. Endoribonucleases, enzymes cleaving RNA molecules internally, are some of the key components of the degradation process. Here we provide a detailed characterization of novel endoribonuclease SLFN14 purified from rabbit reticulocyte lysate. Schlafen genes encode a family of proteins limited to mammals. Their cellular function is unknown or incompletely understood. In reticulocytes, SLFN14 is strongly overexpressed, represented exclusively by the short form, all tethered to ribosomes, and appears to be one of the major ribosome-associated proteins. SLFN14 binds to ribosomes and ribosomal subunits in the low part of the body and cleaves RNA but preferentially rRNA and ribosome-associated mRNA. This results in the degradation of ribosomal subunits. This process is strictly Mg(2+)- and Mn(2+)-dependent, NTP-independent, and sequence nonspecific. However, in other cell types, SLFN14 is a full-length solely nuclear protein, which lacks ribosomal binding and nuclease activities. Mutational analysis revealed the ribosomal binding site and the aspartate essential for the endonucleolytic activity of protein. Only few endoribonucleases participating in ribosome-mediated processes have been characterized to date. Moreover, none of them are shown to be directly associated with the ribosome. Therefore, our findings expand the general knowledge of endoribonucleases involved in mammalian translation control.


Asunto(s)
Endorribonucleasas/metabolismo , ARN Ribosómico/metabolismo , Conejos/metabolismo , Reticulocitos/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Animales , Sitios de Unión , Endorribonucleasas/química , Endorribonucleasas/genética , Mutación , Conejos/genética
10.
EMBO J ; 30(9): 1804-17, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21448132

RESUMEN

No-go decay (NGD) and non-stop decay (NSD) are eukaryotic surveillance mechanisms that target mRNAs on which elongation complexes (ECs) are stalled by, for example, stable secondary structures (NGD) or due to the absence of a stop codon (NSD). Two interacting proteins Dom34(yeast)/Pelota(mammals) and Hbs1, which are paralogues of eRF1 and eRF3, are implicated in these processes. Dom34/Hbs1 were shown to promote dissociation of stalled ECs and release of intact peptidyl-tRNA. Using an in vitro reconstitution approach, we investigated the activities of mammalian Pelota/Hbs1 and report that Pelota/Hbs1 also induced dissociation of ECs and release of peptidyl-tRNA, but only in the presence of ABCE1. Whereas Pelota and ABCE1 were essential, Hbs1 had a stimulatory effect. Importantly, ABCE1/Pelota/Hbs1 dissociated ECs containing only a limited number of mRNA nucleotides downstream of the P-site, which suggests that ABCE1/Pelota/Hbs1 would disassemble NSD complexes stalled at the 3'-end, but not pre-cleavage NGD complexes stalled in the middle of mRNA. ABCE1/Pelota/Hbs1 also dissociated vacant 80S ribosomes, which stimulated 48S complex formation, suggesting that Pelota/Hbs1 have an additional role outside of NGD.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Microfilamentos/metabolismo , Factores de Terminación de Péptidos/metabolismo , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Animales , Electroforesis , Endonucleasas , Escherichia coli , Vectores Genéticos/genética , Humanos , Técnicas In Vitro , Proteínas Nucleares , Conejos , Proteínas Recombinantes/metabolismo
12.
EMBO J ; 27(7): 1060-72, 2008 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-18337746

RESUMEN

Specific interactions of the classical swine fever virus internal ribosomal entry site (IRES) with 40S ribosomal subunits and eukaryotic translation initiation factor (eIF)3 enable 43S preinitiation complexes containing eIF3 and eIF2-GTP-Met-tRNA(iMet) to bind directly to the initiation codon, yielding 48S initiation complexes. We report that eIF5B or eIF5B/eIF3 also promote Met-tRNA(iMet) binding to IRES-40S complexes, forming 48S complexes that can assemble elongation-competent ribosomes. Although 48S complexes assembled both by eIF2/eIF3- and eIF5B/eIF3-mediated Met-tRNA(iMet) recruitment were destabilized by eIF1, dissociation of 48S complexes formed with eIF2 could be out-competed by efficient subunit joining. Deletion of IRES domain II, which is responsible for conformational changes induced in 40S subunits by IRES binding, eliminated the sensitivity of 48S complexes assembled by eIF2/eIF3- and eIF5B/eIF3-mediated mechanisms to eIF1-induced destabilization. However, 48S complexes formed by the eIF5B/eIF3-mediated mechanism on the truncated IRES could not undergo efficient subunit joining, as reported previously for analogous complexes assembled with eIF2, indicating that domain II is essential for general conformational changes in 48S complexes, irrespective of how they were assembled, that are required for eIF5-induced hydrolysis of eIF2-bound GTP and/or subunit joining.


Asunto(s)
Virus de la Fiebre Porcina Clásica/genética , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Hepacivirus/genética , Iniciación de la Cadena Peptídica Traduccional , Fosforilación , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Conejos , Ribosomas/metabolismo
13.
EMBO J ; 27(11): 1609-21, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18464793

RESUMEN

The position of mRNA on 40S ribosomal subunits in eukaryotic initiation complexes was determined by UV crosslinking using mRNAs containing uniquely positioned 4-thiouridines. Crosslinking of mRNA positions (+)11 to ribosomal protein (rp) rpS2(S5p) and rpS3(S3p), and (+)9-(+)11 and (+)8-(+)9 to h18 and h34 of 18S rRNA, respectively, indicated that mRNA enters the mRNA-binding channel through the same layers of rRNA and proteins as in prokaryotes. Upstream of the P-site, the proximity of positions (-)3/(-)4 to rpS5(S7p) and h23b, (-)6/(-)7 to rpS14(S11p), and (-)8-(-)11 to the 3'-terminus of 18S rRNA (mRNA/rRNA elements forming the bacterial Shine-Dalgarno duplex) also resembles elements of the bacterial mRNA path. In addition to these striking parallels, differences between mRNA paths included the proximity in eukaryotic initiation complexes of positions (+)7/(+)8 to the central region of h28, (+)4/(+)5 to rpS15(S19p), and (-)6 and (-)7/(-)10 to eukaryote-specific rpS26 and rpS28, respectively. Moreover, we previously determined that eukaryotic initiation factor2alpha (eIF2alpha) contacts position (-)3, and now report that eIF3 interacts with positions (-)8-(-)17, forming an extension of the mRNA-binding channel that likely contributes to unique aspects of eukaryotic initiation.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Animales , Secuencia de Bases , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/efectos de la radiación , Humanos , Ratones , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/efectos de la radiación , Proteínas Ribosómicas/química , Proteínas Ribosómicas/efectos de la radiación , Ribosomas/química , Ribosomas/efectos de la radiación , Tiouridina/química , Rayos Ultravioleta
14.
Blood Adv ; 5(2): 377-390, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33496736

RESUMEN

Schlafen 14 (SLFN14) has recently been identified as an endoribonuclease responsible for cleaving RNA to regulate and inhibit protein synthesis. Early studies revealed that members of the SLFN family are capable of altering lineage commitment during T-cell differentiation by using cell-cycle arrest as a means of translational control by RNase activity. SLFN14 has been reported as a novel gene causing an inherited macrothrombocytopenia and bleeding in human patients; however, the role of this endoribonuclease in megakaryopoiesis and thrombopoiesis remains unknown. To investigate this, we report a CRISPR knock-in mouse model of SLFN14 K208N homologous to the K219N mutation observed in our previous patient studies. We used hematological analysis, in vitro and in vivo studies of platelet and erythrocyte function, and analysis of spleen and bone marrow progenitors. Mice homozygous for this mutation do not survive to weaning age, whereas heterozygotes exhibit microcytic erythrocytosis, hemolytic anemia, splenomegaly, and abnormal thrombus formation, as revealed by intravital microscopy, although platelet function and morphology remain unchanged. We also show that there are differences in erythroid progenitors in the spleens and bone marrow of these mice, indicative of an upregulation of erythropoiesis. This SLFN14 mutation presents distinct species-specific phenotypes, with a platelet defect reported in humans and a severe microcytic erythrocytosis in mice. Thus, we conclude that SLFN14 is a key regulator in mammalian hematopoiesis and a species-specific mediator of platelet and erythroid lineage commitment.


Asunto(s)
Plaquetas , Endorribonucleasas/genética , Eritropoyesis , Animales , Linaje de la Célula/genética , Eritropoyesis/genética , Heterocigoto , Humanos , Ratones , Mutación
15.
Elife ; 92020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286223

RESUMEN

Taking control of the cellular apparatus for protein production is a requirement for virus progression. To ensure this control, diverse strategies of cellular mimicry and/or ribosome hijacking have evolved. The initiation stage of translation is especially targeted as it involves multiple steps and the engagement of numerous initiation factors. The use of structured RNA sequences, called Internal Ribosomal Entry Sites (IRES), in viral RNAs is a widespread strategy for the exploitation of eukaryotic initiation. Using a combination of electron cryo-microscopy (cryo-EM) and reconstituted translation initiation assays with native components, we characterized how a novel IRES at the 5'-UTR of a viral RNA assembles a functional initiation complex via an uAUG intermediate. The IRES features a novel extended, multi-domain architecture, that circles the 40S head. The structures and accompanying functional data illustrate the importance of 5'-UTR regions in translation regulation and underline the relevance of the untapped diversity of viral IRESs.


Asunto(s)
Dicistroviridae , Factor 3 de Iniciación Eucariótica/ultraestructura , Sitios Internos de Entrada al Ribosoma , Modelos Moleculares , ARN Viral/ultraestructura , Regiones no Traducidas 5' , Animales , Microscopía por Crioelectrón , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/metabolismo , Humanos , Biosíntesis de Proteínas/fisiología , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Mensajero/ultraestructura , ARN Viral/química , ARN Viral/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura
16.
Elife ; 72018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29856316

RESUMEN

Co-opting the cellular machinery for protein production is a compulsory requirement for viruses. The Cricket Paralysis Virus employs an Internal Ribosomal Entry Site (CrPV-IRES) to express its structural genes in the late stage of infection. Ribosome hijacking is achieved by a sophisticated use of molecular mimicry to tRNA and mRNA, employed to manipulate intrinsically dynamic components of the ribosome. Binding and translocation through the ribosome is required for this IRES to initiate translation. We report two structures, solved by single particle electron cryo-microscopy (cryoEM), of a double translocated CrPV-IRES with aminoacyl-tRNA in the peptidyl site (P site) of the ribosome. CrPV-IRES adopts a previously unseen conformation, mimicking the acceptor stem of a canonical E site tRNA. The structures suggest a mechanism for the positioning of the first aminoacyl-tRNA shared with the distantly related Hepatitis C Virus IRES.


Asunto(s)
Dicistroviridae/genética , Hepacivirus/genética , Sitios Internos de Entrada al Ribosoma/genética , Imitación Molecular/genética , ARN de Transferencia/genética , ARN Viral/genética , Homología de Secuencia de Ácido Nucleico , Microscopía por Crioelectrón , Modelos Moleculares , Conformación de Ácido Nucleico , ARN de Transferencia/química , ARN Viral/química , Ribosomas/metabolismo
17.
Methods Enzymol ; 430: 147-77, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17913638

RESUMEN

The canonical initiation process is the most complex aspect of translation in eukaryotes. It involves the coordinated interactions of at least 11 eukaryotic initiation factors, 40S and 60S ribosomal subunits, mRNA, and aminoacylated initiator tRNA (Met-tRNA(i)(Met)), as well as binding and hydrolysis of GTP and ATP. The factor requirements for many individual steps in this process, including scanning, initiation codon recognition, and ribosomal subunit joining, have until recently been obscure. We established the factor requirements for these steps by reconstituting the initiation process in vitro from individual purified components of the translation apparatus and developed approaches to explain the mechanism of individual steps and the roles of individual factors and to characterize the structure of initiation complexes. Here we describe protocols for the purification of native initiation factors and for expression and purification of active recombinant forms of all single subunit initiation factors, for the reconstitution of the initiation process, and for determination of the position of ribosomal complexes on mRNA by primer extension inhibition ("toe printing"). We also describe protocols for site-directed ultraviolet (UV) cross-linking to determine the interactions of individual nucleotides in mRNA with components of the initiation complex and for directed hydroxyl radical probing to determine the position of initiation factors on the ribosome.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Biosíntesis de Proteínas , Animales , Reactivos de Enlaces Cruzados/química , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Globinas/genética , Radical Hidroxilo/química , Sustancias Macromoleculares , Metionina-ARNt Ligasa/química , Metionina-ARNt Ligasa/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
18.
C R Biol ; 328(7): 589-605, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15992743

RESUMEN

Two exceptional mechanisms of eukaryotic translation initiation have recently been identified that differ fundamentally from the canonical factor-mediated, end-dependent mechanism of ribosomal attachment to mRNA. Instead, ribosomal 40S subunits bind in a factor-independent manner to the internal ribosomal entry site (IRES) in an mRNA. These two mechanisms are exemplified by initiation on the unrelated approximately 300 nt.-long Hepatitis C virus (HCV) IRES and the approximately 200 nt.-long cricket paralysis virus (CrPV) intergenic region (IGR) IRES, respectively. Ribosomal binding involves interaction with multiple non-contiguous sites on these IRESs, and therefore also differs from the factor-independent attachment of prokaryotic ribosomes to mRNA, which involves base-pairing to the linear Shine-Dalgarno sequence. The HCV IRES binds to the solvent side of the 40S subunit, docks a domain of the IRES into the ribosomal exit (E) site and places the initiation codon in the ribosomal peptidyl (P) site. Subsequent binding of eIF3 and the eIF2-GTP/initiator tRNA complex to form a 48S complex is followed by subunit joining to form an 80S ribosome. The CrPV IRES binds to ribosomes in a very different manner, by occupying the ribosomal E and P sites in the intersubunit cavity, thereby excluding initiator tRNA. Ribosomes enter the elongation stage of translation directly, without any involvement of initiator tRNA or initiation factors, following recruitment of aminoacyl-tRNA to the ribosomal aminoacyl (A) site and translocation of it to the P site.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Virus/genética , Secuencia de Bases , Codón/genética , Datos de Secuencia Molecular , Factores de Iniciación de Péptidos , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Virales/biosíntesis
19.
FEBS Lett ; 533(1-3): 99-104, 2003 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-12505166

RESUMEN

A method of analysis of translation initiation complexes by toeprinting has recently acquired a wide application to investigate molecular mechanisms of translation initiation in eukaryotes. So far, this very fruitful approach was used when researchers did not aim to discriminate between patterns of toeprints for 48S and 80S translation initiation complexes. Here, using cap-dependent and internal ribosomal entry site (IRES)-dependent mRNAs, we show that the toeprint patterns for 48S and 80S complexes are distinct whether the complexes are assembled in rabbit reticulocyte lysate or from fully purified individual components. This observation allowed us to demonstrate for the first time a delay in the conversion of the 48S complex into the 80S complex for beta-globin and encephalomyocarditis virus (EMCV) RNAs, and to assess the potential of some 80S antibiotics to block polypeptide elongation. Besides, additional selection of the authentic initiation codon among three consecutive AUGs that follow the EMCV IRES was revealed at steps subsequent to the location of the initiation codon by the 40S ribosomal subunit.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Animales , Secuencia de Bases , Codón Iniciador/genética , ADN Complementario/genética , Virus de la Encefalomiocarditis/genética , Factores Eucarióticos de Iniciación/genética , Técnicas Genéticas , Globinas/genética , Técnicas In Vitro , Sustancias Macromoleculares , Peso Molecular , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Conejos , Reticulocitos/metabolismo
20.
Cell ; 131(2): 286-99, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17956730

RESUMEN

After translational termination, mRNA and P site deacylated tRNA remain associated with ribosomes in posttermination complexes (post-TCs), which must therefore be recycled by releasing mRNA and deacylated tRNA and by dissociating ribosomes into subunits. Recycling of bacterial post-TCs requires elongation factor EF-G and a ribosome recycling factor RRF. Eukaryotes do not encode a RRF homolog, and their mechanism of ribosomal recycling is unknown. We investigated eukaryotic recycling using post-TCs assembled on a model mRNA encoding a tetrapeptide followed by a UAA stop codon and report that initiation factors eIF3, eIF1, eIF1A, and eIF3j, a loosely associated subunit of eIF3, can promote recycling of eukaryotic post-TCs. eIF3 is the principal factor that promotes splitting of posttermination ribosomes into 60S subunits and tRNA- and mRNA-bound 40S subunits. Its activity is enhanced by eIFs 3j, 1, and 1A. eIF1 also mediates release of P site tRNA, whereas eIF3j ensures subsequent dissociation of mRNA.


Asunto(s)
Factores de Elongación de Péptidos/química , Factores de Iniciación de Péptidos/química , ARN Mensajero/química , Ribosomas/química , Acetilación , Codón de Terminación , Terminación de la Cadena Péptídica Traduccional , ARN de Transferencia/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA