Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(5): 863-876, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565148

RESUMEN

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Exoma , Enfermedades Raras , Humanos , Variaciones en el Número de Copia de ADN/genética , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Exoma/genética , Masculino , Femenino , Estudios de Cohortes , Pruebas Genéticas/métodos
2.
N Engl J Med ; 390(21): 1985-1997, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38838312

RESUMEN

BACKGROUND: Genetic variants that cause rare disorders may remain elusive even after expansive testing, such as exome sequencing. The diagnostic yield of genome sequencing, particularly after a negative evaluation, remains poorly defined. METHODS: We sequenced and analyzed the genomes of families with diverse phenotypes who were suspected to have a rare monogenic disease and for whom genetic testing had not revealed a diagnosis, as well as the genomes of a replication cohort at an independent clinical center. RESULTS: We sequenced the genomes of 822 families (744 in the initial cohort and 78 in the replication cohort) and made a molecular diagnosis in 218 of 744 families (29.3%). Of the 218 families, 61 (28.0%) - 8.2% of families in the initial cohort - had variants that required genome sequencing for identification, including coding variants, intronic variants, small structural variants, copy-neutral inversions, complex rearrangements, and tandem repeat expansions. Most families in which a molecular diagnosis was made after previous nondiagnostic exome sequencing (63.5%) had variants that could be detected by reanalysis of the exome-sequence data (53.4%) or by additional analytic methods, such as copy-number variant calling, to exome-sequence data (10.8%). We obtained similar results in the replication cohort: in 33% of the families in which a molecular diagnosis was made, or 8% of the cohort, genome sequencing was required, which showed the applicability of these findings to both research and clinical environments. CONCLUSIONS: The diagnostic yield of genome sequencing in a large, diverse research cohort and in a small clinical cohort of persons who had previously undergone genetic testing was approximately 8% and included several types of pathogenic variation that had not previously been detected by means of exome sequencing or other techniques. (Funded by the National Human Genome Research Institute and others.).


Asunto(s)
Variación Genética , Enfermedades Raras , Secuenciación Completa del Genoma , Femenino , Humanos , Masculino , Estudios de Cohortes , Exoma , Secuenciación del Exoma , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/etnología , Enfermedades Genéticas Congénitas/genética , Pruebas Genéticas , Genoma Humano , Fenotipo , Enfermedades Raras/diagnóstico , Enfermedades Raras/etnología , Enfermedades Raras/genética , Análisis de Secuencia de ADN , Niño , Adolescente , Adulto Joven , Adulto
3.
Hum Mol Genet ; 29(6): 967-979, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32011687

RESUMEN

Inherited retinal degenerations (IRDs) are at the focus of current genetic therapeutic advancements. For a genetic treatment such as gene therapy to be successful, an accurate genetic diagnostic is required. Genetic diagnostics relies on the assessment of the probability that a given DNA variant is pathogenic. Non-coding variants present a unique challenge for such assessments as compared to coding variants. For one, non-coding variants are present at much higher number in the genome than coding variants. In addition, our understanding of the rules that govern the non-coding regions of the genome is less complete than our understanding of the coding regions. Methods that allow for both the identification of candidate non-coding pathogenic variants and their functional validation may help overcome these caveats allowing for a greater number of patients to benefit from advancements in genetic therapeutics. We present here an unbiased approach combining whole genome sequencing (WGS) with patient-induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs) transcriptome analysis. With this approach, we identified and functionally validated a novel pathogenic non-coding variant in a small family with a previously unresolved genetic diagnosis.


Asunto(s)
Marcadores Genéticos , Variación Genética , Genoma Humano , RNA-Seq/métodos , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Secuenciación Completa del Genoma/métodos , Niño , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Linaje , Secuenciación del Exoma
4.
Genet Med ; 24(2): 332-343, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906470

RESUMEN

PURPOSE: In Mendelian disease diagnosis, variant analysis is a repetitive, error-prone, and time consuming process. To address this, we have developed the Mendelian Analysis Toolkit (MATK), a configurable, automated variant ranking program. METHODS: MATK aggregates variant information from multiple annotation sources and uses expert-designed rules with parameterized weights to produce a ranked list of potentially causal solutions. MATK performance was measured by a comparison between MATK-aided and human-domain expert analyses of 1060 families with inherited retinal degeneration (IRD), analyzed using an IRD-specific gene panel (589 individuals) and exome sequencing (471 families). RESULTS: When comparing MATK-assisted analysis with expert curation in both the IRD-specific gene panel and exome sequencing (1060 subjects), 97.3% of potential solutions found by experts were also identified by the MATK-assisted analysis (541 solutions identified with MATK of 556 solutions found by conventional analysis). Furthermore, MATK-assisted analysis identified 114 additional potential solutions from the 504 cases unsolved by conventional analysis. CONCLUSION: MATK expedites the process of identification of likely solving variants in Mendelian traits, and reduces variability stemming from human error and researcher bias. MATK facilitates data reanalysis to keep up with the constantly improving annotation sources and next-generation sequencing processing pipelines. The software is open source and available at https://gitlab.com/matthew_maher/mendelanalysis.


Asunto(s)
Degeneración Retiniana , Automatización , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/genética , Programas Informáticos , Secuenciación del Exoma
5.
Hum Mol Genet ; 27(19): 3305-3312, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29917077

RESUMEN

Leigh syndrome is a frequent, heterogeneous pediatric presentation of mitochondrial oxidative phosphorylation (OXPHOS) disease, manifesting with psychomotor retardation and necrotizing lesions in brain deep gray matter. OXPHOS occurs at the inner mitochondrial membrane through the integrated activity of five protein complexes, of which complex V (CV) functions in a dimeric form to directly generate adenosine triphosphate (ATP). Mutations in several different structural CV subunits cause Leigh syndrome; however, dimerization defects have not been associated with human disease. We report four Leigh syndrome subjects from three unrelated Ashkenazi Jewish families harboring a homozygous splice-site mutation (c.87 + 1G>C) in a novel CV subunit disease gene, USMG5. The Ashkenazi population allele frequency is 0.57%. This mutation produces two USMG5 transcripts, wild-type and lacking exon 3. Fibroblasts from two Leigh syndrome probands had reduced wild-type USMG5 mRNA expression and undetectable protein. The mutation did not alter monomeric CV expression, but reduced both CV dimer expression and ATP synthesis rate. Rescue with wild-type USMG5 cDNA in proband fibroblasts restored USMG5 protein, increased CV dimerization and enhanced ATP production rate. These data demonstrate that a recurrent USMG5 splice-site founder mutation in the Ashkenazi Jewish population causes autosomal recessive Leigh syndrome by reduction of CV dimerization and ATP synthesis.


Asunto(s)
Enfermedad de Leigh/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Adenosina Trifosfato/biosíntesis , Niño , Preescolar , Dimerización , Exones/genética , Efecto Fundador , Frecuencia de los Genes , Haplotipos , Humanos , Lactante , Recién Nacido , Judíos/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Mutación , Fosforilación Oxidativa , Sitios de Empalme de ARN/genética , Secuenciación del Exoma
6.
Genet Med ; 22(6): 1079-1087, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32037395

RESUMEN

PURPOSE: Current sequencing strategies can genetically solve 55-60% of inherited retinal degeneration (IRD) cases, despite recent progress in sequencing. This can partially be attributed to elusive pathogenic variants (PVs) in known IRD genes, including copy-number variations (CNVs), which have been shown as major contributors to unsolved IRD cases. METHODS: Five hundred IRD patients were analyzed with targeted next-generation sequencing (NGS). The NGS data were used to detect CNVs with ExomeDepth and gCNV and the results were compared with CNV detection with a single-nucleotide polymorphism (SNP) array. Likely causal CNV predictions were validated by quantitative polymerase chain reaction (qPCR). RESULTS: Likely disease-causing single-nucleotide variants (SNVs) and small indels were found in 55.6% of subjects. PVs in USH2A (11.6%), RPGR (4%), and EYS (4%) were the most common. Likely causal CNVs were found in an additional 8.8% of patients. Of the three CNV detection methods, gCNV showed the highest accuracy. Approximately 30% of unsolved subjects had a single likely PV in a recessive IRD gene. CONCLUSION: CNV detection using NGS-based algorithms is a reliable method that greatly increases the genetic diagnostic rate of IRDs. Experimentally validating CNVs helps estimate the rate at which IRDs might be solved by a CNV plus a more elusive variant.


Asunto(s)
Degeneración Retiniana , Variaciones en el Número de Copia de ADN/genética , Proteínas del Ojo/genética , Genes Recesivos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/genética , Virulencia
7.
Mol Vis ; 26: 423-433, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32565670

RESUMEN

Purpose: To evaluate the phenotypic spectrum of autosomal recessive RP1-associated retinal dystrophies and assess genotypic associations. Methods: A retrospective multicenter study was performed of patients with biallelic RP1-associated retinal dystrophies. Data including presenting symptoms and age, visual acuity, kinetic perimetry, full field electroretinogram, fundus examination, multimodal retinal imaging, and RP1 genotype were evaluated. Results: Nineteen eligible patients from 17 families were identified and ranged in age from 10 to 56 years at the most recent evaluation. Ten of the 21 unique RP1 variants identified were novel, and mutations within exon 2 accounted for nearly half of alleles across the cohort. Patients had clinical diagnoses of retinitis pigmentosa (13), cone-rod dystrophy (3), Leber congenital amaurosis (1), early-onset severe retinal dystrophy (1), and macular dystrophy (1). Macular atrophy was a common feature across the cohort. Symptom onset occurred between 4 and 30 years of age (mean 14.9 years, median 13 years), but there were clusters of onset age that correlated with the effects of RP1 mutations at a protein level. Patients with later-onset disease, including retinitis pigmentosa, had at least one missense variant in an exon 2 DCX domain. Conclusions: Biallelic RP1 mutations cause a broad spectrum of retinal disease. Exon 2 missense mutations are a significant contributor to disease and can be associated with a considerably later onset of retinitis pigmentosa than that typically associated with biallelic RP1 mutations.


Asunto(s)
Proteínas Asociadas a Microtúbulos/genética , Distrofias Retinianas/genética , Adolescente , Adulto , Alelos , Niño , Estudios de Cohortes , Distrofias de Conos y Bastones/genética , Análisis Mutacional de ADN , Electrorretinografía , Enfermedades Hereditarias del Ojo/genética , Femenino , Genotipo , Humanos , Amaurosis Congénita de Leber/genética , Degeneración Macular/genética , Masculino , Persona de Mediana Edad , Mutación , Mutación Missense , Fenotipo , Distrofias Retinianas/diagnóstico por imagen , Distrofias Retinianas/fisiopatología , Retinitis Pigmentosa/genética , Estudios Retrospectivos , Agudeza Visual
8.
Regul Toxicol Pharmacol ; 114: 104662, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32325112

RESUMEN

Nonclinical testing of human pharmaceuticals is conducted to assess the safety of compounds to be studied in human clinical trials and for marketing of new drugs. Although there is no exact number and type of nonclinical studies required for safety assessments, as there is inherent flexibility for each new compound, the traditional approach is outlined in various FDA and ICH guidance documents and involves a combination of in vitro assays and whole animal testing methods. Recent advances in science have led to the emergence of numerous new approach methodologies (NAMs) for nonclinical testing that are currently being used in various aspects of drug development. Traditional nonclinical testing methods can predict clinical outcomes, although improvements in these methods that can increase predictivity of clinical outcomes are encouraged and needed. This paper discusses FDA/CDER's view on the opportunities and challenges of using NAMs in drug development especially for regulatory purposes, and also includes examples where NAMs are currently being used in nonclinical safety assessments and where they may supplement and/or enhance current testing methods. FDA/CDER also encourages communication with stakeholders regarding NAMs and is committed to exploring the use of NAMs to improve regulatory efficiency and potentially expedite drug development.


Asunto(s)
Preparaciones Farmacéuticas/química , Animales , Desarrollo de Medicamentos , Humanos , Medición de Riesgo , Estados Unidos , United States Food and Drug Administration
9.
Hum Mutat ; 40(8): 1127-1144, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30977563

RESUMEN

Characterizing the pathogenicity of DNA sequence variants of unknown significance (VUS) is a major bottleneck in human genetics, and is increasingly important in determining which patients with inherited retinal diseases could benefit from gene therapy. A library of 210 rhodopsin (RHO) variants from literature and in-house genetic diagnostic testing were created to efficiently detect pathogenic RHO variants that fail to express on the cell surface. This study, while focused on RHO, demonstrates a streamlined, generalizable method for detecting pathogenic VUS. A relatively simple next-generation sequencing-based readout was developed so that a flow cytometry-based assay could be performed simultaneously on all variants in a pooled format, without the need for barcodes or viral transduction. The resulting dataset characterized the surface expression of every RHO library variant with a high degree of reproducibility (r2 = 0.92-0.95), recategorizing 37 variants. For example, three retinitis pigmentosa pedigrees were solved by identifying VUS which showed low expression levels (p.G18D, p.G101V, and p.P180T). Results were validated across multiple assays and correlated with clinical disease severity. This study presents a parallelized, higher-throughput cell-based assay for the functional characterization of VUS in RHO, and can be applied more broadly to other inherited retinal disease genes and other disorders.


Asunto(s)
Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedades de la Retina/genética , Rodopsina/genética , Regulación de la Expresión Génica , Biblioteca de Genes , Predisposición Genética a la Enfermedad , Genómica , Células HEK293 , Humanos , Modelos Biológicos , Rodopsina/metabolismo , Análisis de Secuencia de ADN
10.
Genet Med ; 21(3): 694-704, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30072743

RESUMEN

PURPOSE: With the advent of gene therapies for inherited retinal degenerations (IRDs), genetic diagnostics will have an increasing role in clinical decision-making. Yet the genetic cause of disease cannot be identified using exon-based sequencing for a significant portion of patients. We hypothesized that noncoding pathogenic variants contribute significantly to the genetic causality of IRDs and evaluated patients with single coding pathogenic variants in RPGRIP1 to test this hypothesis. METHODS: IRD families underwent targeted panel sequencing. Unsolved cases were explored by exome and genome sequencing looking for additional pathogenic variants. Candidate pathogenic variants were then validated by Sanger sequencing, quantitative polymerase chain reaction, and in vitro splicing assays in two cell lines analyzed through amplicon sequencing. RESULTS: Among 1722 families, 3 had biallelic loss-of-function pathogenic variants in RPGRIP1 while 7 had a single disruptive coding pathogenic variants. Exome and genome sequencing revealed potential noncoding pathogenic variants in these 7 families. In 6, the noncoding pathogenic variants were shown to lead to loss of function in vitro. CONCLUSION: Noncoding pathogenic variants were identified in 6 of 7 families with single coding pathogenic variants in RPGRIP1. The results suggest that noncoding pathogenic variants contribute significantly to the genetic causality of IRDs and RPGRIP1-mediated IRDs are more common than previously thought.


Asunto(s)
ADN Intergénico/genética , Proteínas/genética , Degeneración Retiniana/genética , Adulto , Mapeo Cromosómico , Proteínas del Citoesqueleto , Análisis Mutacional de ADN/métodos , ADN Intergénico/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Mutación , Linaje , Proteínas/fisiología , Degeneración Retiniana/etiología , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodos
11.
Hum Mol Genet ; 24(1): 230-42, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25168386

RESUMEN

Primary cilia are sensory organelles present on most mammalian cells. The assembly and maintenance of primary cilia are facilitated by intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium. Mutations in genes coding for IFT components have been associated with a group of diseases called ciliopathies. These genetic disorders can affect a variety of organs including the retina. Using whole exome sequencing in three families, we identified mutations in Intraflagellar Transport 172 Homolog [IFT172 (Chlamydomonas)] that underlie an isolated retinal degeneration and Bardet-Biedl syndrome. Extensive functional analyses of the identified mutations in cell culture, rat retina and in zebrafish demonstrated their hypomorphic or null nature. It has recently been reported that mutations in IFT172 cause a severe ciliopathy syndrome involving skeletal, renal, hepatic and retinal abnormalities (Jeune and Mainzer-Saldino syndromes). Here, we report for the first time that mutations in this gene can also lead to an isolated form of retinal degeneration. The functional data for the mutations can partially explain milder phenotypes; however, the involvement of modifying alleles in the IFT172-associated phenotypes cannot be excluded. These findings expand the spectrum of disease associated with mutations in IFT172 and suggest that mutations in genes originally reported to be associated with syndromic ciliopathies should also be considered in subjects with non-syndromic retinal dystrophy.


Asunto(s)
Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patología , Proteínas Portadoras/genética , Retina/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Proteínas Adaptadoras Transductoras de Señales , Adolescente , Adulto , Animales , Células Cultivadas , Proteínas del Citoesqueleto , Exoma , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación , Linaje , Ratas , Retina/metabolismo , Análisis de Secuencia de ADN , Adulto Joven , Pez Cebra
12.
Genet Med ; 19(6): 643-651, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27735924

RESUMEN

PURPOSE: Despite substantial progress in sequencing, current strategies can genetically solve only approximately 55-60% of inherited retinal degeneration (IRD) cases. This can be partially attributed to elusive mutations in the known IRD genes, which are not easily identified by the targeted next-generation sequencing (NGS) or Sanger sequencing approaches. We hypothesized that copy-number variations (CNVs) are a major contributor to the elusive genetic causality of IRDs. METHODS: Twenty-eight cases previously unsolved with a targeted NGS were investigated with whole-genome single-nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) arrays. RESULTS: Deletions in the IRD genes were detected in 5 of 28 families, including a de novo deletion. We suggest that the de novo deletion occurred through nonallelic homologous recombination (NAHR) and we constructed a genomic map of NAHR-prone regions with overlapping IRD genes. In this article, we also report an unusual case of recessive retinitis pigmentosa due to compound heterozygous mutations in SNRNP200, a gene that is typically associated with the dominant form of this disease. CONCLUSIONS: CNV mapping substantially increased the genetic diagnostic rate of IRDs, detecting genetic causality in 18% of previously unsolved cases. Extending the search to other structural variations will probably demonstrate an even higher contribution to genetic causality of IRDs.Genet Med advance online publication 13 October 2016.


Asunto(s)
Variaciones en el Número de Copia de ADN , Degeneración Retiniana/genética , Adolescente , Niño , Mapeo Cromosómico , Estudios de Cohortes , Hibridación Genómica Comparativa , Salud de la Familia , Femenino , Eliminación de Gen , Predisposición Genética a la Enfermedad , Genoma , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
13.
Mol Vis ; 23: 695-706, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29062221

RESUMEN

PURPOSE: To describe in detail cases with an initial diagnosis of Leber congenital amaurosis that were later found to have a hemizygous mutation in the CACNA1F gene. METHODS: The patients underwent a detailed ophthalmological evaluation and full-field electroretinography (ERG). Selective targeted capture and whole-exome next-generation sequencing (NGS) were used to find the disease-causing mutations. RESULTS: Patient 1 presented at age 3 months with nystagmus, normal visual attention, and a normal fundus exam. ERG responses were severely decreased. Patient 2 presented with nystagmus, severe hyperopia, esotropia, and visual acuity of 20/360 oculus dexter (OD) and 20/270 oculus sinister (OS) at age 5 months. His fundus exam showed slightly increased pigmentation around the foveae. The scotopic ERG responses were severely decreased and photopic responses mildly decreased. Based on the initial presentation, both patients received the clinical diagnosis of Leber congenital amaurosis (LCA). However, genetic testing showed no mutations in known LCA genes. Instead, broader genetic testing using NGS showed point mutations in the CACNA1F gene, which is reported to be associated with type 2 congenital stationary night blindness (CSNB2). CONCLUSIONS: These two cases demonstrate the clinical overlap between LCA and CSNB in infants and young children. Genetic testing is an essential tool in these cases and provides a more accurate diagnosis and prognosis for patients with inherited retinal degenerative disorders.


Asunto(s)
Canales de Calcio Tipo L/genética , Errores Diagnósticos , Enfermedades Hereditarias del Ojo/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Amaurosis Congénita de Leber/diagnóstico , Miopía/diagnóstico , Ceguera Nocturna/diagnóstico , Mutación Puntual , Análisis Mutacional de ADN , Electrorretinografía , Exoma , Enfermedades Hereditarias del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Amaurosis Congénita de Leber/genética , Masculino , Miopía/genética , Ceguera Nocturna/genética , Nistagmo Patológico/diagnóstico , Errores de Refracción/diagnóstico , Pruebas del Campo Visual , Campos Visuales
14.
Mol Vis ; 23: 548-560, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848318

RESUMEN

PURPOSE: Inherited optic neuropathy is genetically heterogeneous, and genetic testing has an important role in risk assessment and counseling. The purpose of this study is to determine the prevalence and spectrum of mutations in a group of patients referred for genetic testing to a tertiary center in the United States. In addition, we compared the clinical features of patients with and without mutations in OPA1, the gene most commonly involved in dominantly inherited optic atrophy. METHODS: Clinical data and genetic testing results were reviewed for 74 unrelated, consecutive patients referred with a history of insidious, relatively symmetric, bilateral visual loss secondary to an optic neuropathy. Patients were evaluated for disease-causing variants in OPA1, OPA3, WFS1, and the entire mitochondrial genome with DNA sequencing and copy number variation (CNV) testing. RESULTS: Pathogenic DNA variants were found in 25 cases, with the majority (24 patients) located in OPA1. Demographics, clinical history, and clinical features for the group of patients with mutations in OPA1 were compared to those without disease-causing variants. Compared to the patients without mutations, cases with mutations in OPA1 were more likely to have a family history of optic nerve disease (p = 0.027); however, 30.4% of patients without a family history of disease also had mutations in OPA1. OPA1 mutation carriers had less severe mean deviation and pattern standard deviation on automated visual field testing than patients with optic atrophy without mutations in OPA1 (p<0.005). Other demographic and ocular features were not statistically significantly different between the two groups, including the fraction of patients with central scotomas (42.9% of OPA1 mutation positive and 66.0% of OPA1 mutation negative). CONCLUSIONS: Genetic testing identified disease-causing mutations in 34% of referred cases, with the majority of these in OPA1. Patients with mutations in OPA1 were more likely to have a family history of disease; however, 30.4% of patients without a family history were also found to have an OPA1 mutation. This observation, as well as similar frequencies of central scotomas in the groups with and without mutations in OPA1, underscores the need for genetic testing to establish an OPA1 genetic diagnosis.


Asunto(s)
GTP Fosfohidrolasas/genética , Pruebas Genéticas , Mutación , Enfermedades del Nervio Óptico/diagnóstico , Enfermedades del Nervio Óptico/genética , Adulto , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , ADN Mitocondrial/genética , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Mutación Missense , Proteínas/genética , Análisis de Secuencia de ADN , Centros de Atención Terciaria , Trastornos de la Visión/diagnóstico , Trastornos de la Visión/genética , Pruebas del Campo Visual , Campos Visuales
16.
Am J Hum Genet ; 93(3): 482-95, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-23993194

RESUMEN

Whole-exome sequencing and autozygosity mapping studies, independently performed in subjects with defective combined mitochondrial OXPHOS-enzyme deficiencies, identified a total of nine disease-segregating FBXL4 mutations in seven unrelated mitochondrial disease families, composed of six singletons and three siblings. All subjects manifested early-onset lactic acidemia, hypotonia, and developmental delay caused by severe encephalomyopathy consistently associated with progressive cerebral atrophy and variable involvement of the white matter, deep gray nuclei, and brainstem structures. A wide range of other multisystem features were variably seen, including dysmorphism, skeletal abnormalities, poor growth, gastrointestinal dysmotility, renal tubular acidosis, seizures, and episodic metabolic failure. Mitochondrial respiratory chain deficiency was present in muscle or fibroblasts of all tested individuals, together with markedly reduced oxygen consumption rate and hyperfragmentation of the mitochondrial network in cultured cells. In muscle and fibroblasts from several subjects, substantially decreased mtDNA content was observed. FBXL4 is a member of the F-box family of proteins, some of which are involved in phosphorylation-dependent ubiquitination and/or G protein receptor coupling. We also demonstrate that FBXL4 is targeted to mitochondria and localizes in the intermembrane space, where it participates in an approximately 400 kDa protein complex. These data strongly support a role for FBXL4 in controlling bioenergetic homeostasis and mtDNA maintenance. FBXL4 mutations are a recurrent cause of mitochondrial encephalomyopathy onset in early infancy.


Asunto(s)
Predisposición Genética a la Enfermedad , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación/genética , Edad de Inicio , Niño , Preescolar , Cromosomas Humanos Par 6/genética , ADN Complementario/genética , Proteínas F-Box/química , Proteínas F-Box/genética , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Genes Recesivos/genética , Células HEK293 , Humanos , Lactante , Recién Nacido , Masculino , Mitocondrias/metabolismo , Encefalomiopatías Mitocondriales/epidemiología , Músculo Esquelético/patología , Proteínas Mutantes/metabolismo , Fosforilación Oxidativa , Linaje , Transporte de Proteínas , Fracciones Subcelulares/metabolismo , Síndrome , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
17.
RNA Biol ; 13(5): 477-85, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-26950678

RESUMEN

We report a Caucasian boy with intractable epilepsy and global developmental delay. Whole-exome sequencing identified the likely genetic etiology as a novel p.K212E mutation in the X-linked gene HSD17B10 for mitochondrial short-chain dehydrogenase/reductase SDR5C1. Mutations in HSD17B10 cause the HSD10 disease, traditionally classified as a metabolic disorder due to the role of SDR5C1 in fatty and amino acid metabolism. However, SDR5C1 is also an essential subunit of human mitochondrial RNase P, the enzyme responsible for 5'-processing and methylation of purine-9 of mitochondrial tRNAs. Here we show that the p.K212E mutation impairs the SDR5C1-dependent mitochondrial RNase P activities, and suggest that the pathogenicity of p.K212E is due to a general mitochondrial dysfunction caused by reduction in SDR5C1-dependent maturation of mitochondrial tRNAs.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/genética , Discapacidades del Desarrollo/genética , Epilepsia Refractaria/genética , Mutación , Ribonucleasa P/metabolismo , Análisis de Secuencia de ADN/métodos , Niño , Exoma , Genes Ligados a X , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , ARN de Transferencia/metabolismo
18.
Clin Nephrol ; 85(6): 346-52, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27007868

RESUMEN

BACKGROUND: Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is a rare, autosomal recessive condition caused by mutations in CLDN16 or CLDN19, which encode for tight junction proteins, claudin-16 and claudin-19, respectively. This condition often has a delayed diagnosis in patients with no prior family history due to a lack of specific clinical symptoms. Description of case, diagnosis, and treatment: A 4-year, 10-month-old Caucasian boy presented with failure to thrive, developmental delay, and ocular findings consisting of horizontal nystagmus, bilateral macular staphylomas, and high myopia. Laboratory studies revealed hypercalciuria, hypomagnesemia, and renal insufficiency. Renal ultrasound showed bilateral small kidneys with medullary nephrocalcinosis. Candidate gene sequencing performed at age 7 years identified a novel, homozygous, frameshift mutation c.140_141delAT (p.Tyr47Stop) within CLDN19, confirming the molecular diagnosis of FHHNC. Due to rapid renal progression, the proband underwent renal transplant at age 10 years, 10 months. FHHNC was prenatally diagnosed in the proband's sister, who was found at birth to have ocular findings and hypomagnesemia. In addition, she had feeding intolerance and persistent hypoglycemia with hyperinsulinism that has required chronic diazoxide therapy. CONCLUSIONS: Although rare, FHHNC should be suspected in patients who present with nephrocalcinosis in the setting of congenital eye anomalies..


Asunto(s)
Claudinas/genética , Hipercalciuria/diagnóstico , Hipercalciuria/genética , Nefrocalcinosis/diagnóstico , Nefrocalcinosis/genética , Defectos Congénitos del Transporte Tubular Renal/diagnóstico , Defectos Congénitos del Transporte Tubular Renal/genética , Niño , Preescolar , Femenino , Mutación del Sistema de Lectura , Homocigoto , Humanos , Hipercalciuria/cirugía , Recién Nacido , Trasplante de Riñón , Masculino , Nefrocalcinosis/cirugía , Diagnóstico Prenatal , Defectos Congénitos del Transporte Tubular Renal/cirugía , Hermanos
19.
Genet Med ; 17(4): 253-261, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25412400

RESUMEN

PURPOSE: Next-generation sequencing-based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques with regard to test accuracy and reproducibility have not been fully defined. METHODS: We developed a targeted enrichment and next-generation sequencing approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy, and glaucoma. In preparation for providing this genetic eye disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, and reproducibility, as well as the clinical sensitivity, of the test. RESULTS: The GEDi test is highly reproducible and accurate, with sensitivity and specificity of 97.9 and 100%, respectively, for single-nucleotide variant detection. The sensitivity for variant detection was notably better than the 88.3% achieved by whole-exome sequencing using the same metrics, because of better coverage of targeted genes in the GEDi test as compared with a commercially available exome capture set. Prospective testing of 192 patients with inherited retinal degenerations indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. CONCLUSION: Based on quantified performance metrics, the data suggest that selective targeted enrichment is preferable to whole-exome sequencing for genetic diagnostic testing.


Asunto(s)
Oftalmopatías/diagnóstico , Oftalmopatías/genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Exoma/genética , Oftalmopatías/patología , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Retin Cases Brief Rep ; 18(1): 80-86, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007184

RESUMEN

PURPOSE: To describe novel clinical and angiographic findings in Wagner syndrome. METHODS: A retrospective case series of three related patients with Wagner syndrome. Patients underwent standard optical coherence tomography (OCT), B-scan ultrasonography, and fluorescein angiography in addition to wide field swept-source OCT angiography (WF SS-OCTA) (PLEX Elite 9000, Carl Zeiss Meditec Inc). Patients underwent genetic testing for a panel of hereditary vitreoretinopathies. RESULTS: Three related patients with Wagner syndrome were identified. All were found to have prominent vitreous strands, abnormal vitreoretinal adhesions, peripheral retinal holes, and varying degrees of myopia. A mid-peripheral tractional ridge was identified in all six eyes. All patients were positive for a known pathologic intron variant in the VCAN gene (4004-5T-A). Wide field swept-source OCT angiography (12 mm × 12 mm) was performed in two patients and demonstrated perivascular capillary loss in the superficial capillary plexus along the arcades bilaterally. One patient demonstrated associated retinal atrophy within the area of capillary loss. The capillary loss extended beyond the margin of retinal atrophy. CONCLUSION: The unusual finding of a mid-peripheral tractional ridge of the retina associated with myopia led to a genetic diagnosis of Wagner syndrome. Widefield swept-source OCT angiography demonstrated a novel feature of perivascular loss of the superficial retinal capillary plexus. This result suggests that vitreous traction may cause localized microvasculature dysfunction and subsequent retinal atrophy in Wagner syndrome. This is the first known evaluation of Wagner syndrome using OCT angiography.


Asunto(s)
Miopía , Degeneración Retiniana , Humanos , Vasos Retinianos/patología , Tomografía de Coherencia Óptica/métodos , Estudios Retrospectivos , Angiografía con Fluoresceína/métodos , Miopía/diagnóstico , Atrofia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA