RESUMEN
Infectious diseases are among the strongest selective pressures driving human evolution1,2. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis3. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population4. To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease.
Asunto(s)
ADN Antiguo , Predisposición Genética a la Enfermedad , Inmunidad , Peste , Selección Genética , Yersinia pestis , Humanos , Aminopeptidasas/genética , Aminopeptidasas/inmunología , Peste/genética , Peste/inmunología , Peste/microbiología , Peste/mortalidad , Yersinia pestis/inmunología , Yersinia pestis/patogenicidad , Selección Genética/inmunología , Europa (Continente)/epidemiología , Europa (Continente)/etnología , Inmunidad/genética , Conjuntos de Datos como Asunto , Londres/epidemiología , Dinamarca/epidemiologíaRESUMEN
During outbreaks, the lack of diagnostic "gold standard" can mask the true burden of infection in the population and hamper the allocation of resources required for control. Here, we present an analytical framework to evaluate and optimize the use of diagnostics when multiple yet imperfect diagnostic tests are available. We apply it to laboratory results of 2,136 samples, analyzed with 3 diagnostic tests (based on up to 7 diagnostic outcomes), collected during the 2017 pneumonic (PP) and bubonic plague (BP) outbreak in Madagascar, which was unprecedented both in the number of notified cases, clinical presentation, and spatial distribution. The extent of these outbreaks has however remained unclear due to nonoptimal assays. Using latent class methods, we estimate that 7% to 15% of notified cases were Yersinia pestis-infected. Overreporting was highest during the peak of the outbreak and lowest in the rural settings endemic to Y. pestis. Molecular biology methods offered the best compromise between sensitivity and specificity. The specificity of the rapid diagnostic test was relatively low (PP: 82%, BP: 85%), particularly for use in contexts with large quantities of misclassified cases. Comparison with data from a subsequent seasonal Y. pestis outbreak in 2018 reveal better test performance (BP: specificity 99%, sensitivity: 91%), indicating that factors related to the response to a large, explosive outbreak may well have affected test performance. We used our framework to optimize the case classification and derive consolidated epidemic trends. Our approach may help reduce uncertainties in other outbreaks where diagnostics are imperfect.
Asunto(s)
Epidemias , Peste , Yersinia pestis , Brotes de Enfermedades , Humanos , Madagascar/epidemiología , Peste/diagnóstico , Peste/epidemiologíaRESUMEN
Pneumonic plague (PP) is characterized by high infection rate, person-to-person transmission, and rapid progression to severe disease. In 2017, a PP epidemic occurred in 2 Madagascar urban areas, Antananarivo and Toamasina. We used epidemiologic data and Yersinia pestis genomic characterization to determine the sources of this epidemic. Human plague emerged independently from environmental reservoirs in rural endemic foci >20 times during August-November 2017. Confirmed cases from 5 emergences, including 4 PP cases, were documented in urban areas. Epidemiologic and genetic analyses of cases associated with the first emergence event to reach urban areas confirmed that transmission started in August; spread to Antananarivo, Toamasina, and other locations; and persisted in Antananarivo until at least mid-November. Two other Y. pestis lineages may have caused persistent PP transmission chains in Antananarivo. Multiple Y. pestis lineages were independently introduced to urban areas from several rural foci via travel of infected persons during the epidemic.
Asunto(s)
Epidemias , Peste , Yersinia pestis , Humanos , Peste/epidemiología , Yersinia pestis/genética , Madagascar/epidemiología , GenómicaRESUMEN
Listeriolysin S (LLS) is a thiazole/oxazole-modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy, we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.
Asunto(s)
Bacteriocinas/metabolismo , Membrana Celular/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/metabolismo , Adenosina Trifosfato/metabolismo , Citoplasma/metabolismoRESUMEN
Genomic data on the foodborne pathogen Listeria monocytogenes from Central America are scarce. We analyzed 92 isolates collected during 2009-2019 from different regions in Costa Rica, compared those to publicly available genomes, and identified unrecognized outbreaks. Our findings suggest mandatory reporting of listeriosis in Costa Rica would improve pathogen surveillance.
Asunto(s)
Enfermedades Transmitidas por los Alimentos , Listeria monocytogenes , Listeriosis , Humanos , Listeria monocytogenes/genética , Enfermedades Transmitidas por los Alimentos/epidemiología , Costa Rica/epidemiología , Microbiología de Alimentos , Listeriosis/epidemiología , Brotes de EnfermedadesRESUMEN
Listeria monocytogenes is an intracellular bacterial pathogen that promotes its internalization within nonprofessional phagocytes by interacting with specific host cell receptors. L. monocytogenes resides transiently in a membrane-bound compartment before escaping into the host cell cytosol where bacterial proliferation takes place. Actin-based motility then promotes cell-to-cell pathogen spread. Extensive studies on cytoskeleton rearrangements, membrane trafficking, and other events have established this microorganism as an archetype of cellular function subversion for intracellular parasitism. Here we discuss the most significant membrane trafficking pathways hijacked by L. monocytogenes during the host cell infection process and compare them to those of other intracellular pathogens, in particular Shigella flexneri, Salmonella enterica, and Mycobacterium tuberculosis.
Asunto(s)
Células Eucariotas/microbiología , Interacciones Huésped-Patógeno , Listeria monocytogenes/metabolismo , Animales , Humanos , Proteínas de la Membrana/metabolismo , Transporte de ProteínasRESUMEN
The bacterial pathogen Listeria monocytogenes invades host cells, ruptures the internalization vacuole, and reaches the cytosol for replication. A high-content small interfering RNA (siRNA) microscopy screen allowed us to identify epithelial cell factors involved in L. monocytogenes vacuolar rupture, including the serine/threonine kinase Taok2. Kinase activity inhibition using a specific drug validated a role for Taok2 in favoring L. monocytogenes cytoplasmic access. Furthermore, we showed that Taok2 recruitment to L. monocytogenes vacuoles requires the presence of pore-forming toxin listeriolysin O. Overall, our study identified the first set of host factors modulating L. monocytogenes vacuolar rupture and cytoplasmic access in epithelial cells.
Asunto(s)
Listeria monocytogenes , Listeriosis , Proteínas Bacterianas , Citoplasma , Citosol , Proteínas Hemolisinas , Humanos , Listeriosis/microbiología , Vacuolas/microbiología , Vacuolas/fisiologíaRESUMEN
Oral administration is a preferred model for studying infection by bacterial enteropathogens such as Yersinia spp. In the mouse model, the most frequent method for oral infection consists of oral gavage with a feeding needle directly introduced in the animal stomach via the esophagus. In this study, we compared needle gavage to bread feeding as an alternative mode of bacterial administration. Using bioluminescence-expressing strains of Yersinia pseudotuberculosis and Yersinia enterocolitica, we detected very early upon needle gavage a bioluminescent signal in the neck area together with a signal in the abdominal region, highlighting the presence of two independent sites of bacterial colonization and multiplication. Bacteria were often detected in the esophagus and trachea, as well as in the lymph nodes draining the salivary glands, suggesting that lesions made during needle introduction into the animal oral cavity lead to rapid bacterial draining to proximal lymph nodes. We then tested an alternative mode of bacterial administration using pieces of bread containing bacteria. Upon bread feeding infection, mice exhibited a stronger bioluminescent signal in the abdominal region than with needle gavage, and no signal was detected in the neck area. Moreover, Y. pseudotuberculosis incorporated in the bread is less susceptible to the acidic environment of the stomach and is therefore more efficient in causing intestinal infections. Based on our observations, bread feeding constitutes a natural and more efficient administration method which does not require specialized skills, is less traumatic for the animal, and results in diseases that more closely mimic foodborne intestinal infection.
Asunto(s)
Alimentación Animal , Pan , Modelos Animales de Enfermedad , Métodos de Alimentación , Enfermedades Gastrointestinales/microbiología , Yersiniosis/microbiología , Yersinia enterocolitica/crecimiento & desarrollo , Yersinia pseudotuberculosis/crecimiento & desarrollo , Administración Oral , Animales , RatonesRESUMEN
Thirty-three Yersinia strains previously characterized by the French Yersinia National Reference Laboratory (YNRL) and isolated from humans and animals were suspected to belong to six novel species by a recently described core genome multilocus sequence typing scheme. These strains and five additional strains from the YNRL were characterized using a polyphasic taxonomic approach including a phylogenetic analysis based on 500 core genes, determination of average nucleotide identity (ANI), determination of DNA G+C content and identification of phenotypic features. Phylogenetic analysis confirmed that the 38 studied strains formed six well-demarcated clades. ANI values between these clades and their closest relatives were <94.7â% and ANI values within each putative novel species were >97.5â%. Distinctive biochemical characteristics were identified in five out of the six novel species. All of these data demonstrated that the 38 strains belong to six novel species of the genus Yersinia: Yersinia artesiana sp. nov., type strain IP42281T (=CIP 111845T=DSM 110725T); Yersinia proxima sp. nov., type strain IP37424T (=CIP 111847T=DSM 110727T); Yersinia alsatica sp. nov., type strain IP38850T (=CIP 111848T=DSM 110726T); Yersinia vastinensis sp. nov., type strain IP38594T (=CIP 111844T=DSM 110738T); Yersinia thracica sp. nov., type strain IP34646T (=CIP 111842T=DSM 110736T); and Yersinia occitanica sp. nov., type strain IP35638T (=CIP 111843T=DSM 110739T).
Asunto(s)
Filogenia , Yersinia/clasificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Heces/microbiología , Humanos , Tipificación de Secuencias Multilocus , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Yersinia/aislamiento & purificaciónRESUMEN
Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged <6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer-membrane proteins (Yops), the broad-range protease Pla, pathogen-associated molecular patterns (PAMPs), and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and <48 h for pneumonic plague). Here, we review recent research advances on Y. pestis evolution, virulence factor function, bacterial strategies to subvert mammalian innate immune responses, vaccination, and problems associated with pneumonic plague diagnosis.
Asunto(s)
Peste/microbiología , Yersinia pestis/patogenicidad , Animales , Evolución Molecular , Humanos , Peste/diagnóstico , Peste/epidemiología , Peste/terapia , Factores de Virulencia/genética , Yersinia pestis/genética , Yersinia pestis/inmunologíaRESUMEN
Listeria monocytogenes is a food-borne bacterial pathogen that is responsible for listeriosis, a disease characterized by occasional febrile gastroenteritis in immunocompetent individuals, abortions in pregnant women, meningitis in the newborn and fatal bacteraemia in immunocompromised individuals or the elderly. The ability of L. monocytogenes to produce disease is intimately associated with its potential to traverse several human barriers (including the intestinal, placental and blood/brain barriers), to promote its internalization within diverse populations of epithelial cells and to proliferate in the intra-ic environment while escaping host immune responses. L. monocytogenes is often regarded as a paradigm for intracellular parasitism.
Asunto(s)
Listeria monocytogenes/genética , Listeriosis/microbiología , Listeriosis/veterinaria , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Listeria monocytogenes/clasificación , Listeria monocytogenes/aislamiento & purificación , Listeria monocytogenes/metabolismo , Listeriosis/historia , Listeriosis/inmunología , Filogenia , Conejos/microbiologíaRESUMEN
Listeria monocytogenes is responsible for gastroenteritis in healthy individuals and for a severe invasive disease in immunocompromised patients. Among the three identified L. monocytogenes evolutionary lineages, lineage I strains are overrepresented in epidemic listeriosis outbreaks, but the mechanisms underlying the higher virulence potential of strains of this lineage remain elusive. Here, we demonstrate that Listeriolysin S (LLS), a virulence factor only present in a subset of lineage I strains, is a bacteriocin highly expressed in the intestine of orally infected mice that alters the host intestinal microbiota and promotes intestinal colonization by L. monocytogenes, as well as deeper organ infection. To our knowledge, these results therefore identify LLS as the first bacteriocin described in L. monocytogenes and associate modulation of host microbiota by L. monocytogenes epidemic strains to increased virulence.
Asunto(s)
Bacteriocinas/metabolismo , Microbioma Gastrointestinal , Listeria monocytogenes/fisiología , Listeriosis/microbiología , Animales , Epidemias , Femenino , Interacciones Huésped-Patógeno , Humanos , Listeria monocytogenes/patogenicidad , Listeriosis/epidemiología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Viabilidad Microbiana , VirulenciaRESUMEN
Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes.
Asunto(s)
Membrana Celular/microbiología , Francisella/fisiología , Interacciones Huésped-Patógeno/fisiología , Listeria/fisiología , Shigella/fisiología , Yersinia/fisiología , Animales , HumanosRESUMEN
A bacterial strain isolated from a food processing drainage system in Costa Rica fulfilled the criteria as belonging to the genus Listeria, but could not be assigned to any of the known species. Phylogenetic analysis based on the 16S rRNA gene revealed highest sequence similarity with the type strain of Listeria floridensis (98.7â%). Phylogenetic analysis based on Listeria core genomes placed the novel taxon within the Listeria fleishmannii, L. floridensis and Listeria aquatica clade (Listeria sensu lato). Whole-genome sequence analyses based on the average nucleotide blast identity (ANI<80â%) indicated that this isolate belonged to a novel species. Results of pairwise amino acid identity (AAI>70â%) and percentage of conserved proteins (POCP>68â%) with currently known Listeria species, as well as of biochemical characterization, confirmed that the strain constituted a novel species within the genus Listeria. The name Listeria costaricensis sp. nov. is proposed for the novel species, and is represented by the type strain CLIP 2016/00682T (=CIP 111400T=DSM 105474T).
Asunto(s)
Industria de Alimentos , Listeria/clasificación , Filogenia , Aguas Residuales/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Costa Rica , ADN Bacteriano/genética , Listeria/genética , Listeria/aislamiento & purificación , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Most human listeriosis outbreaks are caused by Listeria monocytogenes evolutionary lineage I strains which possess four exotoxins: a phosphatidylinositol-specific phospholipase C (PlcA), a broad-range phospholipase C (PlcB), listeriolysin O (LLO) and listeriolysin S (LLS). The simultaneous contribution of these molecules to virulence has never been explored. Here, the importance of these four exotoxins of an epidemic lineage I L. monocytogenes strain (F2365) in virulence was assessed in chicken embryos infected in the allantoic cavity. We show that LLS does not play a role in virulence while LLO is required to infect and kill chicken embryos both in wild type transcriptional regulator of virulence PrfA (PrfAWT) and constitutively active PrfA (PrfA*) backgrounds. We demonstrate that PlcA, a toxin previously considered as a minor virulence factor, played a major role in virulence in a PrfA* background. Interestingly, GFP transcriptional fusions show that the plcA promoter is less active than the hly promoter in vitro, explaining why the contribution of PlcA to virulence could be observed more importantly in a PrfA* background. Together, our results suggest that PlcA might play a more important role in the infectious lifecycle of L. monocytogenes than previously thought, explaining why all the strains of L. monocytogenes have conserved an intact copy of plcA in their genomes.
Asunto(s)
Proteínas Bacterianas/genética , Toxinas Bacterianas/farmacología , Exotoxinas/farmacología , Proteínas de Choque Térmico/farmacología , Proteínas Hemolisinas/farmacología , Listeria monocytogenes/patogenicidad , Fosfolipasas/toxicidad , Factores de Virulencia/farmacología , Animales , Proteínas Bacterianas/metabolismo , Embrión de Pollo , Listeria monocytogenes/enzimología , Virulencia , Factores de Virulencia/genéticaRESUMEN
Phosphoinositides control key cellular processes including vesicular trafficking and actin polymerization. Intracellular bacterial pathogens manipulate phosphoinositide metabolism in order to promote their uptake by target cells and to direct in some cases the biogenesis of their replication compartments. In this chapter, we review the molecular strategies that major pathogens including Listeria, Mycobacterium, Shigella, Salmonella, Legionella and Yersinia use to hijack phosphoinositides during infection. This article is part of a Special Issue entitled Phosphoinositides.
Asunto(s)
Infecciones Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Fosfatidilinositoles/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Expresión Génica , Humanos , Legionella/inmunología , Legionella/metabolismo , Listeria/inmunología , Listeria/metabolismo , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/metabolismo , Fosfatidilinositoles/inmunología , Unión Proteica , Salmonella/inmunología , Salmonella/metabolismo , Shigella/inmunología , Shigella/metabolismo , Vesículas Transportadoras/metabolismo , Yersinia/inmunología , Yersinia/metabolismoRESUMEN
Listeria monocytogenes is a Gram-positive bacterium and a facultative intracellular pathogen that invades mammalian cells, disrupts its internalization vacuole, and proliferates in the host cell cytoplasm. Here, we describe a novel image-based microscopy assay that allows discrimination between cellular entry and vacuolar escape, enabling high-content screening to identify factors specifically involved in these two steps. We first generated L. monocytogenes and Listeria innocua strains expressing a ß-lactamase covalently attached to the bacterial cell wall. These strains were then incubated with HeLa cells containing the Förster resonance energy transfer (FRET) probe CCF4 in their cytoplasm. The CCF4 probe was cleaved by the bacterial surface ß-lactamase only in cells inoculated with L. monocytogenes but not those inoculated with L. innocua, thereby demonstrating bacterial access to the host cytoplasm. Subsequently, we performed differential immunofluorescence staining to distinguish extracellular versus total bacterial populations in samples that were also analyzed by the FRET-based assay. With this two-step analysis, bacterial entry can be distinguished from vacuolar rupture in a single experiment. Our novel approach represents a powerful tool for identifying factors that determine the intracellular niche of L. monocytogenes.
Asunto(s)
Citoplasma/microbiología , Interacciones Huésped-Patógeno , Listeria monocytogenes/fisiología , Vacuolas/microbiología , Proteínas Bacterianas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Humanos , Listeria/enzimología , Listeria/metabolismo , Listeria monocytogenes/enzimología , Microscopía Fluorescente , beta-Lactamasas/metabolismoAsunto(s)
Mucosa Intestinal/microbiología , Shigella flexneri/patogenicidad , Aniversarios y Eventos Especiales , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Microbiología , Publicaciones Periódicas como Asunto , Shigella flexneri/inmunología , Shigella flexneri/metabolismoRESUMEN
Invasive bacterial pathogens often target cellular proteins involved in adhesion as a first event during infection. For example, Listeria monocytogenes uses the bacterial protein InlA to interact with E-cadherin, hijack the host adherens junction (AJ) machinery and invade non-phagocytic cells by a clathrin-dependent mechanism. Here, we investigate a potential role for clathrin in cell-cell adhesion. We observed that the initial steps of AJ formation trigger the phosphorylation of clathrin, and its transient localization at forming cell-cell contacts. Furthermore, we show that clathrin serves as a hub for the recruitment of proteins that are necessary for the actin rearrangements that accompany the maturation of AJs. Using an InlA/E-cadherin chimera, we show that adherent cells expressing the chimera form AJs with cells expressing E-cadherin. We demonstrate that non-adherent cells expressing the InlA chimera, as bacteria, can be internalized by E-cadherin-expressing adherent cells. Together these results reveal that a common clathrin-mediated machinery may regulate internalization and cell adhesion and that the relative mobility of one of the interacting partners plays an important role in the commitment to either one of these processes.