Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 358, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829381

RESUMEN

Biosurfactants are in demand by the global market as natural commodities suitable for incorporation into commercial products or utilization in environmental applications. Fungi are promising producers of these molecules and have garnered interest also for their metabolic capabilities in efficiently utilizing recalcitrant and complex substrates, like hydrocarbons, plastic, etc. Within this framework, biosurfactants produced by two Fusarium solani fungal strains, isolated from plastic waste-contaminated landfill soils, were analyzed. Mycelia of these fungi were grown in the presence of 5% olive oil to drive biosurfactant production. The characterization of the emulsifying and surfactant capacity of these extracts highlighted that two different components are involved. A protein was purified and identified as a CFEM (common in fungal extracellular membrane) containing domain, revealing a good propensity to stabilize emulsions only in its aggregate form. On the other hand, an unidentified cationic smaller molecule exhibits the ability to reduce surface tension. Based on the 3D structural model of the protein, a plausible mechanism for the formation of very stable aggregates, endowed with the emulsifying ability, is proposed. KEY POINTS: • Two Fusarium solani strains are analyzed for their surfactant production. • A cationic surfactant is produced, exhibiting the ability to remarkably reduce surface tension. • An identified protein reveals a good propensity to stabilize emulsions only in its aggregate form.


Asunto(s)
Proteínas Fúngicas , Fusarium , Tensoactivos , Fusarium/metabolismo , Fusarium/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Tensoactivos/metabolismo , Tensoactivos/química , Emulsionantes/metabolismo , Emulsionantes/química , Microbiología del Suelo , Emulsiones/química , Emulsiones/metabolismo , Tensión Superficial , Cisteína/metabolismo , Cisteína/química , Aceite de Oliva/metabolismo , Aceite de Oliva/química , Micelio/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37762146

RESUMEN

Fungi produce surface-active proteins, among which hydrophobins are the most characterized and attractive also for their ability to form functional amyloids. Our most recent findings show that these abilities are shared with other classes of fungal proteins. Indeed, in this paper, we compared the characteristics of a class I hydrophobin (Vmh2 from Pleurotus ostreatus) and an unknown protein (named PAC3), extracted from the marine fungal strain Acremonium sclerotigenum, which does not belong to the same protein family based on its sequence features. They both proved to be good biosurfactants, stabilizing emulsions in several conditions (concentration, pH, and salinity) and decreasing surface tension to a comparable value to that of some synthetic surfactants. After that, we observed for both Vmh2 and PAC3 the formation of giant fibers without the need for harsh conditions or long incubation time, a remarkable ability herein reported for the first time.


Asunto(s)
Cisteína , Pleurotus , Proteínas Fúngicas , Proteínas de la Membrana , Salinidad
3.
Analyst ; 147(5): 897-904, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35142302

RESUMEN

We investigated the use of POXA1b laccase from Pleurotus ostreatus for the oxidation of anthracene into anthraquinone. We show that different pathways can occur depending on the nature of the redox mediator combined to laccase, leading to different structural isomers. The laccase combined with 2,2'-azine-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) leads to the formation of 1,4-anthraquinone and/or 1,2-anthraquinone. The unprecedented role of carbon nanotubes (CNTs) as redox mediators for oxidation of anthracene into 9,10-anthraquinone is shown and corroborated by density-functional theory (DFT) calculations. Owing to the efficient adsorption of anthraquinones at CNT electrodes, anthracene can be detected with low limit-of-detection using either laccase in solution, CNT-supported laccase or laccase immobilized at magnetic beads exploiting the adhesive property of a chimeric hydrophobin-laccase.


Asunto(s)
Lacasa , Nanotubos de Carbono , Antracenos/metabolismo , Lacasa/química , Nanotubos de Carbono/química , Oxidación-Reducción , Ácidos Sulfónicos/química
4.
Appl Microbiol Biotechnol ; 104(3): 915-924, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31834437

RESUMEN

Laccases bring exciting promises into the green industries, and the development of enzymes with improved properties is further raising their exploitation potential. Molecular engineering methods to build highly efficient catalysts both through rational and random mutagenesis were extensively applied. Moreover, computational approaches are becoming always more reliable in aiding proper design of efficient and tailored catalyst for specific applications. In this review, the results of the last 10 years about industrial application of engineered laccases in different fields are analyzed. Tailoring laccase towards a target substrate and defining a proper screening strategy for the selection of the "jackpot mutant" represent the keys of a winning mutagenesis pathway. Likewise, laccase chimerae, built by the fusion of laccases with relevant proteins, emerged as an added value in the designing of flexible and well-rounded biocatalysts. Despite being promising in most of the reported examples, evolved laccases are currently tested at a laboratory scale and a feedback from the industry world is continuously required to strengthen the biotechnological exploitation of these improved enzymes.


Asunto(s)
Biocatálisis , Lacasa/genética , Ingeniería de Proteínas , Biología Computacional , Microbiología Industrial , Lacasa/metabolismo , Mutagénesis , Especificidad por Sustrato
5.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326352

RESUMEN

Two fungal strains, Aspergillus terreus MUT 271 and Trichoderma harzianum MUT 290, isolated from a Mediterranean marine site chronically pervaded by oil spills, can use crude oil as sole carbon source. Herein, these strains were investigated as producers of biosurfactants, apt to solubilize organic molecules as a preliminary step to metabolize them. Both fungi secreted low molecular weight proteins identified as cerato-platanins, small, conserved, hydrophobic proteins, included among the fungal surface-active proteins. Both proteins were able to stabilize emulsions, and their capacity was comparable to that of other biosurfactant proteins and to commercially available surfactants. Moreover, the cerato-platanin from T. harzianum was able to lower the surface tension value to a larger extent than the similar protein from A. terreus and other amphiphilic proteins from fungi. Both cerato-platanins were able to make hydrophilic a hydrophobic surface, such as hydrophobins, and to form a stable layer, not removable even after surface washing. To the best of our knowledge, the ability of cerato-platanins to work both as biosurfactant and bioemulsifier is herein demonstrated for the first time.


Asunto(s)
Organismos Acuáticos , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Tensoactivos/metabolismo , Carbono/metabolismo , Celulosa/química , Interacciones Hidrofóbicas e Hidrofílicas , Petróleo/metabolismo , Tensión Superficial
6.
Int J Mol Sci ; 21(11)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466417

RESUMEN

A chimeric enzyme based on the genetic fusion of a laccase with a hydrophobin domain was employed to functionalize few-layer graphene, previously exfoliated from graphite in the presence of the hydrophobin. The as-produced, biofunctionalized few-layer graphene was characterized by electrochemistry and Raman spectroscopy, and finally employed in the biosensing of phenols such as catechol and dopamine. This strategy paves the way for the functionalization of nanomaterials by hydrophobin domains of chimeric enzymes and their use in a variety of electrochemical applications.


Asunto(s)
Técnicas Biosensibles/métodos , Enzimas Inmovilizadas/química , Proteínas Fúngicas/química , Grafito/química , Lacasa/química , Catecoles/análisis , Dopamina/análisis , Enzimas Inmovilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lacasa/metabolismo , Dominios Proteicos
7.
Appl Microbiol Biotechnol ; 103(7): 3061-3071, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30783720

RESUMEN

A simple and stable immobilization of a laccase from Pleurotus ostreatus was obtained through genetic fusion with a self-assembling and adhesive class I hydrophobin. The chimera protein was expressed in Pichia pastoris and secreted into the culture medium. The crude culture supernatant was directly used for coatings of polystyrene multi-well plates without additional treatments, a procedure that resulted in a less time-consuming and chemicals reduction. Furthermore, the gene fusion yielded a positive effect with respect to the wild-type recombinant enzyme in terms of both immobilization and stability. The multi-well plate with the immobilized chimera was used to develop an optical biosensor to monitor two phenolic compounds: L-DOPA ((S)-2-amino-3-(3,4-dihydroxyphenyl) propanoic acid) and caffeic acid (3-(3,4-dihydroxyphenyl)-2-propenoic acid); the estimation of which is a matter of interest in the pharmaceutics and food field. The method was based on the use of the analytes as competing inhibitors of the laccase-mediated ABTS oxidation. The main advantages of the developed biosensor are the ease of preparation, the use of small sample volumes, and the simultaneous analysis of multiple samples on a single platform.


Asunto(s)
Técnicas Biosensibles , Proteínas Fúngicas/biosíntesis , Lacasa/biosíntesis , Pleurotus/enzimología , Ácidos Cafeicos/metabolismo , Clonación Molecular , Medios de Cultivo/química , Enzimas Inmovilizadas/biosíntesis , Proteínas Fúngicas/genética , Concentración de Iones de Hidrógeno , Lacasa/genética , Levodopa/metabolismo , Oxidación-Reducción , Pichia/genética , Poliestirenos , Proteínas Recombinantes de Fusión/biosíntesis
8.
Biol Chem ; 399(8): 895-901, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29897879

RESUMEN

Hydrophobins are fungal proteins that can self-assemble into amphiphilic films at hydrophobic-hydrophilic interfaces. Class I hydrophobin aggregates resemble amyloid fibrils, sharing some features with them. Here, five site-directed mutants of Vmh2, a member of basidiomycota class I hydrophobins, were designed and characterized to elucidate the molecular determinants playing a key role in class I hydrophobin self-assembly. The mechanism of fibril formation proposed for Vmh2 foresees that the triggering event is the destabilization of a specific loop (L1), leading to the formation of a ß-hairpin, which in turn generates the ß-spine of the amyloid fibril.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Amiloide/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida
9.
Biotechnol Bioeng ; 114(1): 46-52, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27427236

RESUMEN

Self-assembling proteins forming amyloid fibrils are promising candidates for the fabrication of biomaterials, due to the chemical and mechanical stability of their structures. Among potential applications, their use as platforms for enzyme immobilization is rapidly gathering attention. In this work, we demonstrate that the production of the enzyme glutathione-S-transferase (GST) fused to the class I hydrophobin Vmh2 from Pleurotus ostreatus represents an invaluable tool for the development of self-immobilizing enzymes useful for high throughput analyses. The proposed immobilization strategy is versatile since it can be applied, in principle, to every recombinant protein able to refold from Escherichia coli inclusion bodies. A GST based biosensor has been developed to quantify toxic compounds, such as the pesticides molinate and captan, in aqueous environmental samples. The main advantages of this sensor include simplicity and speed of preparation, high sensitivity, reusability, and accuracy. Biotechnol. Bioeng. 2017;114: 46-52. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Amiloide/metabolismo , Técnicas Biosensibles/métodos , Enzimas Inmovilizadas/química , Proteínas Fúngicas/química , Proteínas Recombinantes de Fusión/química , Amiloide/química , Animales , Enzimas Inmovilizadas/genética , Enzimas Inmovilizadas/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glutatión Transferasa/química , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Pleurotus/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schistosoma japonicum/enzimología , Schistosoma japonicum/genética
10.
Cell Mol Life Sci ; 72(5): 923-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25577278

RESUMEN

An analysis of the scientific literature published in the last 10 years reveals a constant growth of laccase applicative research in several industrial fields followed by the publication of a great number of patents. The Green Chemistry journal devoted the cover of its September 2014 issue to a laccase as greener alternative for chemical oxidation. This indicates that laccase "never-ending story" has found a new promising trend within the constant search for efficient (bio)catalysts able to meet the 12 green chemistry principles. A survey of ancient and cutting-edge uses of laccase in different industrial sectors is offered in this review with the aim both to underline their potential and to provide inspiration for new ones. Applications in textile and food fields have been deeply described, as well as examples concerning polymer synthesis and laccase-catalysed grafting. Recent applications in pharmaceutical and cosmetic industry have also been reviewed.


Asunto(s)
Lacasa/metabolismo , Biocatálisis , Flavonoides/química , Flavonoides/metabolismo , Tecnología Química Verde , Lacasa/química , Oxidación-Reducción , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Polímeros/química , Polímeros/metabolismo , Textiles/análisis
11.
Appl Microbiol Biotechnol ; 98(11): 4949-61, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24463760

RESUMEN

Since the first report on a laccase, there has been a notable development in the interest towards this class of enzymes, highlighted from the number of scientific papers and patents about them. At the same time, interest in exploiting laccases-mainly high redox potential-for various functions has been growing exponentially over the last 10 years. Despite decades of work, the molecular determinants of the redox potential are far to be fully understood. For this reason, interest in tuning laccase redox potential to provide more efficient catalysts has been growing since the last years. The work herein described takes advantage of the filamentous fungus Aspergillus niger as host for the heterologous production of the high redox potential laccase POXA1b from Pleurotus ostreatus and of one of its in vitro selected variants (1H6C). The system herein developed allowed to obtain a production level of 35,000 U/L (583.3 µkat/L) for POXA1b and 60,000 U/L (1,000 µkat/L) for 1H6C, corresponding to 13 and 20 mg/L for POXA1b and 1H6C, respectively. The characterised proteins exhibit very similar characteristics, with some exceptions regarding catalytic behaviour, stability and spectro-electrochemical properties. Remarkably, the 1H6C variant shows a higher redox potential with respect to POXA1b. Furthermore, the spectro-electrochemical results obtained for 1H6C make it tempting to claim that we spectro-electrochemically determined the redox potential of the 1H6C T2 site, which has not been studied in any detail by spectro-electrochemistry yet.


Asunto(s)
Lacasa/genética , Lacasa/metabolismo , Mutación , Pleurotus/enzimología , Aspergillus niger/genética , Aspergillus niger/metabolismo , Técnicas Electroquímicas , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Lacasa/química , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Pleurotus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis Espectral , Temperatura
12.
ACS Appl Bio Mater ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284578

RESUMEN

The main aim of this work is to account for the prevention and control of microbial growth on surfaces of interest in medical technology. Surface modification is often achieved by physiotherapy or chemical treatments that can involve time-consuming steps, hazardous reagents, and harsh conditions. One of the ways to overcome these drawbacks is the use of surface-active proteins such as hydrophobins. They can form stable protein layers on different surfaces, serving as anchoring points for other molecules of interest. The fungal hydrophobin Vmh2, already exploited for its adhesive ability, has been fused with the antimicrobial peptide GKY20, forming the chimeric protein used herein for functionalizing polystyrene (PS) and bacterial cellulose (BC). As a natural biomass, BC has multiple advantages, including biodegradability, low cost, renewability, high purity, and excellent mechanical properties. The chimeric protein has been proven to successfully adhere to both surfaces. A strong decrease in biofilm formation on PS and a good bactericidal effect of BC have been demonstrated. These findings provide evidence of an alternative strategy to obtain functional composites using a green, easy process.

13.
J Clin Med ; 13(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38892776

RESUMEN

Antiphospholipid syndrome (APS), also known as Hughes syndrome, is an acquired autoimmune and procoagulant condition that predisposes individuals to recurrent thrombotic events and obstetric complications. Central is the role of three types of antiphospholipid antibodies that target phospholipid-binding proteins: lupus anticoagulant (LAC), anti-ß2-glycoprotein I (ß2-GPI-Ab), and anti-cardiolipin (aCL). Together with clinical data, these antibodies are the diagnostic standard. However, the diagnosis of APS in older adults may be challenging and, in the diagnostic workup of thromboembolic complications, it is an underestimated etiology. The therapeutic management of APS requires distinguishing two groups with differential risks of thromboembolic complications. The standard therapy is based on low-dose aspirin in the low-risk group and vitamin K antagonists in the high-risk group. The value of direct oral anticoagulants is currently controversial. The potential role of monoclonal antibodies is investigated. For example, rituximab is currently recommended in catastrophic antiphospholipid antibody syndrome. Research is ongoing on other monoclonal antibodies, such as daratumumab and obinutuzumab. This narrative review illustrates the pathophysiological mechanisms of APS, with a particular emphasis on cardiovascular complications and their impact in older adults. This article also highlights advancements in the diagnosis, risk stratification, and management of APS.

14.
Appl Microbiol Biotechnol ; 97(2): 705-17, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22395908

RESUMEN

Fungal laccases (p-diphenol:oxygen oxidoreductase; EC 1.10.3.2) are multi-copper-containing oxidases that catalyse the oxidation of a great variety of phenolic compounds and aromatic amines through simultaneous reduction of molecular oxygen to water. Fungi generally produce several laccase isoenzymes encoded by complex multi-gene families. The Pleurotus ostreatus genome encodes 11 putative laccase coding genes, and only six different laccase isoenzymes have been isolated and characterised so far. Laccase expression was found to be regulated by culture conditions and developmental stages even if the redundancy of these genes still raises the question about their respective functions in vivo. In this context, laccase transcript profiling analysis has been used to unravel the physiological role played by the different isoforms produced by P. ostreatus. Even if reported results depict a complex picture of the transcriptional responses exhibited by the analysed laccase genes, they were allowed to speculate on the isoform role in vivo. Among the produced laccases, LACC10 (POXC) seems to play a major role during vegetative growth, since its transcription is downregulated when the fungus starts the fructification process. Furthermore, a new tessera has been added to the puzzling mosaic of the heterodimeric laccase LACC2 (POXA3). LACC2 small subunit seems to play an additional physiological role during fructification, beside that of LACC2 complex activation/stabilisation.


Asunto(s)
Lacasa/genética , Pleurotus/enzimología , Pleurotus/genética , Regulación Fúngica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Ann Geriatr Med Res ; 27(3): 269-273, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37482408

RESUMEN

Tetanus is an infectious disease caused by Clostridium tetani toxin. Although easily preventable through vaccination, over 73,000 new infections and 35,000 deaths due to tetanus occurred worldwide in 2019, with higher rates in countries with healthcare barriers. Here, we present a clinical case of C. tetani infection in an 85-year-old patient. Patient robustness and high functional reserve before infection are favorable predictors of survival for an otherwise fatal disease. However, the patient did not experience any severe complications. Therefore, this report is a strong call for tetanus vaccination.

16.
Front Mol Biosci ; 9: 959166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032682

RESUMEN

Research on innovative surface functionalization strategies to develop materials with high added value is particularly challenging since this process is a crucial step in a wide range of fields (i.e., biomedical, biosensing, and food packaging). Up to now, the main applied derivatization methods require hazardous and poorly biocompatible reagents, harsh conditions of temperature and pressure, and are time consuming and cost effective. The discovery of biomolecules able to adhere by non-covalent bonds on several surfaces paves the way for their employment as a replacement of chemical processes. A simple, fast, and environment-friendly method of achieving modification of chemically inert surfaces is offered by hydrophobins, small amphiphilic proteins produced by filamentous fungi. Due to their structural characteristics, they form stable protein layers at interfaces, serving as anchoring points that can strongly bind molecules of interest. In addition, genetic engineering techniques allow the production of hydrophobins fused to a wide spectrum of relevant proteins, providing further benefits in term of time and ease of the process. In fact, it is possible to bio-functionalize materials by simply dip-casting, or by direct deposition, rendering them exploitable, for example, in the development of biomedical and biosensing platforms.

17.
Biosens Bioelectron ; 196: 113696, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34655970

RESUMEN

Marine waters are becoming contaminated by diverse pollutants at a fast rate, and detection of these water pollutants has become a major concern in recent years. Among these, mercury is considered the most toxic element for human health. At present, despite the commonly used methods for its detection are accurate, they often require sophisticated equipments, have relatively high costs, are demanding and time-consuming. Herein a novel solution to detect mercury (II) pollution in sea water is proposed, and an easy and portable detection method has been developed. Indeed, a hydrophobin based chimera able to both adhere to polystyrene multiwell plates and bind mercury (II) with a consequent fluorescent decrease was designed. The chimera was the recognition element in a fluorescence-based biosensor able to detect mercury (II) in the nM range. Indeed, this biosensor specifically measure Hg2+ concentration also in the presence of other metals, reaching a limit of detection of 0.4 nM in tap water and 0.3 nM in sea water. Moreover, the developed biosensor was coupled to machine learning methodologies with the big advantage of predicting mercury concentration levels without the use of classical reader devices, thus allowing in situ monitoring of sea pollution by non-skilled personnel.


Asunto(s)
Técnicas Biosensibles , Mercurio , Contaminantes Químicos del Agua , Contaminantes del Agua , Humanos , Límite de Detección , Aprendizaje Automático , Mercurio/análisis , Contaminantes Químicos del Agua/análisis
18.
Cell Mol Life Sci ; 67(3): 369-85, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19844659

RESUMEN

Laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) are blue multicopper oxidases that catalyze the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. In fungi, laccases carry out a variety of physiological roles during their life cycle. These enzymes are being increasingly evaluated for a variety of biotechnological applications due to their broad substrate range. In this review, the most recent studies on laccase structural features and catalytic mechanisms along with analyses of their expression are reported and examined with the aim of contributing to the discussion on their structure-function relationships. Attention has also been paid to the properties of enzymes endowed with unique characteristics and to fungal laccase multigene families and their organization.


Asunto(s)
Lacasa/química , Secuencia de Aminoácidos , Dominio Catalítico , Cobre/química , Cobre/metabolismo , Hongos/enzimología , Lacasa/genética , Lacasa/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
19.
Microb Biotechnol ; 14(4): 1699-1706, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34107174

RESUMEN

Considering its worldwide abundance, cellulose can be a suitable candidate to replace the fossil oil-based materials, even if its potential is still untapped, due to some scientific and technical gaps. This work offers new possibilities demonstrating for the first time the ability of a cerato-platanin, a small fungal protein, to valorize lignocellulosic Agri-food Wastes. Indeed, cerato-platanins can loosen cellulose rendering it more accessible to hydrolytic attack. The cerato-platanin ThCP from a marine strain of Trichoderma harzianum, characterized as an efficient biosurfactant protein, has proven able to efficiently pre-treat apple pomace, obtaining a sugar conversion yield of 65%. Moreover, when used in combination with a laccase enzyme, a notable increase in the sugar conversion yield was measured. Similar results were also obtained when other wastes, coffee silverskin and potato peel, were pre-treated. With respect to the widespread laccase pre-treatments, this new pre-treatment approach minimizes process time, increasing energy efficiency.


Asunto(s)
Plumbaginaceae , Trichoderma , Proteínas Fúngicas , Hidrólisis , Hypocreales , Lignina
20.
Front Mol Biosci ; 8: 725697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34738014

RESUMEN

Although antibody immobilization on solid surfaces is extensively used in several applications, including immunoassays, biosensors, and affinity chromatography, some issues are still challenging. Self-assembling protein layers can be used to coat easily different surfaces by direct deposition. A specific biofunctional layer can be formed using genetic engineering techniques to express fused proteins acting as self-immobilizing antibodies. In this study, fusion proteins combining the self-assembling adhesive properties of a fungal hydrophobin and the functionality of the single chain fragment variables (ScFvs) of two antibodies were produced. The chosen ScFvs are able to recognize marine toxins associated with algal blooms, saxitoxin, and domoic acid, which can bioaccumulate in shellfish and herbivorous fish causing food poisoning. ScFvs fused to hydrophobin Vmh2 from Pleurotus ostreatus were produced in Escherichia coli and recovered from the inclusion bodies. The two fusion proteins retained the functionality of both moieties, being able to adhere on magnetic beads and to recognize and bind the two neurotoxins, even with different performances. Our immobilization procedure is innovative and very easy to implement because it allows the direct functionalization of magnetic beads with ScFvs, without any surface modification. Two different detection principles, electrochemical and optical, were adopted, thus achieving a versatile platform suitable for different antigen detection methods. The sensitivity of the saxitoxin optical biosensor [limit of detection (LOD) 1.7 pg/ml] is comparable to the most sensitive saxitoxin immunosensors developed until now.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA