Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bone ; 170: 116720, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36848959

RESUMEN

Beneficial effects of intermittent parathyroid hormone (PTH) on bone mass and architecture are described to either simply add to, or to synergise with those of mechanical loading. We evaluate whether interaction with in vivo loading is reinforced by PTH dosing regimen and exhibits compartment-specific sensitivities. Female 12-week-old C57Bl6 mice received daily (7/7) or interrupted 5 day/week (5/7) PTH for 3 weeks (two vehicle groups). All mice had six loading episodes (12N) applied to right tibia (left, non-loaded) for the last 2 weeks. Micro-CT scans were used to evaluate mass and architecture in almost the entire cortical and proximal trabecular regions. Epiphyseal cortical, trabecular and marrow space volumes, and bony growth-plate bridge incidence were evaluated. Statistical analyses employed a linear mixed-effects model at each percentile and 2-way ANOVA with post-hoc test for epiphyses and bridging. We found that daily PTH enhances cortical mass and modifies shape along almost the entire tibia and that these effects are partly mitigated by brief interruption in treatment. Mechanical loading alone augments cortical mass and modifies shape but only in a region proximal to the tibiofibular junction. The effect of combining load and daily PTH dosing is solely additive for cortical bone mass with no significant load: PTH interaction, but exhibits clear synergy with interrupted PTH treatment. Daily, not interrupted PTH stimulates trabecular bone gains, yet load:PTH interaction is present at limited regions with both daily and interrupted treatment. PTH treatment, but not loading, modifies epiphyseal bone but, in contrast, only loading modifies bridge number and areal density. Our findings demonstrate impressive local effects on tibial mass and shape of combined loading and PTH that are sensitive to dosing regimen and exert their effects modularly. These findings emphasise a need to clarify PTH dosing regimens and that advantages could be accrued by aligning treatment accordingly to patient requirements and life-style.


Asunto(s)
Anabolizantes , Hormona Paratiroidea , Ratones , Animales , Femenino , Hormona Paratiroidea/farmacología , Anabolizantes/farmacología , Ratones Endogámicos C57BL , Densidad Ósea/fisiología , Epífisis , Microtomografía por Rayos X , Soporte de Peso , Tibia/fisiología
2.
Proc Inst Mech Eng H ; 236(2): 199-207, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34694183

RESUMEN

Femoral neck fractures are a massive personal and health programme burden. Methods to study femoral neck strength, across its combined trabecular and cortical components are therefore essential. Rodent ovariectomy-induced osteoporosis models are commonly coupled with ex vivo 3-/4-point bending methods to measure changes in femoral cortical diaphysis. The loading direction used to assess these properties are often non-physiologic and, moreover, these ovariectomy models are linked to marked weight gain that can influence the biomechanical properties. Herein, we explore whether more physiological axial ex vivo loading protocols applied to femoral neck samples of ovariectomised (OVX) rodents provide anatomically-relevant models for the assessment of strength. We examine the use of mouse and rat femurs, loaded in constrained and unconstrained configuration, respectively, and explore whether weight-correction increases their utility. Accordingly, the mid-shaft of the proximal half of femurs from OVX and sham-operated (Sham) mice was methacrylate-anchored and the head loaded parallel to the diaphysis (constrained). Alternatively, femurs from OVX and Sham rats were isolated intact and axially-loaded through hip and knee joint articular surfaces (unconstrained). Yield displacement, stiffness, maximum load and resilience were measured and fracture pattern classified; effects of body weight-correction via a linear regression method or simple division were assessed. Our data reveal significant deficiencies in biomechanical properties in OVX mouse femurs loaded in constrained configuration, only after weight-correction by linear regression. In addition, evaluation of rat femur biomechanics in unconstrained loading demonstrated greater variation and that weight-correction by simple division improved scope to reveal significant OVX impact. We conclude that greater femoral neck fracture susceptibility can indeed be measured in OVX rodents as long as multiple biomechanical parameters are reported, care is taken in choosing the method for assessing load-bearing strength and weight-correction applied. These studies advance the establishment of more relevant rodent models for the study of femoral neck fracture.


Asunto(s)
Fracturas del Cuello Femoral , Osteoporosis , Animales , Fenómenos Biomecánicos , Densidad Ósea , Femenino , Cuello Femoral , Humanos , Ovariectomía , Ratas , Roedores
3.
Bone Rep ; 15: 101116, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34471655

RESUMEN

Disuse osteoporosis occurs after extended periods of bed rest or nerve damage leading to increased risk of fracture. It remains to be established, however, whether the trajectory of bone loss is equivalent in bone's cortical and trabecular compartments following long-term periods of reduced loading. Herein, we evaluate sciatic neurectomy-related cortical and trabecular bone loss in the tibia by microCT. The right hind limb of seventeen 12 week-old female mice was subjected to sciatic neurectomy (right, SN; left, contralateral internal control) and the animals were sacrificed in four groups (n = 3-5/group) at 5, 35, 65 and 95 days thereafter. Cortical bone mass, geometry and mineral density were evaluated along almost the entire tibial length and trabecular bone was examined at the proximal metaphysis. We found that trabecular bone volume (BV/TV) and number were decreased within 5 days, with a trajectory of loss that only plateaued after 65 days post-SN. In contrast, decreases in cortical thickness, cross-sectional area, second moment of inertia along minor and major axes and predicted resistance to torsion were unmodified during the early 5 day period, attaining significance only after 35 days post-SN and, thereafter showed no further deterioration. Only cortical ellipticity and periosteal enclosed area, continued to change in the SN limbs (vs. contralateral) between 35 and 95 days along the tibia length. On the other hand, cortical tissue mineral density was unmodified by SN at any time point. These data indicate that SN-related cortical bone loss extends along almost the entire tibia, exhibits delayed onset and yet stabilises its architecture more rapidly than trabecular bone. These data suggest that the cortical and trabecular compartments behave as distinct modules in response to SN even within an individual bone.

4.
J Appl Physiol (1985) ; 128(4): 838-846, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32163331

RESUMEN

Blood supply is essential for osteogenesis, yet its relationship to load-related increases in bone mass is poorly defined. Herein, we aim to investigate the link between load-induced osteogenesis and the blood supply (bone perfusion and vascular porosity) using an established osteogenic noninvasive model of axial loading. Accordingly, 12 N mechanical loads were applied to the right tibiae of six male C57BL6 mice at 10-12 wk of age, 3 times/wk for 2 wk. Skeletal perfusion was measured acutely (postloading) and chronically in loaded and contralateral, nonloaded hindlimbs by laser-Doppler imaging. Vascular and lacunar porosity of the cortical bone and tibia load-related changes in trabecular and cortical bone was measured by nanoCT and micro-CT, respectively. We found that the mean skeletal perfusion (loaded: nonloaded limb ratio) increased by 56% immediately following the first loading episode (vs. baseline, P < 0.01), and a similar increase was observed after all loading episodes, demonstrating that these acute responses were conserved for 2 wk of loading. Loading failed, however, to engender any significant chronic changes in mean perfusion between the beginning and the end of the experiment. In contrast, 2 wk of loading engendered an increased vascular canal number in the tibial cortical compartment (midshaft) and, as expected, also increased trabecular and cortical bone volumes and modified tibial architecture in the loaded limb. Our results indicate that each episode of loading both generates acute enhancement in skeletal blood perfusion and also stimulates chronic vascular architectural changes in the bone cortices, which coincide with load-induced increases in bone mass.NEW & NOTEWORTHY This study investigated modifications to the blood supply (bone perfusion and intracortical vascular canals) in mechanoadaptive responses in C57BL6 mice. Each episode of mechanical loading acutely increases skeletal perfusion. Two weeks of mechanical loading increased bone mass and cortical vascular canal number, while there was no chronic increase in hindlimb perfusion. Our findings suggest that the blood supply may participate in the processes that govern load-induced bone formation.


Asunto(s)
Osteogénesis , Tibia , Animales , Miembro Posterior , Masculino , Ratones , Ratones Endogámicos C57BL , Perfusión , Porosidad , Estrés Mecánico , Soporte de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA