Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36772213

RESUMEN

The strong need to control investments related to oil extraction and the growing demand for offshore deep-water exploration are the reasons for looking for tools to make up a global underwater monitoring system. Therefore, the current study analyses the possibility of revealing the existence of oil-in-water emulsions in the water column, based on the modelling of the downwelling radiance detected by a virtual underwater sensor. Based on the Monte Carlo simulation for the large numbers of solar photons in the water, the analyses were carried out for eight wavelengths ranging from 412 to 676 nm using dispersed oil with a concentration of 10 ppm. The optical properties of the seawater were defined as typical for the southern Baltic Sea, while the oil emulsion model was based on the optical properties of crude oil extracted in this area. Based on the above-mentioned assumptions and modelling, a spectral index was obtained, with the most favourable combination of 555/412 nm, whose value is indicative of the presence of an oil emulsion in the water.

2.
Opt Express ; 29(2): 1296-1303, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726348

RESUMEN

A series of Monte Carlo and HydroLight radiative transfer simulations are used to demonstrate that the traditional form of the Fresnel transmission across the water-air interface is accurate. This contradicts assertions to the contrary in a recent paper [Opt. Express25, 27086 (2017)10.1364/OE.25.027086] that suggested that the impact of multiple surface interactions had previously been ignored and that the transmission factor was dependent upon the turbidity of the water.

3.
Sensors (Basel) ; 20(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962002

RESUMEN

This paper analyzes the digital modelling of radiance reflectance of the sea surface when the water column is polluted by oil-in-water emulsion. A method tracking the fate of two billion virtual solar photons was applied to obtain the angular distribution of bottom-up radiance for a plane of sunlight striking the sea surface. For the calculations, the inherent optical properties of seawater characteristic for the Gulf of Gdansk (southern Baltic Sea) were used. The analyses were performed for two types of oils with extremely different optical properties for an oil concentration of 10 ppm and for a roughened sea surface with a wind speed of 2 m/s. The spectral index for oil detection in seawater for different viewing angles was determined based on the results obtained for reflectance at eight wavelengths in the range of 412-676 nm for viewing angle in the range from 80° to 0°, both on the side of incidence of direct sunlight and on the opposite side. The resulting calculated spectral indexes for different wavelength combinations indicated significant dependence on the viewing angle.

4.
Sensors (Basel) ; 20(3)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041198

RESUMEN

This paper presents a model of upwelling radiation above the seawater surface in the event of a threat of dispersed oil. The Monte Carlo method was used to simulate a large number of solar photons in the water, eventually obtaining values of remote sensing reflectance (Rrs). Analyses were performed for the optical properties of seawater characteristic for the Gulf of Gdansk (southern Baltic Sea). The case of seawater contaminated by dispersed oil at a concentration of 10 ppm was also discussed for different wind speeds. Two types of oils with extremely different optical properties (refraction and absorption coefficients) were taken into account for consideration. The optical properties (absorption and scattering coefficients and angular light scattering distribution) of the oil-in-water dispersion system were determined using the Mie theory. The spectral index for oil detection in seawater for different wind conditions was determined based on the results obtained for reflectance at selected wavelengths in the range 412-676 nm. The determined spectral index for seawater free of oil achieves higher values for seawater contaminated by oil. The analysis of the values of the spectral indices calculated for 28 combinations of wavelengths was used to identify the most universal spectral index of Rrs for 555 nm/440 nm for dispersed oil detection using any optical parameters.

5.
Sci Rep ; 13(1): 23098, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38155306

RESUMEN

This study concerns changes in the solar light transfer in seawater as a result of the appearance of oil substances in the form of oil-in-water emulsions. The expected effect of the studies is to gather knowledge that would be useful in designing an optical sensor for monitoring oil substances penetrating the seawater column. The paper presents the process of the Monte Carlo modelling of the upwelling radiance detected by a virtual underwater sensor. Moreover, this article discusses the predicted difference between the intensity of the signal from the upwelling radiance meter and the signal from the downwelling radiance meter. The modelling results suggest that in order to obtain a strong signal indicating the presence of oil substances, the radiance meter should receive light running upwards in the sea depth.

6.
Opt Express ; 19(5): 4786-94, 2011 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-21369310

RESUMEN

The propagation of light through turbid media is of fundamental interest in a number of areas of optical science including atmospheric and oceanographic science, astrophysics and medicine amongst many others. The angular distribution of photons after a single scattering event is determined by the scattering phase function of the material the light is passing through. However, in many instances photons experience multiple scattering events and there is currently no equivalent function to describe the resulting angular distribution of photons. Here we present simple analytic formulas that describe the angular distribution of photons after multiple scattering events, based only on knowledge of the single scattering albedo and the single scattering phase function.


Asunto(s)
Algoritmos , Luz , Modelos Teóricos , Dispersión de Radiación , Simulación por Computador
7.
Appl Opt ; 49(18): 3545-51, 2010 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-20563207

RESUMEN

Laboratory measurements of light beam depolarization by a turbulent flow, corresponding to oceanic turbulence within the oceanic mixed layer, show that the depolarization rate (1x10(-5)?m(-1) to 3x10(-3)?m(-1)) correlates with turbulence strength and is consistent with polarized lidar observations [Opt. Express, 16, 1196 (2008)OPEXFF1094-408710.1364/OE.16.001196]. These results imply that one should be able to characterize oceanic turbulence with polarimetric oceanic lidar measurements.

8.
Opt Express ; 17(14): 11747-52, 2009 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-19582089

RESUMEN

We examined the effect of individual bubble clouds on remote-sensing reflectance of the ocean with a 3-D Monte Carlo model of radiative transfer. The concentrations and size distribution of bubbles were defined based on acoustical measurements of bubbles in the surface ocean. The light scattering properties of bubbles for various void fractions were calculated using Mie scattering theory. We show how the spatial pattern, magnitude, and spectral behavior of remote-sensing reflectance produced by modeled bubble clouds change due to variations in their geometric and optical properties as well as the background optical properties of the ambient water. We also determined that for realistic sizes of bubble clouds, a plane-parallel horizontally homogeneous geometry (1-D radiative transfer model) is inadequate for modeling water-leaving radiance above the cloud.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Óptica y Fotónica , Simulación por Computador , Monitoreo del Ambiente/métodos , Procesamiento de Imagen Asistido por Computador , Método de Montecarlo , Océanos y Mares , Refractometría , Dispersión de Radiación , Agua , Movimientos del Agua
9.
Opt Express ; 16(24): 19480-92, 2008 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-19030034

RESUMEN

Monte Carlo simulations are used to establish a weighting function that describes the collection of angular scattering for the WETLabs AC-9 reflecting tube absorption meter. The equivalent weighting function for the AC-9 attenuation sensor is found to be well approximated by a binary step function with photons scattered between zero and the collection half-width angle contributing to the scattering error and photons scattered at larger angles making zero contribution. A new scattering error correction procedure is developed that accounts for scattering collection artifacts in both absorption and attenuation measurements. The new correction method does not assume zero absorption in the near infrared (NIR), does not assume a wavelength independent scattering phase function, but does require simultaneous measurements of spectrally matched particulate backscattering. The new method is based on an iterative approach that assumes that the scattering phase function can be adequately modeled from estimates of particulate backscattering ratio and Fournier-Forand phase functions. It is applied to sets of in situ data representative of clear ocean water, moderately turbid coastal water and highly turbid coastal water. Initial results suggest significantly higher levels of attenuation and absorption than those obtained using previously published scattering error correction procedures. Scattering signals from each correction procedure have similar magnitudes but significant differences in spectral distribution are observed.

10.
Opt Express ; 16(19): 14683-8, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18795006

RESUMEN

Values of reflectance and remote sensing reflectance are proportional to the ratio of sea water backscattering to absorption. However, in vertically non-homogeneous waters, this fraction needs to be depth weighted. The usual practice uses normalized vertical transmittance profiles as the weighting function. Recently, it was shown that the correct approach is to use, instead of transmittance, its first derivative. We used both approaches to calculate spectral reflectance and remote sensing reflectance over a submerged bubble cloud and chlorophyll rich layer and compared the results with a radiative transfer Monte Carlo code. We also compared several methods of approximating diffuse attenuation (not measured directly) to estimate the effect on calculating reflectance. Our results show that the traditional method of IOP weighting is inadequate in the presence of bubble clouds and/or chlorophyll rich layers. This is relevant for both "ground truth" studies and inverse methods of remote sensing (including lidar ones) for vertically inhomogeneous ocean sea waters.


Asunto(s)
Algoritmos , Color , Colorimetría/métodos , Monitoreo del Ambiente/métodos , Modelos Teóricos , Agua/análisis , Simulación por Computador , Luz , Océanos y Mares , Dispersión de Radiación
11.
Opt Express ; 15(20): 12763-8, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19550545

RESUMEN

Volume scattering functions (VSFs) and other optical seawater parameters were measured during a cruise in the Southern Baltic. Phase functions (PFs) calculated from VSFs were compared with Fournier-Forand phase functions parameterized with backscattering ratios. Due to significant divergences between experimental and modeled data a new method of Fournier-Forand phase function parameterization is proposed.

12.
Opt Express ; 12(14): 3144-8, 2004 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-19483835

RESUMEN

The self-shading measurement error of the upwelling irradiance caused by the presence of a typical cylindrical housing of an optical instrument was calculated with the 3-D Monte-Carlo code as a function of the housing dimensions and of the optical parameters of seawater. The resulting values were compared to the self-shading error for a flat disk of the same diameter, originally used to establish self-shading error estimations universally used in marine optics. The results show that the self-shading of upwelling irradiance is underestimated by up to 25% producing a significant underestimation of the measured upwelling irradiance, and therefore reflectance, especially in turbid waters.

13.
Opt Express ; 12(8): 1671-6, 2004 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-19474993

RESUMEN

The Bi-directional Reflectance Distribution Function (BRDF) of both clean seawaters and those polluted with oil film was determined using the Monte Carlo radiative transfer technique in which the spectrum of complex refractive index of Romashkino crude oil and the optical properties of case II water for chosen wavelengths was considered. The BRDF values were recorded for 1836 solid angular sectors of throughout the upper hemisphere. The visibility of areas polluted with oil observed from various directions and for various wavelengths is discussed.

14.
Opt Express ; 11(1): 2-6, 2003 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-19461698

RESUMEN

The reflectance of sea areas polluted by an oil-in-water emulsion was modeled using the radiance transfer Monte Carlo code. Example results of the contrast function parameterized by the observation angle for various angles of incident sunlight, various sea surface roughness states and two optically different types of seawaters are presented.

15.
Appl Opt ; 42(18): 3634-46, 2003 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12833969

RESUMEN

We present an approach based on three-dimensional Monte Carlo radiative transfer simulations for estimating scattering error in measurements of light absorption by aquatic particles with a typical laboratory double-beam spectrophotometer. The scattering error is calculated by combining the weighting function describing the angular distribution of photon losses that are due to scattering on suspended particles with the volume scattering function of particles. We applied this method to absorption measurements made on marine phytoplankton, a diatom Thalassiosira pseudonana and a cyanobacterium Synechococcus. Assuming that the scattering phase function is described by the Henyey-Greenstein formula, we determined the backscatter probability of phytoplankton, which yields the best correction for scattering error at a light wavelength of 750 nm, where true absorption is null. The backscattering ratio estimated for both phytoplankton species is significantly higher than previously reported data based on Mie-scattering calculations for homogeneous spheres. Depending on the type of particles, the corrected absorption spectra obtained with our method may be similar or significantly different from spectra obtained with the null-point correction based on wavelength-independent scattering error.

16.
Appl Opt ; 43(24): 4723-31, 2004 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-15352398

RESUMEN

Using three-dimensional Monte Carlo radiative transfer simulations, we examine the effect of beam transmissometer geometry on the relative error in the measurement of the beam-attenuation coefficient in an aquatic environment characterized by intense light scattering, especially within submerged bubble clouds entrained by surface-wave breaking. We discuss the forward-scattering error associated with the detection of photons scattered at small angles (< 1 degrees) and the multiple-scattering error associated with the detection of photons scattered more than once along the path length of the instrument. Several scattering phase functions describing bubble clouds at different bubble void fractions in the water are considered. Owing to forward-scattering error, a beam-attenuation meter (beam transmissometer) with a half-angle of receiver acceptance of 1.0 degrees and a path length of 0.1 m can underestimate the true beam attenuation within the bubble cloud by more than 50%. For bubble clouds with a beam attenuation of as much as 100 m(-1), the multiple-scattering error is no more than a few percent. These results are compared with simulations for some example phase functions that are representative of other scattering regimes found in natural waters. The forward-scattering error for the Petzold phase function of turbid waters is 16% for a typical instrument geometry, whereas for the Henyey-Greenstein phase function with the asymmetry parameter of 0.7 and 0.9 the error range is 8-28%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA