Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Mol Life Sci ; 81(1): 37, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214769

RESUMEN

The mechanism underlying the transition from the pre-symptomatic to the symptomatic state is a crucial aspect of epileptogenesis. SYN2 is a member of a multigene family of synaptic vesicle phosphoproteins playing a fundamental role in controlling neurotransmitter release. Human SYN2 gene mutations are associated with epilepsy and autism spectrum disorder. Mice knocked out for synapsin II (SynII KO) are prone to epileptic seizures that appear after 2 months of age. However, the involvement of the endocannabinoid system, known to regulate seizure development and propagation, in the modulation of the excitatory/inhibitory balance in the epileptic hippocampal network of SynII KO mice has not been explored. In this study, we investigated the impact of endocannabinoids on glutamatergic and GABAergic synapses at hippocampal dentate gyrus granule cells in young pre-symptomatic (1-2 months old) and adult symptomatic (5-8 months old) SynII KO mice. We observed an increase in endocannabinoid-mediated depolarization-induced suppression of excitation in young SynII KO mice, compared to age-matched wild-type controls. In contrast, the endocannabinoid-mediated depolarization-induced suppression of inhibition remained unchanged in SynII KO mice at both ages. This selective alteration of excitatory synaptic transmission was accompanied by changes in hippocampal endocannabinoid levels and cannabinoid receptor type 1 distribution among glutamatergic and GABAergic synaptic terminals contacting the granule cells of the dentate gyrus. Finally, inhibition of type-1 cannabinoid receptors in young pre-symptomatic SynII KO mice induced seizures during a tail suspension test. Our results suggest that endocannabinoids contribute to maintaining network stability in a genetic mouse model of human epilepsy.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Sinapsinas , Animales , Ratones , Endocannabinoides , Ratones Noqueados , Fenotipo , Convulsiones , Sinapsis , Sinapsinas/genética
2.
Allergy ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935036

RESUMEN

BACKGROUND: Hereditary angioedema (HAE) is a rare genetic disorder characterized by local, self-limiting edema due to temporary increase in vascular permeability. HAE with normal C1 esterase inhibitor (C1INH) activity includes the form with mutations in the F12 gene encoding for coagulation factor XII (FXII-HAE) causing an overproduction of bradykinin (BK) leading to angioedema attack. BK binding to B2 receptors (BK2R) leads to an activation of phospholipase C (PLC) and subsequent generation of second messengers: diacylglycerols (DAGs) and possibly the endocannabinoids (eCBs), 2-arachidonoylglycerol (2-AG) and anandamide (AEA), and eCB-related N-acylethanolamines [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)]. To date, there are no data on the role of these lipid mediators in FXII-HAE. METHODS: Here, we analyzed plasma levels of PLC, DAGs, and eCBs in 40 patients with FXII-HAE and 40 sex- and age-matched healthy individuals. RESULTS: Plasma PLC activity was increased in FXII-HAE patients compared to controls. Concentrations of DAG 18:1-20:4, a lipid second messenger produced by PLC, were higher in FXII-HAE compared to controls, and positively correlated with PLC activity and cleaved high molecular kininogen (cHK). Also the concentrations of the DAG metabolite, 2-AG were altered in FXII-HAE. AEA and OEA were decreased in FXII-HAE patients compared to controls; by contrast, PEA, was increased. The levels of all tested mediators did not differ between symptomatic and asymptomatic patients. Moreover, C1INH-HAE patients had elevated plasma levels of PLC, which correlated with cHK, but the levels of DAGs and eCBs were the same as controls. CONCLUSIONS: BK overproduction and BKR2 activation are linked to alteration of PLCs and their metabolites in patients with FXII-HAE. Our results may pave way to investigations on the functions of these mediators in the pathophysiology of FXII-HAE, and provide new potential biomarkers and therapeutic targets.

3.
Eur J Neurol ; : e16400, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152573

RESUMEN

BACKGROUND AND PURPOSE: Preclinical studies of amyotrophic lateral sclerosis (ALS) have shown altered endocannabinoid (eCB) signalling that may contribute to the disease. Results from human studies are sparse and inconclusive. The aim of this study was to determine the association between serum levels of eCBs or their congeners, the so-called endocannabinoidome, and disease status and activity in ALS patients. METHODS: Serum concentrations of 2-arachidonoylglycerol and N-arachidonoylethanolamine (AEA), and AEA congeners palmitoylethanolamide (PEA), oleoylethanolamide (OEA), eicosapentaenoylethanolamide (EPEA), 2-docosahexaenoylglycerol (2-DHG) and docosahexaenoylethanolamide (DHEA) were measured in samples from 65 ALS patients, 32 healthy controls (HCs) and 16 neurological disease controls (NALS). A subset of 46 ALS patients underwent a longitudinal study. Disease activity and progression were correlated with eCB and congener levels. RESULTS: Most circulating mediators were higher in ALS than HCs (all p < 0.001), but not NALS. Across clinical stages, ALS patients showed increased levels of PEA, OEA and EPEA (all p < 0.02), which were confirmed by the longitudinal study (all p < 0.03). Serum PEA and OEA levels were independent predictors of survival and OEA levels were higher in patients complaining of appetite loss. Cluster analysis revealed two distinct profiles of circulating mediators associated with corresponding patterns of disease activity (severe vs. mild). Patients belonging to the 'severe' cluster showed significantly higher levels of OEA and PEA and lower levels of 2-DHG compared to NALS and HCs. CONCLUSION: Circulating endocannabinoidome profiles are indicative of disease activity, thus possibly paving the way to a personalized, rather than a 'one-fits-all', therapeutic approach targeting the endocannabinoidome.

4.
Neurotherapeutics ; 21(2): e00326, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301326

RESUMEN

Intraventricular hemorrhage (IVH) is an important cause of long-term disability in extremely preterm infants, with no current treatment. This study assessed the potential neuroprotective effects of cannabidiol (CBD) in an IVH model using immature rats. IVH was induced in 1-day-old (P1) Wistar rats by left periventricular injection of Clostridial collagenase. Some rats received CBD prenatally (10 â€‹mg/kg i.p. to the dam) and then 5 â€‹mg/kg i.p. 6, 30 and 54 â€‹h after IVH (IVH+CBD, n â€‹= â€‹30). Other IVH rats received vehicle (IVH+VEH, n â€‹= â€‹34) and vehicle-treated non-IVH rats served as controls (SHM, n â€‹= â€‹29). Rats were humanely killed at P6, P14 or P45. Brain damage (motor and memory performance, area of damage, Lactate/N-acetylaspartate ratio), white matter injury (ipsilateral hemisphere and corpus callosum volume, oligodendroglial cell density and myelin basic protein signal), blood-brain barrier (BBB) integrity (Mfsd2a, occludin and MMP9 expression, gadolinium leakage), inflammation (TLR4, NFκB and TNFα expression, infiltration of pro-inflammatory cells), excitotoxicity (Glutamate/N-acetylspartate ratio) and oxidative stress (protein nitrosylation) were then evaluated. CBD prevented the long-lasting motor and cognitive consequences of IVH, reduced brain damage in the short- and long-term, protected oligodendroglial cells preserving adequate myelination and maintained BBB integrity. The protective effects of CBD were associated with the modulation of inflammation, excitotoxicity and oxidative stress. In conclusion, in immature rats, CBD reduced IVH-induced brain damage and its short- and long-term consequences, showing robust and pleiotropic neuroprotective effects. CBD is a potential candidate to ameliorate IVH-induced immature brain damage.


Asunto(s)
Lesiones Encefálicas , Cannabidiol , Fármacos Neuroprotectores , Humanos , Recién Nacido , Animales , Ratas , Barrera Hematoencefálica , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Recien Nacido Prematuro/metabolismo , Ratas Wistar , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/etiología , Inflamación , Modelos Animales de Enfermedad
5.
Acta Neuropathol Commun ; 12(1): 113, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992700

RESUMEN

BACKGROUND: Despite extensive studies on the neurobiological correlates of traumatic brain injury (TBI), little is known about its molecular determinants on long-term consequences, such as dementia and Alzheimer's disease (AD). METHODS: Here, we carried out behavioural studies and an extensive biomolecular analysis, including inflammatory cytokines, gene expression and the combination of LC-HRMS and MALDI-MS Imaging to elucidate the targeted metabolomics and lipidomics spatiotemporal alterations of brains from wild-type and APP-SWE mice, a genetic model of AD, at the presymptomatic stage, subjected to mild TBI. RESULTS: We found that brain injury does not affect cognitive performance in APP-SWE mice. However, we detected an increase of key hallmarks of AD, including Aß1-42 levels and BACE1 expression, in the cortices of traumatized transgenic mice. Moreover, significant changes in the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), occurred, including increased levels of the endocannabinoid 2-AG in APP-SWE mice in both the cortex and hippocampus, and N-acylserotonins, detected for the first time in the brain. The gene expression of enzymes for the biosynthesis and inactivation of eCBs and eCB-like mediators, and some of their main molecular targets, also underwent significant changes. We also identified the formation of heteromers between cannabinoid 1 (CB1) and serotonergic 2A (5HT2A) receptors, whose levels increased in the cortex of APP-SWE mTBI mice, possibly contributing to the exacerbated pathophysiology of AD induced by the trauma. CONCLUSIONS: Mild TBI induces biochemical changes in AD genetically predisposed mice and the eCBome may play a role in the pathogenetic link between brain injury and neurodegenerative disorders also by interacting with the serotonergic system.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Endocannabinoides , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Ratones , Endocannabinoides/metabolismo , Disfunción Cognitiva/metabolismo , Serotonina/metabolismo , Biomarcadores/metabolismo , Masculino , Conmoción Encefálica/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Síntomas Prodrómicos , Péptidos beta-Amiloides/metabolismo
7.
J. physiol. biochem ; 73(3): 349-357, ago. 2017. graf
Artículo en Inglés | IBECS (España) | ID: ibc-178886

RESUMEN

Maternal deprivation (MD) during neonatal life has diverse long-term effects, including modification of metabolism. We have previously reported that MD modifies the metabolic response to high-fat diet (HFD) intake, with this response being different between males and females, while previous studies indicate that in mice with HFD-induced obesity, endocannabinoid (EC) levels are markedly altered in various brown and white adipose tissue depots. Here, we analyzed the effects of MD (24 h at postnatal day 9), alone or in combination with a HFD from weaning until the end of the experiment in Wistar rats of both sexes. Brown and white perirenal and subcutaneous adipose tissues were collected and the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were determined. In males, MD increased the content of OEA in brown and 2-AG in subcutaneous adipose tissues, while in females the content of 2-AG was increased in perirenal fat. Moreover, in females, MD decreased AEA and OEA levels in perirenal and subcutaneous adipose tissues, respectively. HFD decreased the content of 2-AG in brown fat of both sexes and OEA in brown and subcutaneous adipose tissue of control females. In contrast, in subcutaneous fat, HFD increased AEA levels in MD males and OEA levels in control and MD males. The present results show for the first time that MD and HFD induce sex-dependent effects on the main ECs, AEA, and 2-AG, and of AEA-related mediators, OEA and PEA, in the rat brown and white (visceral and subcutaneous) adipose tissues


Asunto(s)
Animales , Masculino , Femenino , Tejido Adiposo Beige/metabolismo , Endocannabinoides/metabolismo , Grasa Intraabdominal/metabolismo , Animales Recién Nacidos , Dieta Alta en Grasa , Ratas Wistar , Caracteres Sexuales , Privación Materna
8.
J. physiol. biochem ; 73(3): 335-347, ago. 2017. tab, graf
Artículo en Español | IBECS (España) | ID: ibc-178885

RESUMEN

The purpose of the present study was to examine the effect of chronic exercise on the hypothalamus and hippocampus levels of the endocannabinoids (eCBs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and of two AEA congeners and on the expression of genes coding for CB1, CB2 receptors (Cnr1 and Cnr2, respectively), and the enzymes responsible for eCB biosynthesis and degradation, in rats fed with a standard or high-fat diet. Male Wistar rats (n = 28) were placed on a 12-week high-fat (HFD) or standard diet period, followed by 12 weeks of exercise training for half of each group. Tissue levels of eCBs and related lipids were measured by liquid chromatography mass spectrometry, and expression of genes coding for CB1 and CB2 receptors and eCB metabolic enzymes was measured by quantitative real-time polymerase chain reaction (qPCR). HFD induced a significant increase in 2-AG (p < 0.01) in hypothalamus. High-fat diet paired with exercise training had no effect on AEA, 2-AG, and AEA congener levels in the hypothalamus and hippocampus. Cnr1 expression levels were significantly increased in the hippocampus in response to HFD, exercise, and the combination of both (p < 0.05). Our results indicate that eCB signaling in the CNS is sensitive to diet and/or exercise


Asunto(s)
Animales , Masculino , Dieta Alta en Grasa , Endocannabinoides/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Ingestión de Energía , Expresión Génica , Ratas Wistar , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo , Condicionamiento Físico Animal
9.
J. physiol. biochem ; 72(2): 183-199, jun. 2016. tab, graf
Artículo en Inglés | IBECS (España) | ID: ibc-168265

RESUMEN

The endocannabinoid system is dysregulated during obesity in tissues involved in the control of food intake and energy metabolism. We examined the effect of chronic exercise on the tissue levels of endocannabinoids (eCBs) and on the expression of genes coding for cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) (Cnr1 and Cnr2, respectively) in the subcutaneous (SAT) and visceral adipose tissues and in the soleus and extensor digitorim longus (EDL) muscles, in rats fed with standard or high-fat diet. Twenty-eight male Wistar rats were placed on high-fat diet or standard diet (HFD and Ctl groups, respectively) during 12 weeks whereafter half of each group was submitted to an exercise training period of 12 weeks (HFD + training and Ctl + training). Tissue levels of eCBs were measured by LC-MS while expressions of genes coding for CB1 and CB2 receptors were investigated by qPCR. High-fat diet induced an increase in anandamide (AEA) levels in soleus and EDL (p < 0.02). In soleus of the HFD group, these changes were accompanied by elevated Cnr1 messenger RNA (mRNA) levels (p < 0.05). In EDL, exercise training allowed to reduce significantly this diet-induced AEA increase (p < 0.005). 2-Arachidonoylglycerol (2-AG) levels were decreased and increased by high-fat diet in SAT and EDL, respectively (p < 0.04), but not affected by exercise training. Unlike the HFD + training group, 2-AG levels in soleus were also decreased in the HFD group compared to Ctl (p < 0.04). The levels of eCBs and Cnr1 expression are altered in a tissue-specific manner following a high-fat diet, and chronic exercise reverses some of these alterations (AU)


No disponible


Asunto(s)
Animales , Masculino , Obesidad/terapia , Actividad Motora , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Canales Catiónicos TRPV/metabolismo , Regulación de la Expresión Génica , Endocannabinoides/metabolismo , Ácidos Araquidónicos/metabolismo , Dieta Alta en Grasa/efectos adversos , Hiperglucemia , Ácidos Oléicos/metabolismo , Músculo Esquelético/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Especificidad de Órganos , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA