Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Opt Express ; 31(18): 28850-28858, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37710695

RESUMEN

The near-infrared emission in fabricated low-phonon energy, gallo-germanate glass, and double-core optical fiber has been investigated. Broadband amplified spontaneous emission (ASE) was obtained in optical fiber with cores doped with: 1st - 0.2Er2O3 and 2nd - 0.5Yb2O3/0.4Tm2O3/0.05Ho2O3 as a result of the superposition of emission bands from both cores corresponding to the Er3+:4I13/2→4I15/2 (1st core) and Tm3+:3F4 → 3H6/Ho3+:5I7 → 5I8 (2nd core) transitions. The effect of fiber length and pump wavelength on the near-infrared amplified spontaneous emission (ASE) properties has been analyzed for 1 m and 5 m optical fiber. The widest emission bandwidth (355 nm - 3 dB level) was obtained for a 5 m length optical fiber pumped by a 940 nm laser.

2.
Sensors (Basel) ; 21(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808602

RESUMEN

This work reports on the fabrication and analysis of near-infrared and mid-infrared luminescence spectra and their decays in fluoroindate glasses co-doped with Yb3+/Ho3+. The attention has been paid to the analysis of the Yb3+→ Ho3+ energy transfer processed ions in fluoroindate glasses pumped by 976 nm laser diode. The most effective sensitization for 2 µm luminescence has been obtained in glass co-doped with 0.8YbF3/1.6HoF3. Further study in the mid-infrared spectral range (2.85 µm) showed that the maximum emission intensity has been obtained in fluoroindate glass co-doped with 0.1YbF3/1.4HoF3. The obtained efficiency of Yb3+→ Ho3+ energy transfer was calculated to be up to 61% (0.8YbF3/1.6HoF3), which confirms the possibility of obtaining an efficient glass or glass fiber infrared source for a MID-infrared (MID-IR) sensing application.

3.
Opt Express ; 24(3): 2427-35, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26906818

RESUMEN

Thermal stability and broadband NIR luminescence of Pr(3+) doped gallo-germanate glasses with BaF2 have been studied. The thermal factors are larger for glass samples with low BaF2 content exhibiting good thermal stability against devitrification. Luminescence due to (1)D2 → (1)G4 transition of Pr(3+) was measured under 450 nm excitation. The (1)D2 measured lifetimes depend critically on activator concentration, but remain nearly unchanged with BaF2 content. The emission linewidth, the emission cross-section, the figure of merit (FOM) and the σem x FWHM product are relatively large, suggesting that Pr(3+)-doped gallo-germanate glasses with presence of BaF2 are promising as gain media for broadband near-infrared amplifiers.

4.
Materials (Basel) ; 16(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36837146

RESUMEN

Modified barium gallo-germanate glass hosts are still worthy of attention in studying structure-property relationships. In this work, two different series of glass systems based on (60-x)GeO2-xTiO2-30BaO-10Ga2O3 and (60-x)GeO2-xB2O3-30BaO-10Ga2O3 (x = 10, 30, 50 mol%) were synthesized, and their properties were studied using spectroscopic techniques. X-ray diffraction (XRD) patterns revealed that all fabricated glasses were fully amorphous material. The absorption edge shifted toward the longer wavelengths with a gradual substitution of GeO2. The spectroscopic assignments of titanium ions were performed with excitation and emission spectra compared to the additional sample containing an extremely low content of TiO2 (0.005 mol%). On the basis of Raman and FT-IR investigations, it was found that increasing the TiO2 content caused a destructive effect on the GeO4 and GeO6 structural units. The Raman spectra of a sample containing a predominantly TiO2 (50 mol%) proved that the band was located near 650 cm-1, which corresponded to the stretching vibration of Ti-O in TiO6 unit. The deconvoluted IR results showed that the germanate glass network consisted of the coexistence of two BO3 and BO4 structural groups. Based on the experimental investigations, we concluded that the developed materials are a promising candidate for use as novel glass host matrices for doping rare-earth and/or transition metal ions.

5.
RSC Adv ; 13(18): 12386-12393, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37091606

RESUMEN

In the current work, germanate phosphors Li2MgGeO4:Ln3+ (Ln = Pr, Tm) have been synthesized and then investigated using luminescence spectroscopy. The X-ray diffraction analysis demonstrate that ceramic compounds Li2MgGeO4 containing Pr3+ and Tm3+ ions crystallize in a monoclinic crystal lattice. Luminescence properties of Pr3+ and Tm3+ ions have been examined under different excitation wavelengths. The most intense blue emission band related to the 1D2 → 3F4 transition of Tm3+ is overlaps well with broad band located near 500 nm, which is assigned to F-type centers. These effects are not evident for Pr3+ ions. Ceramic phosphors Li2MgGeO4:Ln3+ (Ln = Pr, Tm) are characterized based on measurements of the excitation/emission spectra and their decays. The experimental results indicate that germanate ceramics Li2MgGeO4 doped with trivalent rare earth ions can be applied as inorganic phosphors emitting orange (Pr3+) or blue (Tm3+) light.

6.
Materials (Basel) ; 16(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36984018

RESUMEN

An investigation of fluoroindate glass and fiber co-doped with Yb3+/Er3+ ions as a potential temperature sensor was assessed using the fluorescence intensity ratio (FIR) technique. Analysis of thermally coupled levels (TCLs-2H11/2 and 4S3/2), non-thermally coupled levels (non-TCLs-4F7/2 and 4F9/2), and their combination were examined. Additionally, the luminescent stability of the samples under constant NIR excitation using different density power at three different temperatures was carried out. The obtained values of absolute sensitivity (0.003 K-1-glass, 0.0019 K-1-glass fiber 2H11/2 → 4S3/2 transition) and relative sensitivity (2.05% K-1-glass, 1.64% K-1-glass fiber 4F7/2 → 4F9/2 transition), as well as high repeatability of the signal, indicate that this material could be used in temperature sensing applications.

7.
Materials (Basel) ; 16(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36837218

RESUMEN

Nanophosphors are widely used, especially in biological applications in the first and second biological windows. Currently, nanophosphors doped with lanthanide ions (Ln3+) are attracting much attention. However, doping the matrix with lanthanide ions is associated with a narrow luminescence bandwidth. This paper describes the structural and luminescence properties of co-doped LaPO4 nanophosphors, fabricated by the co-precipitation method. X-ray structural analysis, scanning electron microscope measurements with EDS analysis, and luminescence measurements (excitation 395 nm) of LaPO4:Eu3+/Nd3+ and LaPO4:Eu3+/Nd3+/Yb3+ nanophosphors were made and energy transfer between rare-earth ions was investigated. Tests performed confirmed the crystal structure of the produced phosphors and deposition of rare-earth ions in the structure of LaPO4 nanocrystals. In the range of the first biological window (650-950 nm), strong luminescence bands at the wavelengths of 687 nm and 698 nm (5D0 → 7F4:Eu3+) and 867 nm, 873 nm, 889 nm, 896 nm, and 907 nm (4F3/2 → 4I9/2:Nd3+) were observed. At 980 nm, 991 nm, 1033 nm (2F5/2 → 2F7/2:Yb3+) and 1048 nm, 1060 nm, 1073 nm, and 1080 nm (4F3/2 → 4I9/2:Nd3+), strong bands of luminescence were visible in the 950 nm-1100 nm range, demonstrating that energy transfer took place.

8.
Sci Rep ; 13(1): 13963, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633975

RESUMEN

Double-clad optical fiber with a multi-ring core profile doped with thulium and holmium fabricated by Modified Chemical Vapor Deposition Chelate Doping Technology (MCVD-CDT) is presented. The measured Tm2O3 and Ho2O3 complexes' weight concentrations were 0.5% and 0.2% respectively. Numerical analyses show weakly guiding conditions and 42.2 µm of MFD LP01 at 2000 nm. The low NA numerical aperture (NA = 0.054) was obtained for the 20/250 µm core/cladding ratio optical fiber construction. The emission spectra in the range of 1.6-2.1 µm vs. the fiber length are presented. The full width at half maximum (FWHM) decreases from 318 to 270 nm for fiber lengths from 2 to 10 m. The presented fiber design is of interest for the development of new construction of optical fibers operating in the eye-safe spectral range.

9.
Materials (Basel) ; 16(24)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38138821

RESUMEN

LMA (Large Mode Area) optical fibers are presently under active investigation to explore their potential for generating laser action or broadband emission directly within the optical fiber structure. Additionally, a wide mode profile significantly reduces the power distribution density in the fiber cross-section, minimizing the power density, photodegradation, or thermal damage. Multi-stage deposition in the MCVD-CDT system was used to obtain the structural doping profile of the LMA fiber multi-ring core doped with Tm3+ and Tm3+/Ho3+ layer profiles. The low alumina content (Al2O3: 0.03wt%) results in low refractive index modification. The maximum concentrations of the lanthanide oxides were Tm2O3: 0.18wt % and Ho2O3: 0.15wt%. The double-clad construction of optical fiber with emission spectra in the eye-safe spectral range of (1.55-2.10 µm). The calculated LP01 Mode Field Diameter (MFD) was 69.7 µm (@ 2000 nm, and 1/e of maximum intensity), which confirms LMA fundamental mode guiding conditions. The FWHM and λmax vs. fiber length are presented and analyzed as a luminescence profile modification. The proposed structured optical fiber with a ring core can be used in new broadband optical radiation source designs.

10.
Materials (Basel) ; 16(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36614399

RESUMEN

In this paper, the effect of the GeO2:TiO2 molar ratio in glass composition on the spectroscopic properties of germanate glasses was systematically investigated. The visible luminescence bands associated with characteristic 1D2 → 3H4 (red), 5S2, 5F4 → 5I8 (green), and 1D2 → 3F4 (blue) transitions of Pr3+, Ho3+, and Tm3+ ions in systems modified by TiO2 were well observed, respectively. It was found that the luminescence intensity of glasses containing Pr3+ and Ho3+ ions increases, whereas, for Tm3+-doped systems, luminescence quenching with increasing content of TiO2 was observed. Based on Commission Internationale de I'Eclairage (CIE) chromaticity coordinates (x, y) analysis, it was demonstrated that the value of chromaticity coordinates for all glasses depends on the GeO2:TiO2 molar ratio. The addition of TiO2 to system compositions doped with Tm3+ ions shifts the (x, y) to the center of the CIE diagram. However, chromaticity coordinates evaluated for glasses containing Pr3+ ions move to a purer red color. Our results confirm that the spectroscopic properties of the studied glasses strongly depend on TiO2 content. Moreover, it can be stated that germanate-based glass systems modified by TiO2 can be used for optoelectronics in RGB technology as red (Pr3+), green (Ho3+), and blue (Tm3+) emitters.

11.
Materials (Basel) ; 15(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35160713

RESUMEN

The results presented in this communication concern visible and near-IR emission of Pr3+ ions in selected inorganic glasses, i.e., borate-based glass with Ga2O3 and BaO, lead-phosphate glass with Ga2O3, gallo-germanate glass modified by BaO/BaF2, and multicomponent fluoride glass based on InF3. Glasses present several emission bands at blue, reddish orange, and near-infrared spectral ranges, which correspond to 4f-4f electronic transitions of Pr3+. The profiles of emission bands and their relative intensity ratios depend strongly on glass-host. Visible emission of Pr3+ ions is tuned from red/orange for borate-based glass to nearly white light for multicomponent fluoride glass based on InF3. The positions and spectral linewidths for near-infrared luminescence bands at the optical telecommunication window corresponding to the 1G4 → 3H5, 1D2 → 1G4, and 3H4 → 3F3,3F4 transitions of Pr3+ are dependent on glass-host matrices and excitation wavelengths. Low-phonon fluoride glasses based on InF3 and gallo-germanate glasses with BaO/BaF2 are excellent candidates for broadband near-infrared optical amplifiers. Spectroscopic properties of Pr3+-doped glasses are compared and discussed in relation to potential optical applications.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 268: 120693, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-34894565

RESUMEN

Spectral properties of lead-free glasses doped with Dy3+ ions in function of glass formers and glass modifiers were studied. The glass systems in a function of concentration GeO2 and CaO/SrO/BaO which was partially or totally replaced by CaF2/SrF2/BaF2 were synthesized. The visible luminescence spectra for obtained glasses were registered and value of parameters such as ratio of yellow-to-blue luminescence and the Commission Internationale de I'Eclairage (CIE) chromaticity coordinates (x, y) were analyzed in detail. The Y/B increase from 2.97 to 3.8 in systems with increasing of concentration glass former (GeO2), whereas ratio Y/B slightly decreases when the of content fluoride glass modifiers increases. The obtained results confirm that impact on visible luminescence of lead-free borate glasses doped with Dy3+ ions is greater for glass former than glass modifier. Moreover, studied systems can be used for optoelectronic as yellowish emitters.

13.
Materials (Basel) ; 15(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35629686

RESUMEN

Inorganic glasses co-doped with rare-earth ions have a key potential application value in the field of optical communications. In this paper, we have fabricated and then characterized multicomponent TiO2-modified germanate glasses co-doped with Yb3+/Ln3+ (Ln = Pr, Er, Tm, Ho) with excellent spectroscopic properties. Glass systems were directly excited at 980 nm (the 2F7/2 → 2F5/2 transition of Yb3+). We demonstrated that the introduction of TiO2 is a promising option to significantly enhance the main near-infrared luminescence bands located at the optical telecommunication window at 1.3 µm (Pr3+: 1G4 → 3H5), 1.5 µm (Er3+: 4I13/2 → 4I15/2), 1.8 µm (Tm3+: 3F4 → 3H6) and 2.0 µm (Ho3+: 5I7 → 7I8). Based on the lifetime values, the energy transfer efficiencies (ηET) were estimated. The values of ηET are changed from 31% for Yb3+/Ho3+ glass to nearly 53% for Yb3+/Pr3+ glass. The investigations show that obtained titanate-germanate glass is an interesting type of special glasses integrating luminescence properties and spectroscopic parameters, which may be a promising candidate for application in laser sources emitting radiation and broadband tunable amplifiers operating in the near-infrared range.

14.
Materials (Basel) ; 15(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955197

RESUMEN

In this work, the synthesis and characterization of Li2MgGeO4:Ho3+ ceramics were reported. The X-ray diffraction measurements revealed that the studied ceramics belong to the monoclinic Li2MgGeO4. Luminescence properties were analyzed in the visible spectral range. Green and red emission bands correspondent to the 5F4,5S2→5I8 and 5F5→5I8 transitions of Ho3+ were observed, and their intensities were significantly dependent on activator concentration. Luminescence spectra were also measured under direct excitation of holmium ions or ceramic matrix. Holmium ions were inserted in crystal lattice Li2MgGeO4, giving broad blue emission and characteristic 4f-4f luminescent transitions of rare earths under the selective excitation of the ceramic matrix. The presence of the energy transfer process between the host lattice and Ho3+ ions was suggested.

15.
Materials (Basel) ; 15(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35955165

RESUMEN

The effect of BaF2, MgF2, and AlF3 on the structural and luminescent properties of gallo-germanate glass (BGG) doped with erbium ions was investigated. A detailed analysis of infrared and Raman spectra shows that the local environment of erbium ions in the glass was influenced mainly by [GeO]4 and [GeO]6 units. Moreover, the highest number of non-bridging oxygens was found in the network of the BGG glass modified by MgF2. The 27Al MAS NMR spectrum of BGG glass with AlF3 suggests the presence of aluminum in tetra-, penta-, and octahedral coordination geometry. Therefore, the probability of the 4I13/2→4I15/2 transition of Er3+ ions increases in the BGG + MgF2 glass system. On the other hand, the luminescence spectra showed that the fluoride modifiers lead to an enhancement in the emission of each analyzed transition when different excitation sources are employed (808 nm and 980 nm). The analysis of energy transfer mechanisms shows that the fluoride compounds promote the emission intensity in different channels. These results represent a strong base for designing glasses with unique luminescent properties.

16.
Materials (Basel) ; 15(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35683100

RESUMEN

Glass-ceramic is semi-novel material with many applications, but it is still problematic in obtaining fibers. This paper aims to develop a new glass-ceramic material that is a compromise between crystallization, thermal stability, and optical properties required for optical fiber technology. This compromise is made possible by an alternative method with a controlled crystallization process and a suitable choice of the chemical composition of the core material. In this way, the annealing process is eliminated, and the core material adopts a glass-ceramic character with high transparency directly in the drawing process. In the experiment, low phonon antimony-germanate-silicate glass (SGS) doped with Eu3+ ions and different concentrations of P2O5 were fabricated. The glass material crystallized during the cooling process under conditions similar to the drawing processes'. Thermal stability (DSC), X-ray photo analysis (XRD), and spectroscopic were measured. Eu3+ ions were used as spectral probes to determine the effect of P2O5 on the asymmetry ratio for the selected transitions (5D0 → 7F1 and 5D0 → 7F2). From the measurements, it was observed that the material produced exhibited amorphous or glass-ceramic properties, strongly dependent on the nucleator concentration. In addition, the conducted study confirmed that europium ions co-form the EuPO4 structure during the cooling process from 730 °C to room temperature. Moreover, the asymmetry ratio was changed from over 4 to under 1. The result obtained confirms that the developed material has properties typical of transparent glass-ceramic while maintaining high thermal stability, which will enable the fabrication of fibers with the glass-ceramic core.

17.
Opt Lett ; 36(6): 990-2, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21403752

RESUMEN

Lead phosphate glasses containing Eu(3+) and Dy(3+) have been studied. Local structure was verified using Fourier transform (FT)-IR spectroscopy. Emission bands of Eu(3+) and Dy(3+) ions in lead phosphate glasses are observed in the visible spectral range, which correspond to 5D0→7F(J) (J=0,1,2,4) and 4F(9/2)→6H(J/2) (J=15,13,11) transitions, respectively. Shorter luminescence decays from excited states of Eu(3+) and Dy(3+0 are due to the presence of PbO in phosphate glass.

18.
Materials (Basel) ; 14(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071370

RESUMEN

This paper deals with broadband near-infrared luminescence properties of lead germanate glass triply doped with Yb3+/Er3+/Tm3+. Samples were excited at 800 nm and 975 nm. Their emission intensities and lifetimes depend significantly on Er3+ and Tm3+ concentrations. For samples excited at 800 nm, broadband emissions corresponding to the overlapped 3H4 → 3F4 (Tm3+) and 4I13/2 → 4I15/2 (Er3+) transitions centered at 1.45 µm and 1.5 µm was identified. Measurements of decay curves confirm reduction of 3H4 (Tm3+), 2F5/2 (Yb3+) and 4I13/2 (Er3+) luminescence lifetimes and the presence of energy-transfer processes. The maximal spectral bandwidth equal to 269 nm for the 3F4 → 3H6 transition of Tm3+ suggests that our glass co-doped with Yb3+/Er3+/Tm3+ is a good candidate for broadband near-infrared emission. The energy transfer from 4I13/2 (Er3+) to 3F4 (Tm3+) and cross-relaxation processes are responsible for the enhancement of broadband luminescence near 1.8 µm attributed to the 3F4 → 3H6 transition of thulium ions in lead germanate glass under excitation of Yb3+ ions at 975 nm.

19.
Materials (Basel) ; 14(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34885309

RESUMEN

Glasses containing two different network-forming components and doped with optically active ions exhibit interesting properties. In this work, glass systems based on germanium dioxide and boron trioxide singly doped with lanthanides (Eu3+) and transition metals (Cr3+) ions are research subjects. Optical spectroscopy was the major research tool used to record excitation and emission spectra in a wide spectral range for studied systems. The emitted radiation of glasses doped with Cr3+ ions is dominated by broadband luminescence centered at 770 nm and 1050 nm (4T2 → 4A2). Interestingly, the increase of concentration of one of the oxides contributed to the detectable changes of the R-line (2E → 4A2) of Cr3+ ions. Moreover, EPR spectroscopy confirmed the paramagnetic properties of the obtained glasses. The influence of molar ratio GeO2:B2O3 on spectroscopic properties for Eu3+ ions is discussed. The intensity of luminescence bands due to transitions of trivalent europium ions as well as the ratio R/O decrease with the increase of B2O3. On the other hand, the increase in concentration B2O3 influences the increasing tendency of luminescence lifetimes for the 5D0 state of Eu3+ ions. The results will contribute to a better understanding of the role of the glass host and thus the prospects for new optical materials.

20.
Materials (Basel) ; 14(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562698

RESUMEN

In this work, the series of Tb3+/Eu3+ co-doped xerogels and derivative glass-ceramics containing CaF2 nanocrystals were prepared and characterized. The in situ formation of fluoride crystals was verified by an X-ray diffraction technique (XRD) and transmission electron microscopy (TEM). The studies of the Tb3+/Eu3+ energy transfer (ET) process were performed based on excitation and emission spectra along with luminescence decay analysis. According to emission spectra recorded under near-ultraviolet (NUV) excitation (351 nm, 7F6 → 5L9 transition of Tb3+), the mutual coexistence of the 5D4 → 7FJ (J = 6-3) (Tb3+) and the 5D0 → 7FJ (J = 0-4) (Eu3+) luminescence bands was clearly observed. The co-doping also resulted in gradual shortening of a lifetime from the 5D4 state of Tb3+ ions, and the ET efficiencies were varied from ηET = 11.9% (Tb3+:Eu3+ = 1:0.5) to ηET = 22.9% (Tb3+:Eu3+ = 1:2) for xerogels, and from ηET = 25.7% (Tb3+:Eu3+ = 1:0.5) up to ηET = 67.4% (Tb3+:Eu3+ = 1:2) for glass-ceramics. Performed decay analysis from the 5D0 (Eu3+) and the 5D4 (Tb3+) state revealed a correlation with the change in Tb3+-Eu3+ and Eu3+-Eu3+ interionic distances resulting from both the variable Tb3+:Eu3+ molar ratio and their partial segregation in CaF2 nanophase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA