Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Compr Rev Food Sci Food Saf ; 22(3): 2235-2266, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37009835

RESUMEN

One of the biggest challenges faced by food producers is ensuring microbiological safety. Despite strict criteria for food products, foodborne diseases are a global problem and pose a real risk to consumers. Therefore, it is necessary to identify new and more effective methods for eliminating pathogens from food and the food processing environment. According to the European Food Safety Authority (EFSA), the most common foodborne diseases are caused by Campylobacter, Salmonella, Yersinia, Escherichia coli, and Listeria. Out of the five listed, four are Gram-negative bacteria. Our review focuses on the use of bacteriophages, which are ubiquitous bacterial viruses, and bacteriophage endolysins to eliminate Gram-negative pathogens. Endolysins cleave specific bonds within the peptidoglycan (PG) of the bacterial cell, causing the cell to burst. Single phages or phage cocktails, which are, in some instances, commercially available products, eliminate pathogenic bacteria in livestock and various food matrices. Endolysins have matured as the most advanced class of antibacterial agents in the clinical sector, but their use in food protection is highly unexplored. Advanced molecular engineering techniques, different formulations, protein encapsulation, and the addition of outer membrane (OM) permeabilization agents enhance the activity of lysins against Gram-negative pathogens. This creates space for groundbreaking research on the use of lysins in the food sector.


Asunto(s)
Bacteriófagos , Campylobacter , Enfermedades Transmitidas por los Alimentos , Humanos , Antibacterianos/química , Bacterias , Enfermedades Transmitidas por los Alimentos/prevención & control
2.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887293

RESUMEN

We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%). The Tt72 polA gene does not complement the Escherichia colipolA− mutant in replicating polA-dependent plasmid replicons. It encodes a 703-aa protein with a predicted molecular weight of 80,490 and an isoelectric point of 5.49. The enzyme contains a nucleotidyltransferase domain and a 3'-5' exonuclease domain that is engaged in proofreading. Recombinant enzyme with His-tag at the N-terminus was overproduced in E. coli, subsequently purified by immobilized metal affinity chromatography, and biochemically characterized. The enzyme exists in solution in monomeric form and shows optimum activity at pH 8.5, 25 mM KCl, and 0.5 mM Mg2+. Site-directed analysis proved that highly-conserved residues D15, E17, D78, D180, and D184 in 3'-5' exonuclease and D384 and D615 in the nucleotidyltransferase domain are critical for the enzyme's activity. Despite the source of origin, the Tt72 DNA polymerase has not proven to be highly thermoresistant, with a temperature optimum at 55 °C. Above 60 °C, the rapid loss of function follows with no activity > 75 °C. However, during heat treatment (10 min at 75 °C), trehalose, trimethylamine N-oxide, and betaine protected the enzyme against thermal inactivation. A midpoint of thermal denaturation at Tm = 74.6 °C (ΔHcal = 2.05 × 104 cal mol−1) and circular dichroism spectra > 60 °C indicate the enzyme's moderate thermal stability.


Asunto(s)
Bacteriófagos , Thermus thermophilus , Secuencia de Aminoácidos , Bacteriófagos/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfodiesterasa I/metabolismo , Thermus thermophilus/metabolismo
3.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34502443

RESUMEN

Clostridium botulinum is a Gram-positive, anaerobic, spore-forming bacterium capable of producing botulinum toxin and responsible for botulism of humans and animals. Phage-encoded enzymes called endolysins, which can lyse bacteria when exposed externally, have potential as agents to combat bacteria of the genus Clostridium. Bioinformatics analysis revealed in the genomes of several Clostridium species genes encoding putative N-acetylmuramoyl-l-alanine amidases with anti-clostridial potential. One such enzyme, designated as LysB (224-aa), from the prophage of C. botulinum E3 strain Alaska E43 was chosen for further analysis. The recombinant 27,726 Da protein was expressed and purified from E. coli Tuner(DE3) with a yield of 37.5 mg per 1 L of cell culture. Size-exclusion chromatography and analytical ultracentrifugation experiments showed that the protein is dimeric in solution. Bioinformatics analysis and results of site-directed mutagenesis studies imply that five residues, namely H25, Y54, H126, S132, and C134, form the catalytic center of the enzyme. Twelve other residues, namely M13, H43, N47, G48, W49, A50, L73, A75, H76, Q78, N81, and Y182, were predicted to be involved in anchoring the protein to the lipoteichoic acid, a significant component of the Gram-positive bacterial cell wall. The LysB enzyme demonstrated lytic activity against bacteria belonging to the genera Clostridium, Bacillus, Staphylococcus, and Deinococcus, but did not lyse Gram-negative bacteria. Optimal lytic activity of LysB occurred between pH 4.0 and 7.5 in the absence of NaCl. This work presents the first characterization of an endolysin derived from a C. botulinum Group II prophage, which can potentially be used to control this important pathogen.


Asunto(s)
Clostridium botulinum tipo E/enzimología , Endopeptidasas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Clostridium/efectos de los fármacos , Clostridium/ultraestructura , Endopeptidasas/química , Endopeptidasas/aislamiento & purificación , Endopeptidasas/farmacología , Lipopolisacáridos/metabolismo , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/aislamiento & purificación , N-Acetil Muramoil-L-Alanina Amidasa/farmacología , Profagos/enzimología , Ácidos Teicoicos/metabolismo
4.
Int J Mol Sci ; 21(14)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664473

RESUMEN

Peptidoglycan hydrolytic enzymes are considered to be a promising alternative to conventional antibiotics in combating bacterial infections. To identify novel hydrolytic enzymes, we performed a database search with the sequences of two thermostable endolysins with high bactericidal activity, studied earlier in our laboratory. Both these enzymes originate from Thermus scotoductus bacteriophages MAT2119 and vB_Tsc2631. A lytic enzyme LysC from Clostridium intestinale URNW was found to have the highest amino acid sequence similarity to the bacteriophage proteins and was chosen for further analysis. The recombinant enzyme showed strong activity against its host bacteria C. intestinale, as well as against C. sporogenes, Bacillus cereus, Micrococcus luteus, and Staphylococcus aureus, on average causing a 5.12 ± 0.14 log reduction of viable S. aureus ATCC 25923 cells in a bactericidal assay. Crystallographic studies of the protein showed that the catalytic site of LysC contained a zinc atom coordinated by amino acid residues His50, His147, and Cys155, a feature characteristic for type 2 amidases. Surprisingly, neither of these residues, nor any other of the four conserved residues in the vicinity of the active site, His51, Thr52, Tyr76, and Thr153, were essential to maintain the antibacterial activity of LysC. Therefore, our attention was attracted to the intrinsically disordered and highly positively charged N-terminal region of the enzyme. Potential antibacterial activity of this part of the sequence, predicted by the Antimicrobial Sequence Scanning System, AMPA, was confirmed in our experimental studies; the truncated version of LysC (LysCΔ2-23) completely lacked antibacterial activity. Moreover, a synthetic peptide, which we termed Intestinalin, with a sequence identical to the first thirty amino acids of LysC, displayed substantial anti-staphylococcal activity with IC50 of 6 µg/mL (1.5 µM). This peptide was shown to have α-helical conformation in solution in the presence of detergents which is a common feature of amphipathic α-helical antimicrobial peptides.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Clostridium/enzimología , Endopeptidasas/aislamiento & purificación , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Bacteriófagos/enzimología , Dominio Catalítico , Simulación por Computador , Secuencia Conservada , Cristalografía por Rayos X , Endopeptidasas/química , Endopeptidasas/genética , Endopeptidasas/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/farmacología , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/farmacología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Staphylococcus aureus/efectos de los fármacos , Proteínas Virales/química
5.
Biochim Biophys Acta ; 1833(10): 2233-43, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23688635

RESUMEN

Faithful replication and propagation of mitochondrial DNA (mtDNA) is critical for cellular respiration. Molecular chaperones, ubiquitous proteins involved in protein folding and remodeling of protein complexes, have been implicated in mtDNA transactions. In particular, cells lacking Mdj1, an Hsp40 co-chaperone of Hsp70 in the mitochondrial matrix, do not maintain functional mtDNA. Here we report that the great majority of Mdj1 is associated with nucleoids, DNA-protein complexes that are the functional unit of mtDNA transactions. Underscoring the importance of Hsp70 chaperone activity in the maintenance of mtDNA, an Mdj1 variant having an alteration in the Hsp70-interacting J-domain does not maintain mtDNA. However, a J-domain containing fragment expressed at the level that Mdj1 is normally present is not competent to maintain mtDNA, suggesting a function of Mdj1 beyond that carried out by its J-domain. Nevertheless, loss of mtDNA function upon Mdj1 depletion is retarded when the J-domain, is overexpressed. Analysis of Mdj1 variants revealed a correlation between nucleoid association and DNA maintenance activity, suggesting that localization is functionally important. We found that Mdj1 has DNA binding activity and that variants retaining DNA-binding activity also retained nucleoid association. Together, our results are consistent with a model in which Mdj1, tethered to the nucleoid via DNA binding, thus driving a high local concentration of the Hsp70 machinery, is important for faithful DNA maintenance and propagation.


Asunto(s)
Núcleo Celular/metabolismo , Replicación del ADN , ADN Mitocondrial/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/genética , Plásmidos , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
6.
Appl Environ Microbiol ; 80(3): 886-95, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24271162

RESUMEN

In this study, we present the discovery and characterization of a highly thermostable endolysin from bacteriophage Ph2119 infecting Thermus strain MAT2119 isolated from geothermal areas in Iceland. Nucleotide sequence analysis of the 16S rRNA gene affiliated the strain with the species Thermus scotoductus. Bioinformatics analysis has allowed identification in the genome of phage 2119 of an open reading frame (468 bp in length) coding for a 155-amino-acid basic protein with an Mr of 17,555. Ph2119 endolysin does not resemble any known thermophilic phage lytic enzymes. Instead, it has conserved amino acid residues (His(30), Tyr(58), His(132), and Cys(140)) that form a Zn(2+) binding site characteristic of T3 and T7 lysozymes, as well as eukaryotic peptidoglycan recognition proteins, which directly bind to, but also may destroy, bacterial peptidoglycan. The purified enzyme shows high lytic activity toward thermophiles, i.e., T. scotoductus (100%), Thermus thermophilus (100%), and Thermus flavus (99%), and also, to a lesser extent, toward mesophilic Gram-negative bacteria, i.e., Escherichia coli (34%), Serratia marcescens (28%), Pseudomonas fluorescens (13%), and Salmonella enterica serovar Panama (10%). The enzyme has shown no activity against a number of Gram-positive bacteria analyzed, with the exception of Deinococcus radiodurans (25%) and Bacillus cereus (15%). Ph2119 endolysin was found to be highly thermostable: it retains approximately 87% of its lytic activity after 6 h of incubation at 95°C. The optimum temperature range for the enzyme activity is 50°C to 78°C. The enzyme exhibits lytic activity in the pH range of 6 to 10 (maximum at pH 7.5 to 8.0) and is also active in the presence of up to 500 mM NaCl.


Asunto(s)
Bacteriófagos/enzimología , Endopeptidasas/aislamiento & purificación , Thermus/virología , Bacteriólisis , Bacteriófagos/aislamiento & purificación , Proteínas Portadoras/genética , ADN Viral/química , ADN Viral/genética , Endopeptidasas/química , Endopeptidasas/genética , Endopeptidasas/metabolismo , Microbiología Ambiental , Estabilidad de Enzimas , Islandia , Datos de Secuencia Molecular , Peso Molecular , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Temperatura , Thermus/clasificación , Thermus/genética , Thermus/aislamiento & purificación
7.
Adv Healthc Mater ; 13(14): e2303475, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38310366

RESUMEN

Deep eutectic solvents (DESs) have been intensively investigated in recent years for their antibacterial properties, with DESs that comprise organic acids (OA-DESs) showing promising antibacterial action. However a majority of the reports focused only on a limited number strains and techniques, which is not enough to determine the antibacterial potential of a substance. To bridge this gap, the antibacterial activity of classical DESs and OA-DESs is assessed on twelve Gram-negative and Gram-positive bacteria strains, with some of them exhibiting specific resistance toward antibiotics. The investigated formulations of OA-DESs comprise glycolic, malic, malonic, and oxalic acids as representatives of this group. Using a range of microbiological assays as well as physicochemical characterization methods, a major difference of the effectiveness between the two groups is demonstrated, with OA-DESs exhibiting, as expected, greater antibacterial effectiveness than classical DESs. Most interestingly, slight differences in the minimum inhibitory and bactericidal concentration values as well as time-kill kinetics profiles are observed between Gram-positive and Gram-negative strains. Transmission electron microscopy analysis reveals the effect of the treatment of the bacteria with the representatives of both groups of DESs, which allows us to better understand the possible mechanism-of-action of these novel materials.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Bacterias Grampositivas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Disolventes Eutécticos Profundos/química , Solventes/química
8.
Diabetologia ; 56(9): 1907-13, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23702607

RESUMEN

AIMS/HYPOTHESIS: The association between the mitochondrial DNA 16181-16193 polycytosine variant (known as the OriB variant as it maps to the OriB origin of replication) and type 2 diabetes has not been reliably characterised, with studies reporting conflicting results. We report a systematic review of published literature in Europid populations, new data from the Norfolk Diabetes Case-Control Study and a meta-analysis to help quantify this association. METHODS: We performed a systematic review identifying all the studies of the OriB variant and type 2 diabetes in Europid populations published before January 2013. We typed the OriB variant by pyrosequencing and sequencing in the Norfolk Diabetes Case-Control Study, which comprised 5,574 type 2 diabetes cases and 6,950 population-based controls. RESULTS: Overall, the meta-analysis included eight published studies plus the current new results, with a total of 11,794 type 2 diabetes cases and 14,465 controls. In the Norfolk Diabetes Case-Control Study, the OR for type 2 diabetes for the OriB variant was 1.09 (95% CI 0.96, 1.24). In a combined analysis, the relative risk for type 2 diabetes for the OriB variant in Europid populations was 1.10 (95% CI 1.01, 1.20; p = 0.03) CONCLUSIONS/INTERPRETATION: Results from this systematic review and meta-analysis suggest that the mitochondrial DNA OriB variant is modestly associated with an increased risk of type 2 diabetes in Europid populations, with an effect size comparable with that of recently identified variants from genome-wide association studies.


Asunto(s)
ADN Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Predisposición Genética a la Enfermedad , Humanos
9.
Front Microbiol ; 14: 1303794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38312500

RESUMEN

Introduction: In the era of increasing bacterial resistance to antibiotics, new bactericidal substances are sought, and lysins derived from extremophilic organisms have the undoubted advantage of being stable under harsh environmental conditions. The PhiKo endolysin is derived from the phiKo bacteriophage infecting Gram-negative extremophilic bacterium Thermus thermophilus HB27. This enzyme shows similarity to two previously investigated thermostable type-2 amidases, the Ts2631 and Ph2119 from Thermus scotoductus bacteriophages, that revealed high lytic activity not only against thermophiles but also against Gram-negative mesophilic bacteria. Therefore, antibacterial potential of the PhiKo endolysin was investigated in the study presented here. Methods: Enzyme activity was assessed using turbidity reduction assays (TRAs) and antibacterial tests. Differential scanning calorimetry was applied to evaluate protein stability. The Collection of Anti-Microbial Peptides (CAMP) and Antimicrobial Peptide Calculator and Predictor (APD3) were used to predict regions with antimicrobial potential in the PhiKo primary sequence. The minimum inhibitory concentration (MIC) of the RAP-29 synthetic peptide was determined against Gram-positive and Gram-negative selected strains, and mechanism of action was investigated with use of membrane potential sensitive fluorescent dye 3,3'-Dipropylthiacarbocyanine iodide (DiSC3(5)). Results and discussion: The PhiKo endolysin is highly thermostable with melting temperature of 91.70°C. However, despite its lytic effect against such extremophiles as: T. thermophilus, Thermus flavus, Thermus parvatiensis, Thermus scotoductus, and Deinococcus radiodurans, PhiKo showed moderate antibacterial activity against mesophiles. Consequently, its protein sequence was searched for regions with potential antibacterial activity. A highly positively charged region was identified and synthetized (PhiKo105-133). The novel RAP-29 peptide lysed mesophilic strains of staphylococci and Gram-negative bacteria, reducing the number of cells by 3.7-7.1 log units and reaching the minimum inhibitory concentration values in the range of 2-31 µM. This peptide is unstructured in an aqueous solution but forms an α-helix in the presence of detergents. Moreover, it binds lipoteichoic acid and lipopolysaccharide, and causes depolarization of bacterial membranes. The RAP-29 peptide is a promising candidate for combating bacterial pathogens. The existence of this cryptic peptide testifies to a much wider panel of antimicrobial peptides than thought previously.

10.
Protein Sci ; 32(3): e4585, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36721347

RESUMEN

Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple-drug resistant bacteria. Here, the detailed functional and structural characterization of Thermus parvatiensis prophage peptidoglycan lytic amidase AmiP, a globular Amidase_3 type lytic enzyme adapted to high temperatures is presented. The sequence and structure comparison with homologous lytic amidases reveals the key adaptation traits that ensure the activity and stability of AmiP at high temperatures. The crystal structure determined at a resolution of 1.8 Å displays a compact α/ß-fold with multiple secondary structure elements omitted or shortened compared with protein structures of similar proteins. The functional characterization of AmiP demonstrates high efficiency of catalytic activity and broad substrate specificity toward thermophilic and mesophilic bacteria strains containing Orn-type or DAP-type peptidoglycan. The here presented AmiP constitutes the most thermoactive and ultrathermostable Amidase_3 type lytic enzyme biochemically characterized with a temperature optimum at 85°C. The extraordinary high melting temperature Tm 102.6°C confirms fold stability up to approximately 100°C. Furthermore, AmiP is shown to be more active over the alkaline pH range with pH optimum at pH 8.5 and tolerates NaCl up to 300 mM with the activity optimum at 25 mM NaCl. This set of beneficial characteristics suggests that AmiP can be further exploited in biotechnology.


Asunto(s)
Peptidoglicano , Profagos , Profagos/metabolismo , Peptidoglicano/metabolismo , Cloruro de Sodio , Dominio Catalítico , Modelos Moleculares , Amidohidrolasas/metabolismo , Pared Celular , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo
11.
Microbiol Spectr ; 10(5): e0165722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094301

RESUMEN

This work reports detailed characteristics of the antimicrobial peptide Intestinalin (P30), which is derived from the LysC enzyme of Clostridium intestinale strain URNW. The peptide shows a broader antibacterial spectrum than the parental enzyme, showing potent antimicrobial activity against clinical strains of Gram-positive staphylococci and Gram-negative pathogens and causing between 3.04 ± 0.12 log kill for Pseudomonas aeruginosa PAO1 and 7.10 ± 0.05 log kill for multidrug-resistant Acinetobacter baumannii KPD 581 at a 5 µM concentration. Moreover, Intestinalin (P30) prevents biofilm formation and destroys 24-h and 72-h biofilms formed by Acinetobacter baumannii CRAB KPD 205 (reduction levels of 4.28 and 2.62 log CFU/mL, respectively). The activity of Intestinalin is combined with both no cytotoxicity and little hemolytic effect against mammalian cells. The nuclear magnetic resonance and molecular dynamics (MD) data show a high tendency of Intestinalin to interact with the bacterial phospholipid cell membrane. Although positively charged, Intestinalin resides in the membrane and aggregates into small oligomers. Negatively charged phospholipids stabilize peptide oligomers to form water- and ion-permeable pores, disrupting the integrity of bacterial cell membranes. Experimental data showed that Intestinalin interacts with negatively charged lipoteichoic acid (logK based on isothermal titration calorimetry, 7.45 ± 0.44), causes membrane depolarization, and affects membrane integrity by forming large pores, all of which result in loss of bacterial viability. IMPORTANCE Antibiotic resistance is rising rapidly among pathogenic bacteria, becoming a global public health problem that threatens the effectiveness of therapies for many infectious diseases. In this respect, antimicrobial peptides appear to be an interesting alternative to combat bacterial pathogens. Here, we report the characteristics of an antimicrobial peptide (of 30 amino acids) derived from the clostridial LysC enzyme. The peptide showed killing activity against clinical strains of Gram-positive and Gram-negative pathogens. Experimental data and computational modeling showed that this peptide forms transmembrane pores, directly engaging the negatively charged phospholipids of the bacterial cell membrane. Consequently, dissipation of the electrochemical gradient across cell membranes affects many vital processes, such as ATP synthesis, motility, and transport of nutrients. This kind of dysfunction leads to the loss of bacterial viability. Our firm conviction is that the presented study will be a helpful resource in searching for novel antimicrobial peptides that could have the potential to replace conventional antibiotics.


Asunto(s)
Antibacterianos , Bacterias , Péptidos , Animales , Acinetobacter baumannii , Adenosina Trifosfato , Aminoácidos , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Membrana Celular , Mamíferos , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Fosfolípidos , Agua
12.
Biochim Biophys Acta ; 1783(1): 107-17, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18023287

RESUMEN

Mitochondrial DNA (mtDNA) is inherited as a protein-DNA complex (the nucleoid). Proteins associated with the nucleoid are not only components directly involved in maintenance and propagation of mtDNA but can also be bi-functional enzymes whose metabolic activities are not directly related to mtDNA stability. In the yeast Saccharomyces cerevisiae, one such enzyme, Ilv5p is required for branch chain amino acid biosynthesis but also associates with the nucleoid. Deletions of ILV5 lead not only to metabolic defects but also to destabilization of mtDNA. Further, minor overproduction of Ilv5p stabilizes mtDNA in strains lacking Abf2p, a major mtDNA binding and packaging protein. Here we show that Ilv5p binds double-stranded DNA in vitro and is unaffected by the presence of saturating concentrations of Abf2p. In cells lacking Abf2p the amount of Ilv5p associated with the nucleoid increases significantly and is proportional to the mitochondrial concentration of Ilv5p. Altogether, we conclude that direct binding of Ilv5p can aid in the maintenance and stabilization of mtDNA.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Oxidorreductasas de Alcohol/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Proteínas Mitocondriales/genética , Mutación/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triptófano/genética , Triptófano/metabolismo
13.
Viruses ; 11(7)2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31323845

RESUMEN

Bacteria that thrive in extreme conditions and the bacteriophages that infect them are sources of valuable enzymes resistant to denaturation at high temperatures. Many of these heat-stable proteins are useful for biotechnological applications; nevertheless, none have been utilized as antibacterial agents. Here, we demonstrate the bactericidal potential of Ts2631 endolysin from the extremophilic bacteriophage vB_Tsc2631, which infects Thermus scotoductus, against the alarming multidrug-resistant clinical strains of Acinetobacter baumannii, Pseudomonas aeruginosa and pathogens from the Enterobacteriaceae family. A 2-3.7 log reduction in the bacterial load was observed in antibacterial tests against A. baumannii and P. aeruginosa after 1.5 h. The Ts2631 activity was further enhanced by ethylenediaminetetraacetic acid (EDTA), a metal ion chelator (4.2 log reduction in carbapenem-resistant A. baumannii) and, to a lesser extent, by malic acid and citric acid (2.9 and 3.3 log reductions, respectively). The EDTA/Ts2631 combination reduced all pathogens of the Enterobacteriaceae family, particularly multidrug-resistant Citrobacter braakii, to levels below the detection limit (>6 log); these results indicate that Ts2631 endolysin could be useful to combat Gram-negative pathogens. The investigation of A. baumannii cells treated with Ts2631 endolysin variants under transmission electron and fluorescence microscopy demonstrates that the intrinsic antibacterial activity of Ts2631 endolysin is dependent on the presence of its N-terminal tail.


Asunto(s)
Antiinfecciosos/farmacología , Bacteriófagos/fisiología , Farmacorresistencia Bacteriana Múltiple , Endopeptidasas/genética , Thermus/efectos de los fármacos , Thermus/fisiología , Thermus/virología , Bacteriólisis , Bacteriófagos/ultraestructura , Endopeptidasas/metabolismo , Interacciones Huésped-Patógeno
14.
Sci Rep ; 9(1): 1261, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718611

RESUMEN

To escape from hosts after completing their life cycle, bacteriophages often use endolysins, which degrade bacterial peptidoglycan. While mesophilic phages have been extensively studied, their thermophilic counterparts are not well characterized. Here, we present a detailed analysis of the structure and function of Ts2631 endolysin from thermophilic phage vB_Tsc2631, which is a zinc-dependent amidase. The active site of Ts2631 consists of His30, Tyr58, His131 and Cys139, which are involved in Zn2+ coordination and catalysis. We found that the active site residues are necessary for lysis yet not crucial for peptidoglycan binding. To elucidate residues involved in the enzyme interaction with peptidoglycan, we tested single-residue substitution variants and identified Tyr60 and Lys70 as essential residues. Moreover, substitution of Cys80, abrogating disulfide bridge formation, inactivates Ts2631, as do substitutions of His31, Thr32 and Asn85 residues. The endolysin contains a positively charged N-terminal extension of 20 residues that can protrude from the remainder of the enzyme and is crucial for peptidoglycan binding. We show that the deletion of 20 residues from the N-terminus abolished the bacteriolytic activity of the enzyme. Because Ts2631 exhibits intrinsic antibacterial activity and unusual thermal stability, it is perfectly suited as a scaffold for the development of antimicrobial agents.


Asunto(s)
Bacteriófagos/fisiología , Endopeptidasas/metabolismo , Peptidoglicano/metabolismo , Thermus/virología , Proteínas Virales/metabolismo , Bacteriólisis , Bacteriófagos/química , Bacteriófagos/enzimología , Dominio Catalítico , Endopeptidasas/química , Modelos Moleculares , Conformación Proteica , Thermus/fisiología , Proteínas Virales/química
15.
Acta Crystallogr D Struct Biol ; 75(Pt 11): 1028-1039, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31692476

RESUMEN

As part of the Virus-X Consortium that aims to identify and characterize novel proteins and enzymes from bacteriophages and archaeal viruses, the genes of the putative lytic proteins XepA from Bacillus subtilis prophage PBSX and YomS from prophage SPß were cloned and the proteins were subsequently produced and functionally characterized. In order to elucidate the role and the molecular mechanism of XepA and YomS, the crystal structures of these proteins were solved at resolutions of 1.9 and 1.3 Å, respectively. XepA consists of two antiparallel ß-sandwich domains connected by a 30-amino-acid linker region. A pentamer of this protein adopts a unique dumbbell-shaped architecture consisting of two discs and a central tunnel. YomS (12.9 kDa per monomer), which is less than half the size of XepA (30.3 kDa), shows homology to the C-terminal part of XepA and exhibits a similar pentameric disc arrangement. Each ß-sandwich entity resembles the fold of typical cytoplasmic membrane-binding C2 domains. Only XepA exhibits distinct cytotoxic activity in vivo, suggesting that the N-terminal pentameric domain is essential for this biological activity. The biological and structural data presented here suggest that XepA disrupts the proton motive force of the cytoplasmatic membrane, thus supporting cell lysis.


Asunto(s)
Fagos de Bacillus/metabolismo , Profagos/metabolismo , Proteínas Virales/química , Bacillus subtilis/virología , Clonación Molecular , Cristalografía por Rayos X/métodos , Estructura Terciaria de Proteína
16.
PLoS One ; 12(1): e0169846, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28085908

RESUMEN

Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a straightforward and reliable method to quantify the plasmid copy number. Therefore we believe that the ddPCR designed in this study will be widely used for any plasmid copy number calculation in the future.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , ADN Bacteriano/genética , Escherichia coli/genética , Plásmidos/genética , Polimorfismo de Nucleótido Simple/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
17.
J Appl Genet ; 57(2): 239-49, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26337425

RESUMEN

The radA gene of the hyperthermophilic archaeon Pyrococcus woesei (Thermococcales) was cloned and overexpressed in Escherichia coli. The 1050-bp gene codes for a 349-amino-acid polypeptide with an M r of 38,397 which shows 100 % positional amino acid identity to Pyrococcus furiosus RadA and 27.1 % to the E. coli RecA protein. Recombinant RadA was overproduced in Escherichia coli as a His-tagged fusion protein and purified to electrophoretic homogeneity using a simple procedure consisting of ammonium sulfate precipitation and metal-affinity chromatography. In solution RadA exists as an undecamer (11-mer). The protein binds both to ssDNA and dsDNA. RadA has been found to be highly thermostable, it remains almost unaffected by a 4-h incubation at 94 °C. The addition of the RadA protein to either simplex or multiplex PCR assays, significantly improves the specificity of DNA amplification by eliminating non-specific products. Among applications tested the RadA protein proved to be useful in allelic discrimination assay of HADHA gene associated with long-chain 3-hydroxylacyl-CoA dehydrogenase deficiency that in infancy may lead to hypotonia, serious heart and liver problems and even sudden death.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas de Unión al ADN/metabolismo , Reacción en Cadena de la Polimerasa Multiplex , Pyrococcus/genética , Proteínas Arqueales/genética , Clonación Molecular , ADN de Archaea/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Calor , Datos de Secuencia Molecular , Estabilidad Proteica , Pyrococcus/enzimología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
PLoS One ; 10(9): e0137374, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26375388

RESUMEN

Phage vB_Tsc2631 infects the extremophilic bacterium Thermus scotoductus MAT2631 and uses the Ts2631 endolysin for the release of its progeny. The Ts2631 endolysin is the first endolysin from thermophilic bacteriophage with an experimentally validated catalytic site. In silico analysis and computational modelling of the Ts2631 endolysin structure revealed a conserved Zn2+ binding site (His30, Tyr58, His131 and Cys139) similar to Zn2+ binding site of eukaryotic peptidoglycan recognition proteins (PGRPs). We have shown that the Ts2631 endolysin lytic activity is dependent on divalent metal ions (Zn2+ and Ca2+). The Ts2631 endolysin substitution variants H30N, Y58F, H131N and C139S dramatically lost their antimicrobial activity, providing evidence for the role of the aforementioned residues in the lytic activity of the enzyme. The enzyme has proven to be not only thermoresistant, retaining 64.8% of its initial activity after 2 h at 95°C, but also highly thermodynamically stable (Tm = 99.82°C, ΔHcal = 4.58 × 10(4) cal mol(-1)). Substitutions of histidine residues (H30N and H131N) and a cysteine residue (C139S) resulted in variants aggregating at temperatures ≥75°C, indicating a significant role of these residues in enzyme thermostability. The substrate spectrum of the Ts2631 endolysin included extremophiles of the genus Thermus but also Gram-negative mesophiles, such as Escherichia coli, Salmonella panama, Pseudomonas fluorescens and Serratia marcescens. The broad substrate spectrum and high thermostability of this endolysin makes it a good candidate for use as an antimicrobial agent to combat Gram-negative pathogens.


Asunto(s)
Bacteriófagos/enzimología , Dominio Catalítico , Endopeptidasas/química , Endopeptidasas/metabolismo , Thermus/virología , Secuencia de Aminoácidos , Bacteriófagos/fisiología , Cationes Bivalentes/farmacología , Estabilidad de Enzimas , Modelos Moleculares , Datos de Secuencia Molecular , Cloruro de Sodio/farmacología , Especificidad por Sustrato , Temperatura
19.
J Biotechnol ; 182-183: 1-10, 2014 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-24786823

RESUMEN

The recA gene of newly discovered Thermus thermophilus MAT72 phage Tt72 (Myoviridae) was cloned and overexpressed in Escherichia coli. The 1020-bp gene codes for a 339-amino-acid polypeptide with an Mr of 38,155 which shows 38.7% positional identity to the E. coli RecA protein. When expressed in E. coli, the Tt72 recA gene did not confer the ability to complement the ultraviolet light (254nm) sensitivity of an E. coli recA mutant. Tt72 RecA protein has been purified with good yield to catalytic and electrophoretic homogeneity using a three-step chromatography procedure. Biochemical characterization indicated that the protein can pair and promote ATP-dependent strand exchange reaction resulting in formation of a heteroduplex DNA at 60°C under conditions otherwise optimal for E. coli RecA. When the Tt72 RecA protein was included in a standard PCR-based DNA amplification reaction, the specificity of the PCR assays was significantly improved by eliminating non-specific products.


Asunto(s)
Myoviridae/genética , Reacción en Cadena de la Polimerasa/métodos , Rec A Recombinasas/genética , Proteínas Recombinantes/genética , Thermus thermophilus/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , ADN Viral/genética , Escherichia coli/genética , Datos de Secuencia Molecular , Rec A Recombinasas/aislamiento & purificación , Rec A Recombinasas/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Proteínas Virales/aislamiento & purificación , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA