Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nucleic Acids Res ; 50(17): 9780-9796, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36043441

RESUMEN

Prostate cancer (PC) relies on androgen receptor (AR) signaling. While hormonal therapy (HT) is efficacious, most patients evolve to an incurable castration-resistant stage (CRPC). To date, most proposed mechanisms of acquired resistance to HT have focused on AR transcriptional activity. Herein, we uncover a new role for the AR in alternative cleavage and polyadenylation (APA). Inhibition of the AR by Enzalutamide globally regulates APA in PC cells, with specific enrichment in genes related to transcription and DNA topology, suggesting their involvement in transcriptome reprogramming. AR inhibition selects promoter-distal polyadenylation sites (pAs) enriched in cis-elements recognized by the cleavage and polyadenylation specificity factor (CPSF) complex. Conversely, promoter-proximal intronic pAs relying on the cleavage stimulation factor (CSTF) complex are repressed. Mechanistically, Enzalutamide induces rearrangement of APA subcomplexes and impairs the interaction between CPSF and CSTF. AR inhibition also induces co-transcriptional CPSF recruitment to gene promoters, predisposing the selection of pAs depending on this complex. Importantly, the scaffold CPSF160 protein is up-regulated in CRPC cells and its depletion represses HT-induced APA patterns. These findings uncover an unexpected role for the AR in APA regulation and suggest that APA-mediated transcriptome reprogramming represents an adaptive response of PC cells to HT.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Benzamidas , Línea Celular Tumoral , Proliferación Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Factor de Estimulación del Desdoblamiento/metabolismo , Humanos , Masculino , Nitrilos , Feniltiohidantoína , Poliadenilación , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762265

RESUMEN

Ichthyoses are genetically determined cornification disorders of the epidermis characterized by the presence of different degrees of scaling, hyperkeratosis, and erythroderma often associated with palmoplantar keratoderma. Different classifications of these diseases have been proposed, often based upon the involved genes and/or the clinical presentation. The clinical features of these diseases present some overlap of phenotypes among distinct genetic entities, depending mainly on the penetrance of mutations. In this study, using a clinical, genetic, and molecular approach, we analyzed a family with two affected members who had clinical and histological features resembling erythrokeratodermia variabilis (EKV) or a type of erythrodermic hyperkeratosis with palmoplantar keratoderma. Despite of the clinical presentation, we demonstrated that the affected patients were genetically double heterozygous for two different mutations in the ABCA12 gene, known to be responsible for harlequin ichthyosis. To explain the mild phenotype of our patients, we performed a molecular characterization of the skin. In the upper layers of the epidermis, the results showed a patchy presence of the glucosyl-ceramides (GlcCer), which is the lipid transported by ABCA12, fundamental in contributing to skin impermeability. Indeed, the two mutations detected do not completely abolish ABCA12 activity, indicating that the mild phenotype is due to a partial loss of function of the enzyme, thus giving rise to an intermediate phenotype resembling EKVP, due to a partial depletion of GlcCer deposition.


Asunto(s)
Eritroqueratodermia Variable , Ictiosis Lamelar , Ictiosis , Queratodermia Palmoplantar , Humanos , Eritroqueratodermia Variable/genética , Ictiosis Lamelar/genética , Ictiosis/genética , Mutación , Glucosilceramidas , Transportadoras de Casetes de Unión a ATP/genética
3.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269953

RESUMEN

The advance of experimental and computational techniques has allowed us to highlight the existence of numerous different mechanisms of RNA maturation, which have been so far unknown. Besides canonical splicing, consisting of the removal of introns from pre-mRNA molecules, non-canonical splicing events may occur to further increase the regulatory and coding potential of the human genome. Among these, splicing of microexons, recursive splicing and biogenesis of circular and chimeric RNAs through back-splicing and trans-splicing processes, respectively, all contribute to expanding the repertoire of RNA transcripts with newly acquired regulatory functions. Interestingly, these non-canonical splicing events seem to occur more frequently in the central nervous system, affecting neuronal development and differentiation programs with important implications on brain physiology. Coherently, dysregulation of non-canonical RNA processing events is associated with brain disorders, including brain tumours. Herein, we summarize the current knowledge on molecular and regulatory mechanisms underlying canonical and non-canonical splicing events with particular emphasis on cis-acting elements and trans-acting factors that all together orchestrate splicing catalysis reactions and decisions. Lastly, we review the impact of non-canonical splicing on brain physiology and pathology and how unconventional splicing mechanisms may be targeted or exploited for novel therapeutic strategies in cancer.


Asunto(s)
Neoplasias , Empalme del ARN , Empalme Alternativo/genética , Encéfalo/metabolismo , Humanos , Intrones , Neoplasias/genética , ARN/genética , Precursores del ARN/genética , Empalme del ARN/genética
4.
Proc Natl Acad Sci U S A ; 115(28): 7356-7361, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941555

RESUMEN

Derangement of cellular differentiation because of mutation or inappropriate expression of specific genes is a common feature in tumors. Here, we show that the expression of ZNF281, a zinc finger factor involved in several cellular processes, decreases during terminal differentiation of murine cortical neurons and in retinoic acid-induced differentiation of neuroblastoma (NB) cells. The ectopic expression of ZNF281 inhibits the neuronal differentiation of murine cortical neurons and NB cells, whereas its silencing causes the opposite effect. Furthermore, TAp73 inhibits the expression of ZNF281 through miR34a. Conversely, MYCN promotes the expression of ZNF281 at least in part by inhibiting miR34a. These findings imply a functional network that includes p73, MYCN, and ZNF281 in NB cells, where ZNF281 acts by negatively affecting neuronal differentiation. Array analysis of NB cells silenced for ZNF281 expression identified GDNF and NRP2 as two transcriptional targets inhibited by ZNF281. Binding of ZNF281 to the promoters of these genes suggests a direct mechanism of repression. Bioinformatic analysis of NB datasets indicates that ZNF281 expression is higher in aggressive, undifferentiated stage 4 than in localized stage 1 tumors supporting a central role of ZNF281 in affecting the differentiation of NB. Furthermore, patients with NB with high expression of ZNF281 have a poor clinical outcome compared with low-expressors. These observations suggest that ZNF281 is a controller of neuronal differentiation that should be evaluated as a prognostic marker in NB.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Diferenciación Celular , Proteínas de Neoplasias/biosíntesis , Neuroblastoma/metabolismo , Neuronas/metabolismo , Transactivadores/biosíntesis , Factores de Transcripción/biosíntesis , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Proteínas de Neoplasias/genética , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Neuroblastoma/patología , Neuronas/patología , Pronóstico , Proteínas Represoras , Transactivadores/genética , Factores de Transcripción/genética
5.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835684

RESUMEN

The key role of p53 as a tumor suppressor became clear when it was realized that this gene is mutated in 50% of human sporadic cancers, and germline mutations expose carriers to cancer risk throughout their lifespan. Mutations in this gene not only abolish the tumor suppressive functions of p53, but also equip the protein with new pro-oncogenic functions. Here, we review the mechanisms by which these new functions gained by p53 mutants promote tumorigenesis.


Asunto(s)
Mutación/genética , Oncogenes , Proteína p53 Supresora de Tumor/genética , Animales , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias/genética , Neoplasias/patología , Hipoxia Tumoral/genética
6.
Amino Acids ; 49(3): 635-642, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27864691

RESUMEN

Transglutaminases (TGs) are a family of enzymes that catalyse the formation of isopeptide bonds between the γ-carboxamide groups of glutamine residues and the ε-amino groups of lysine residues leading to cross-linking reactions among proteins. Four members, TG1, TG2, TG3, and TG5, of the nine mammalian enzymes are expressed in the skin. TG1, TG3 and TG5 crosslinking properties are fundamental for cornified envelope assembly. In contrast, the role of TG2 in keratinization has never been studied at biochemical level in vivo. In this study, taking advantage of the TG2 knock-out (KO) and TG1 heterozygous mice, we generated and characterized the epidermis of TG1-TG2 double knock-out (DKO) mice. We performed morphological analysis of the epidermis and evaluation of the expression of differentiation markers. In addition, we performed analysis of the amino acid composition from isolated corneocytes. We found a significant change in amino acid composition in TG1KO cornified cell envelopes (CEs) while TG2KO amino acid composition was similar to wild-type CEs. Our results confirm a key role of TG1 in skin differentiation and CE assembly and demonstrate that TG2 is not essential for CE assembly and skin formation.


Asunto(s)
Epidermis/metabolismo , Proteínas de Unión al GTP/genética , Queratinocitos/patología , Transglutaminasas/genética , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Embrión de Mamíferos , Epidermis/crecimiento & desarrollo , Epidermis/patología , Proteínas Filagrina , Proteínas de Unión al GTP/deficiencia , Expresión Génica , Heterocigoto , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Queratina-1/genética , Queratina-1/metabolismo , Queratina-14/genética , Queratina-14/metabolismo , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Transglutaminasas/deficiencia
7.
J Exp Clin Cancer Res ; 42(1): 214, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37599362

RESUMEN

BACKGROUND: Medulloblastoma (MB) is the most common cerebellar malignancy during childhood. Among MB, MYC-amplified Group 3 tumors display the worst prognosis. MYC is an oncogenic transcription factor currently thought to be undruggable. Nevertheless, targeting MYC-dependent processes (i.e. transcription and RNA processing regulation) represents a promising approach. METHODS: We have tested the sensitivity of MYC-driven Group 3 MB cells to a pool of transcription and splicing inhibitors that display a wide spectrum of targets. Among them, we focus on THZ531, an inhibitor of the transcriptional cyclin-dependent kinases (CDK) 12 and 13. High-throughput RNA-sequencing analyses followed by bioinformatics and functional analyses were carried out to elucidate the molecular mechanism(s) underlying the susceptibility of Group 3 MB to CDK12/13 chemical inhibition. Data from International Cancer Genome Consortium (ICGC) and other public databases were mined to evaluate the functional relevance of the cellular pathway/s affected by the treatment with THZ531 in Group 3 MB patients. RESULTS: We found that pharmacological inhibition of CDK12/13 is highly selective for MYC-high Group 3 MB cells with respect to MYC-low MB cells. We identified a subset of genes enriched in functional terms related to the DNA damage response (DDR) that are up-regulated in Group 3 MB and repressed by CDK12/13 inhibition. Accordingly, MYC- and CDK12/13-dependent higher expression of DDR genes in Group 3 MB cells limits the toxic effects of endogenous DNA lesions in these cells. More importantly, chemical inhibition of CDK12/13 impaired the DDR and induced irreparable DNA damage exclusively in MYC-high Group 3 MB cells. The augmented sensitivity of MYC-high MB cells to CDK12/13 inhibition relies on the higher elongation rate of the RNA polymerase II in DDR genes. Lastly, combined treatments with THZ531 and DNA damage-inducing agents synergically suppressed viability of MYC-high Group 3 MB cells. CONCLUSIONS: Our study demonstrates that CDK12/13 activity represents an exploitable vulnerability in MYC-high Group 3 MB and may pave the ground for new therapeutic approaches for this high-risk brain tumor.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Regulación hacia Arriba , Anilidas , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Proteína Quinasa CDC2 , Quinasas Ciclina-Dependientes/genética
8.
Cell Rep ; 41(5): 111568, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323249

RESUMEN

Gene-environment interactions can perturb the epigenome, triggering network alterations that participate in cancer pathogenesis. Integrating epigenomics, transcriptomics, and metabolic analyses with functional perturbation, we show that the tumor suppressor p53 preserves genomic integrity by empowering adequate levels of the universal methyl donor S-adenosylmethionine (SAM). In p53-deficient cells, perturbation of DNA methylation promotes derepression of heterochromatin, massive loss of histone H3-lysine 9 methylation, and consequent upregulation of satellite RNAs that triggers R-loop-associated replication stress and chromosomal aberrations. In p53-deficient cells, the inadequate SAM level underlies the inability to respond to perturbation because exogenous reintroduction of SAM represses satellite elements and restores the ability to cope with stress. Mechanistically, p53 transcriptionally controls genes involved in one-carbon metabolism, including Slc43a2, the methionine uptake transporter that is critical for SAM synthesis. Supported by clinical data, our findings shed light on the role of p53-mediated metabolism in preventing unscheduled R-loop-associated genomic instability.


Asunto(s)
Estructuras R-Loop , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , S-Adenosilmetionina/metabolismo , Metilación de ADN , Inestabilidad Genómica
9.
Mol Oncol ; 14(2): 294-308, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31782884

RESUMEN

Defects in achieving a fully differentiated state and aberrant expression of genes and microRNAs (miRs) involved in differentiation are common to virtually all tumor types. Here, we demonstrate that the zinc finger transcription factor ZNF281/Zfp281 is down-regulated during epithelial, muscle, and granulocytic differentiation in vitro. The expression of this gene is absent in terminally differentiated human tissues, in contrast to the elevated expression in proliferating/differentiating ones. Analysis of the 3'UTR of ZNF281/Zfp281 revealed the presence of numerous previously undescribed miR binding sites that were proved to be functional for miR-mediated post-transcriptional regulation. Many of these miRs are involved in differentiation pathways of distinct cell lineages. Of interest, ZNF281/Zfp281 is able to inhibit muscle differentiation promoted by miR-1, of which ZNF281/Zfp281 is a direct target. These data suggest that down-regulation of ZNF281/Zfp281 during differentiation in various cell types may occur through specific miRs whose expression is tissue-restricted. In addition, we found that in rhabdomyosarcoma and leiomyosarcoma tumors, the expression of ZNF281/Zfp281 is significantly higher compared with normal counterparts. We extended our analysis to other human soft tissue sarcomas, in which the expression of ZNF281 is associated with a worse prognosis. In summary, we highlight here a new role of ZNF281/Zfp281 in counteracting muscle differentiation; its down-regulation is at least in part mediated by miR-1. The elevated expression of ZNF281/Zfp281 in soft tissue sarcomas warrants further analysis for its possible exploitation as a prognostic marker in this class of tumors.


Asunto(s)
MicroARNs/metabolismo , Desarrollo de Músculos/genética , Proteínas Represoras/metabolismo , Sarcoma/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Ratones , MicroARNs/genética , Mioblastos/metabolismo , Células 3T3 NIH , Pronóstico , Procesamiento Proteico-Postraduccional/genética , Proteínas Represoras/genética , Sarcoma/genética , Sarcoma/mortalidad , Factores de Transcripción/genética
10.
Cancers (Basel) ; 11(12)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835405

RESUMEN

The tumor suppressor p53 regulates different cellular pathways involved in cell survival, DNA repair, apoptosis, and senescence. However, according to an increasing number of studies, the p53-mediated canonical DNA damage response is dispensable for tumor suppression. p53 is involved in mechanisms regulating many other cellular processes, including metabolism, autophagy, and cell migration and invasion, and these pathways might crucially contribute to its tumor suppressor function. In this review we summarize the canonical and non-canonical functions of p53 in an attempt to provide an overview of the potentially crucial aspects related to its tumor suppressor activity.

11.
Cell Death Discov ; 3: 17071, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29152378

RESUMEN

Zinc-finger proteins (ZNFs) are one of the most abundant groups of proteins and have a wide range of molecular functions. Given the wide variety of zinc-finger domains, ZNFs are able to interact with DNA, RNA, PAR (poly-ADP-ribose) and other proteins. Thus, ZNFs are involved in the regulation of several cellular processes. In fact, ZNFs are implicated in transcriptional regulation, ubiquitin-mediated protein degradation, signal transduction, actin targeting, DNA repair, cell migration, and numerous other processes. The aim of this review is to provide a comprehensive summary of the current state of knowledge of this class of proteins. Firstly, we describe the actual classification of ZNFs, their structure and functions. Secondly, we focus on the biological role of ZNFs in the development of organisms under normal physiological and pathological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA