Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Neurosci Res ; 97(12): 1503-1514, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31489687

RESUMEN

The striatum plays a central role in guiding numerous complex behaviors, ranging from motor control to action selection and reward learning. The diverse responsibilities of the striatum are reflected by the complexity of its organization. In this review, we will summarize what is currently known about the compartmental layout of the striatum, an organizational principle that is crucial for allowing the striatum to guide such a diverse array of behaviors. We will focus on the anatomical and functional properties of striosome (patch) and matrix compartments of the striatum, and how the engagement of these compartments is uniquely controlled by their afferents, intrinsic properties, and neuromodulation. We will give examples of how advances in technology have opened the door to functionally dissecting the striatum's compartmental design, and close by offering thoughts on the future and relevance for human disease.


Asunto(s)
Cuerpo Estriado/fisiología , Neuronas/fisiología , Acetilcolina/fisiología , Animales , Encéfalo/fisiología , Dopamina/fisiología , Ácido Glutámico/fisiología , Humanos , Modelos Neurológicos , Vías Nerviosas/fisiología , Receptores Opioides mu/fisiología , Sustancia P/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología
2.
J Neurosci Res ; 97(4): 377-390, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30506706

RESUMEN

Progress in basic and clinical research is slowed when researchers fail to provide a complete and accurate report of how a study was designed, executed, and the results analyzed. Publishing rigorous scientific research involves a full description of the methods, materials, procedures, and outcomes. Investigators may fail to provide a complete description of how their study was designed and executed because they may not know how to accurately report the information or the mechanisms are not in place to facilitate transparent reporting. Here, we provide an overview of how authors can write manuscripts in a transparent and thorough manner. We introduce a set of reporting criteria that can be used for publishing, including recommendations on reporting the experimental design and statistical approaches. We also discuss how to accurately visualize the results and provide recommendations for peer reviewers to enhance rigor and transparency. Incorporating transparency practices into research manuscripts will significantly improve the reproducibility of the results by independent laboratories.


Asunto(s)
Investigación Biomédica/normas , Edición/normas , Exactitud de los Datos , Humanos , Mejoramiento de la Calidad , Reproducibilidad de los Resultados , Proyectos de Investigación/normas
3.
J Neurosci ; 32(27): 9124-32, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22764222

RESUMEN

Mice carrying bacterial artificial chromosome (BAC) transgenes have become important tools for neuroscientists, providing a powerful means of dissecting complex neural circuits in the brain. Recently, it was reported that one popular line of these mice--mice possessing a BAC transgene with a D(2) dopamine receptor (Drd2) promoter construct coupled to an enhanced green fluorescent protein (eGFP) reporter--had abnormal striatal gene expression, physiology, and motor behavior. Unlike most of the work using BAC mice, this interesting study relied upon mice backcrossed on the outbred Swiss Webster (SW) strain that were homozygous for the Drd2-eGFP BAC transgene. The experiments reported here were conducted to determine whether mouse strain or zygosity was a factor in the reported abnormalities. As reported, SW mice were very sensitive to transgene expression. However, in more commonly used inbred strains of mice (C57BL/6, FVB/N) that were hemizygous for the transgene, the Drd2-eGFP BAC transgene did not alter striatal gene expression, physiology, or motor behavior. Thus, the use of inbred strains of mice that are hemizygous for the Drd2 BAC transgene provides a reliable tool for studying basal ganglia function.


Asunto(s)
Cuerpo Estriado/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Ratones Transgénicos/genética , Fenotipo , Receptores de Dopamina D2/genética , Animales , Animales no Consanguíneos , Enfermedades de los Ganglios Basales/genética , Enfermedades de los Ganglios Basales/metabolismo , Enfermedades de los Ganglios Basales/fisiopatología , Conducta Animal/fisiología , Cromosomas Artificiales Bacterianos/genética , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Femenino , Hemicigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Actividad Motora/genética , Especificidad de la Especie
4.
J Neurophysiol ; 110(10): 2325-36, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23966676

RESUMEN

The induction of corticostriatal long-term depression (LTD) in striatal spiny projection neurons (SPNs) requires coactivation of group I metabotropic glutamate receptors (mGluRs) and L-type Ca(2+) channels. This combination leads to the postsynaptic production of endocannabinoids that act presynaptically to reduce glutamate release. Although the necessity of coactivation is agreed upon, why it is necessary in physiologically meaningful settings is not. The studies described here attempt to answer this question by using two-photon laser scanning microscopy and patch-clamp electrophysiology to interrogate the dendritic synapses of SPNs in ex vivo brain slices from transgenic mice. These experiments revealed that postsynaptic action potentials induce robust ryanodine receptor (RYR)-dependent Ca(2+)-induced-Ca(2+) release (CICR) in SPN dendritic spines. Depolarization-induced opening of voltage-gated Ca(2+) channels was necessary for CICR. CICR was more robust in indirect pathway SPNs than in direct pathway SPNs, particularly in distal dendrites. Although it did not increase intracellular Ca(2+) concentration alone, group I mGluR activation enhanced CICR and slowed Ca(2+) clearance, extending the activity-evoked intraspine transient. The mGluR modulation of CICR was sensitive to antagonism of inositol trisphosphate receptors, RYRs, src kinase, and Cav1.3 L-type Ca(2+) channels. Uncaging glutamate at individual spines effectively activated mGluRs and facilitated CICR induced by back-propagating action potentials. Disrupting CICR by antagonizing RYRs prevented the induction of corticostriatal LTD with spike-timing protocols. In contrast, mGluRs had no effect on the induction of long-term potentiation. Taken together, these results make clearer how coactivation of mGluRs and L-type Ca(2+) channels promotes the induction of activity-dependent LTD in SPNs.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Cuerpo Estriado/fisiología , Dendritas/metabolismo , Neuronas/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Femenino , Masculino , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Transgénicos , Receptores Dopaminérgicos/genética , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Sinapsis/fisiología
5.
Cell Rep ; 42(11): 113384, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37934666

RESUMEN

Deletion of the obsessive-compulsive disorder (OCD)-associated gene SAP90/PSD-95-associated protein 3 (Sapap3), which encodes a postsynaptic anchoring protein at corticostriatal synapses, causes OCD-like motor behaviors in mice. While corticostriatal synaptic dysfunction is central to this phenotype, the striatum efficiently adapts to pathological changes, often in ways that expand upon the original circuit impairment. Here, we show that SAPAP3 deletion causes non-synaptic and pathway-specific alterations in dorsolateral striatum circuit function. While somatic excitability was elevated in striatal projection neurons (SPNs), dendritic excitability was exclusively enhanced in direct pathway SPNs. Layered on top of this, cholinergic modulation was altered in opposing ways: striatal cholinergic interneuron density and evoked acetylcholine release were elevated, while basal muscarinic modulation of SPNs was reduced. These data describe how SAPAP3 deletion alters the striatal landscape upon which impaired corticostriatal inputs will act, offering a basis for how pathological synaptic integration and unbalanced striatal output underlying OCD-like behaviors may be shaped.


Asunto(s)
Proteínas del Tejido Nervioso , Trastorno Obsesivo Compulsivo , Ratones , Animales , Proteínas del Tejido Nervioso/metabolismo , Cuerpo Estriado/metabolismo , Neostriado/metabolismo , Trastorno Obsesivo Compulsivo/genética , Colinérgicos/metabolismo
6.
Elife ; 112022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35579422

RESUMEN

Striatal spiny projection neurons (SPNs) transform convergent excitatory corticostriatal inputs into an inhibitory signal that shapes basal ganglia output. This process is fine-tuned by striatal GABAergic interneurons (GINs), which receive overlapping cortical inputs and mediate rapid corticostriatal feedforward inhibition of SPNs. Adding another level of control, cholinergic interneurons (CINs), which are also vigorously activated by corticostriatal excitation, can disynaptically inhibit SPNs by activating α4ß2 nicotinic acetylcholine receptors (nAChRs) on various GINs. Measurements of this disynaptic inhibitory pathway, however, indicate that it is too slow to compete with direct GIN-mediated feedforward inhibition. Moreover, functional nAChRs are also present on populations of GINs that respond only weakly to phasic activation of CINs, such as parvalbumin-positive fast-spiking interneurons (PV-FSIs), making the overall role of nAChRs in shaping striatal synaptic integration unclear. Using acute striatal slices from mice we show that upon synchronous optogenetic activation of corticostriatal projections blockade of α4ß2 nAChRs shortened SPN spike latencies and increased postsynaptic depolarizations. The nAChR-dependent inhibition was mediated by downstream GABA release, and data suggest that the GABA source was not limited to GINs that respond strongly to phasic CIN activation. In particular, the observed decrease in spike latency caused by nAChR blockade was associated with a diminished frequency of spontaneous inhibitory postsynaptic currents in SPNs, a parallel hyperpolarization of PV-FSIs, and was occluded by pharmacologically preventing cortical activation of PV-FSIs. Taken together, we describe a role for tonic (as opposed to phasic) activation of nAChRs in striatal function. We conclude that tonic activation of nAChRs by CINs maintains a GABAergic brake on cortically-driven striatal output by 'priming' feedforward inhibition, a process that may shape SPN spike timing, striatal processing, and synaptic plasticity.


Asunto(s)
Cuerpo Estriado , Nicotina , Animales , Colinérgicos/metabolismo , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Ratones , Neuronas/metabolismo , Nicotina/metabolismo , Ácido gamma-Aminobutírico/metabolismo
7.
Nat Commun ; 13(1): 5942, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209150

RESUMEN

The auditory striatum, the tail portion of dorsal striatum in basal ganglia, is implicated in perceptual decision-making, transforming auditory stimuli to action outcomes. Despite its known connections to diverse neurological conditions, the dopaminergic modulation of sensory striatal neuronal activity and its behavioral influences remain unknown. We demonstrated that the optogenetic inhibition of dopaminergic projections from the substantia nigra pars compacta to the auditory striatum specifically impairs mouse choice performance but not movement in an auditory frequency discrimination task. In vivo dopamine and calcium imaging in freely behaving mice revealed that this dopaminergic projection modulates striatal tone representations, and tone-evoked striatal dopamine release inversely correlated with the evidence strength of tones. Optogenetic inhibition of D1-receptor expressing neurons and pharmacological inhibition of D1 receptors in the auditory striatum dampened choice performance accuracy. Our study uncovers a phasic mechanism within the nigrostriatal system that regulates auditory decisions by modulating ongoing auditory perception.


Asunto(s)
Dopamina , Sustancia Negra , Animales , Percepción Auditiva , Calcio/metabolismo , Cuerpo Estriado/fisiología , Dopamina/metabolismo , Ratones , Receptores de Dopamina D1/metabolismo , Sustancia Negra/metabolismo
8.
Neuron ; 108(6): 1091-1102.e5, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33080228

RESUMEN

Corticostriatal synaptic integration is partitioned among striosome (patch) and matrix compartments of the dorsal striatum, allowing compartmentalized control of discrete aspects of behavior. Despite the significance of such organization, it's unclear how compartment-specific striatal output is dynamically achieved, particularly considering new evidence that overlap of afferents is substantial. We show that dopamine oppositely shapes responses to convergent excitatory inputs in mouse striosome and matrix striatal spiny projection neurons (SPNs). Activation of postsynaptic D1 dopamine receptors promoted the generation of long-lasting synaptically evoked "up-states" in matrix SPNs but opposed it in striosomes, which were more excitable under basal conditions. Differences in dopaminergic modulation were mediated, in part, by dendritic voltage-gated calcium channels (VGCCs): pharmacological manipulation of L-type VGCCs reversed compartment-specific responses to D1 receptor activation. These results support a novel mechanism for the selection of striatal circuit components, where fluctuating levels of dopamine shift the balance of compartment-specific striatal output.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dendritas/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de Dopamina D1/antagonistas & inhibidores , Animales , Benzazepinas/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Cuerpo Estriado/metabolismo , Dendritas/metabolismo , Antagonistas de Dopamina/farmacología , Isradipino/farmacología , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
9.
J Neurosci ; 28(45): 11603-14, 2008 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-18987196

RESUMEN

The loss of striatal dopamine (DA) in Parkinson's disease (PD) models triggers a cell-type-specific reduction in the density of dendritic spines in D(2) receptor-expressing striatopallidal medium spiny neurons (D(2) MSNs). How the intrinsic properties of MSN dendrites, where the vast majority of DA receptors are found, contribute to this adaptation is not clear. To address this question, two-photon laser scanning microscopy (2PLSM) was performed in patch-clamped mouse MSNs identified in striatal slices by expression of green fluorescent protein (eGFP) controlled by DA receptor promoters. These studies revealed that single backpropagating action potentials (bAPs) produced more reliable elevations in cytosolic Ca(2+) concentration at distal dendritic locations in D(2) MSNs than at similar locations in D(1) receptor-expressing striatonigral MSNs (D(1) MSNs). In both cell types, the dendritic Ca(2+) entry elicited by bAPs was enhanced by pharmacological blockade of Kv4, but not Kv1 K(+) channels. Local application of DA depressed dendritic bAP-evoked Ca(2+) transients, whereas application of ACh increased these Ca(2+) transients in D(2) MSNs, but not in D(1) MSNs. After DA depletion, bAP-evoked Ca(2+) transients were enhanced in distal dendrites and spines in D(2) MSNs. Together, these results suggest that normally D(2) MSN dendrites are more excitable than those of D(1) MSNs and that DA depletion exaggerates this asymmetry, potentially contributing to adaptations in PD models.


Asunto(s)
Potenciales de Acción/fisiología , Cuerpo Estriado/patología , Dendritas/fisiología , Neuronas , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/efectos de la radiación , Análisis de Varianza , Enfermedades de los Animales , Animales , Animales Recién Nacidos , Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Cocultivo/métodos , Simulación por Computador , Dendritas/patología , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal/métodos , Modelos Neurológicos , Neuronas/clasificación , Neuronas/patología , Neuronas/ultraestructura , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Técnicas de Placa-Clamp/métodos , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
10.
Neuroscientist ; 25(4): 359-379, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30379121

RESUMEN

The basal ganglia are an intricately connected assembly of subcortical nuclei, forming the core of an adaptive network connecting cortical and thalamic circuits. For nearly three decades, researchers and medical practitioners have conceptualized how the basal ganglia circuit works, and how its pathology underlies motor disorders such as Parkinson's and Huntington's diseases, using what is often referred to as the "box-and-arrow model": a circuit diagram showing the broad strokes of basal ganglia connectivity and the pathological increases and decreases in the weights of specific connections that occur in disease. While this model still has great utility and has led to groundbreaking strategies to treat motor disorders, our evolving knowledge of basal ganglia function has made it clear that this classic model has several shortcomings that severely limit its predictive and descriptive abilities. In this review, we will focus on the striatum, the main input nucleus of the basal ganglia. We describe recent advances in our understanding of the rich microcircuitry and plastic capabilities of the striatum, factors not captured by the original box-and-arrow model, and provide examples of how such advances inform our current understanding of the circuit pathologies underlying motor disorders.


Asunto(s)
Ganglios Basales/fisiopatología , Interneuronas/fisiología , Modelos Neurológicos , Trastornos del Movimiento/fisiopatología , Acetilcolina/fisiología , Animales , Cuerpo Estriado/fisiopatología , Dopamina/fisiología , Neuronas GABAérgicas/fisiología , Humanos , Vías Nerviosas/fisiopatología , Plasticidad Neuronal/fisiología
12.
eNeuro ; 6(5)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31541002

RESUMEN

The GABAergic medium-size spiny neuron (MSN), the striatal output neuron, may be classified into striosome, also known as patch, and matrix, based on neurochemical differences between the two compartments. At this time, little is known regarding the regulation of the development of the two compartments. Nr4a1, primarily described as a nuclear receptor/immediate early gene involved in the homeostasis of the dopaminergic system, is a striosomal marker. Using Nr4a1-overexpressing and Nr4a1-null mice, we sought to determine whether Nr4a1 is necessary and/or sufficient for striosome development. We report that in vivo and in vitro, Nr4a1 and Oprm1 mRNA levels are correlated. In the absence of Nr4a, there is a decrease in the percentage of striatal surface area occupied by striosomes. Alterations in Nr4a1 expression leads to dysregulation of multiple mRNAs of members of the dopamine receptor D1 signal transduction system. Constitutive overexpression of Nr4a1 decreases both the induction of phosphorylation of ERK after a single cocaine exposure and locomotor sensitization following chronic cocaine exposure. Nr4a1 overexpression increases MSN excitability but reduces MSN long-term potentiation. In the resting state, type 5 adenylyl cyclase (AC5) activity is normal, but the ability of AC5 to be activated by Drd1 G-protein-coupled receptor inputs is decreased. Our results support a role for Nr4a1 in determination of striatal patch/matrix structure and in regulation of dopaminoceptive neuronal function.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/biosíntesis , Receptores de Dopamina D1/biosíntesis , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Cocaína/farmacología , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Humanos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas/efectos de los fármacos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/deficiencia , Transducción de Señal/efectos de los fármacos
13.
Cancer Rep (Hoboken) ; 2(1): e1150, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-32721132

RESUMEN

Progress in basic and clinical research is slowed when researchers fail to provide a complete and accurate report of how a study was designed, executed, and the results analyzed. Publishing rigorous scientific research involves a full description of the methods, materials, procedures, and outcomes. Investigators may fail to provide a complete description of how their study was designed and executed because they may not know how to accurately report the information or the mechanisms are not in place to facilitate transparent reporting. Here, we provide an overview of how authors can write manuscripts in a transparent and thorough manner. We introduce a set of reporting criteria that can be used for publishing, including recommendations on reporting the experimental design and statistical approaches. We also discuss how to accurately visualize the results and provide recommendations for peer reviewers to enhance rigor and transparency. Incorporating transparency practices into research manuscripts will significantly improve the reproducibility of the results by independent laboratories. SIGNIFICANCE: Failure to replicate research findings often arises from errors in the experimental design and statistical approaches. By providing a full account of the experimental design, procedures, and statistical approaches, researchers can address the reproducibility crisis and improve the sustainability of research outcomes. In this piece, we discuss the key issues leading to irreproducibility and provide general approaches to improving transparency and rigor in reporting, which could assist in making research more reproducible.


Asunto(s)
Investigación Biomédica/estadística & datos numéricos , Revisión de la Investigación por Pares/métodos , Edición/normas , Mejoramiento de la Calidad/normas , Proyectos de Investigación/normas , Investigadores/normas , Exactitud de los Datos , Políticas Editoriales , Humanos , Reproducibilidad de los Resultados
14.
Brain Behav ; 9(1): e01141, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30506879

RESUMEN

Progress in basic and clinical research is slowed when researchers fail to provide a complete and accurate report of how a study was designed, executed, and the results analyzed. Publishing rigorous scientific research involves a full description of the methods, materials, procedures, and outcomes. Investigators may fail to provide a complete description of how their study was designed and executed because they may not know how to accurately report the information or the mechanisms are not in place to facilitate transparent reporting. Here, we provide an overview of how authors can write manuscripts in a transparent and thorough manner. We introduce a set of reporting criteria that can be used for publishing, including recommendations on reporting the experimental design and statistical approaches. We also discuss how to accurately visualize the results and provide recommendations for peer reviewers to enhance rigor and transparency. Incorporating transparency practices into research manuscripts will significantly improve the reproducibility of the results by independent laboratories.


Asunto(s)
Investigación Biomédica/métodos , Edición/normas , Proyectos de Investigación/normas , Exactitud de los Datos , Humanos , Mejoramiento de la Calidad , Reproducibilidad de los Resultados
15.
Elife ; 82019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31017573

RESUMEN

Huntington's disease (HD) is initially characterized by an inability to suppress unwanted movements, a deficit attributable to impaired synaptic activation of striatal indirect pathway spiny projection neurons (iSPNs). To better understand the mechanisms underlying this deficit, striatal neurons in ex vivo brain slices from mouse genetic models of HD were studied using electrophysiological, optical and biochemical approaches. Distal dendrites of iSPNs from symptomatic HD mice were hypoexcitable, a change that was attributable to increased association of dendritic Kv4 potassium channels with auxiliary KChIP subunits. This association was negatively modulated by TrkB receptor signaling. Dendritic excitability of HD iSPNs was rescued by knocking-down expression of Kv4 channels, by disrupting KChIP binding, by restoring TrkB receptor signaling or by lowering mutant-Htt (mHtt) levels with a zinc finger protein. Collectively, these studies demonstrate that mHtt induces reversible alterations in the dendritic excitability of iSPNs that could contribute to the motor symptoms of HD.


Asunto(s)
Cuerpo Estriado/patología , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Proteínas Mutantes/metabolismo , Neuronas/metabolismo , Canales de Potasio Shal/metabolismo , Animales , Modelos Animales de Enfermedad , Proteína Huntingtina/genética , Ratones , Proteínas Mutantes/genética
16.
Prog Brain Res ; 160: 261-72, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17499119

RESUMEN

Fast-spiking GABAergic interneurons represent a very small portion of striatal neurons, yet they play a critical role in modulating cortical input and mediating inhibition of striatal medium-sized spiny projection neurons. Considering their pivotal role in the adult striatum, it is of importance to determine when during development these neurons acquire their characteristic properties and function. In this review we describe recent work from our laboratories indicating that fast-spiking GABAergic interneurons are under stronger cortical control than efferent neurons at postnatal day 12 but mature considerably between postnatal days 12-19 in the rat striatum. During this time period, their molecular development is under the control of GABAergic and cholinergic mechanisms. Thus, fast-spiking interneurons are poised to influence striatal function and perhaps development during the postnatal period in rats, and their properties could be influenced by commonly used pharmacological agents during a protracted developmental window. These findings point to the need for future research to better understand the functional maturation of this critical population of striatal GABAergic neurons, and the consequences of abnormal maturation of these cells.


Asunto(s)
Potenciales de Acción/fisiología , Diferenciación Celular/fisiología , Interneuronas/metabolismo , Neostriado/crecimiento & desarrollo , Vías Nerviosas/crecimiento & desarrollo , Ácido gamma-Aminobutírico/metabolismo , Acetilcolina/metabolismo , Animales , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Humanos , Interneuronas/citología , Neostriado/citología , Neostriado/metabolismo , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Transmisión Sináptica/fisiología
17.
Curr Opin Neurobiol ; 33: 53-62, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25700146

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder that profoundly impairs corticostriatal information processing. While late stage pathology includes cell death, the appearance of motor symptoms parallels more subtle changes in neuronal function and synaptic integration. Because of the difficulty in modeling the disease and the complexity of the corticostriatal network, understanding the mechanisms driving pathology has been slow to develop. In recent years, advances in animal models and network analysis tools have begun to shed light on the circuit-specific deficits. These studies have revealed a progressive impairment of corticostriatal synaptic signaling in subpopulations of striatal neurons, turning classical excitotoxicity models of HD upside down. Disrupted brain derived neurotrophic factor signaling appears to be a key factor in this decline.


Asunto(s)
Adaptación Fisiológica/fisiología , Corteza Cerebral/fisiopatología , Cuerpo Estriado/fisiopatología , Enfermedad de Huntington/patología , Sinapsis/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Factor Neurotrófico Derivado del Encéfalo/genética , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Ratones , Ratones Noqueados
18.
Cell Rep ; 13(7): 1336-1342, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26549446

RESUMEN

Experience-driven plasticity of glutamatergic synapses on striatal spiny projection neurons (SPNs) is thought to be essential to goal-directed behavior and habit formation. One major form of striatal plasticity, long-term depression (LTD), has long appeared to be expressed only pre-synaptically. Contrary to this view, nitric oxide (NO) generated by striatal interneurons was found to induce a post-synaptically expressed form of LTD at SPN glutamatergic synapses. This form of LTD was dependent on signaling through guanylyl cyclase and protein kinase G, both of which are abundantly expressed by SPNs. NO-LTD was unaffected by local synaptic activity or antagonism of endocannabinoid (eCb) and dopamine receptors, all of which modulate canonical, pre-synaptic LTD. Moreover, NO signaling disrupted induction of this canonical LTD by inhibiting dendritic Ca(2+) channels regulating eCb synthesis. These results establish an interneuron-dependent, heterosynaptic form of post-synaptic LTD that could act to promote stability of the striatal network during learning.


Asunto(s)
Interneuronas/fisiología , Depresión Sináptica a Largo Plazo , Óxido Nítrico/fisiología , Animales , Potenciales Postsinápticos Excitadores , Ácido Glutámico/fisiología , Ratones , Optogenética , Sinapsis
19.
Neuron ; 88(4): 762-73, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26590347

RESUMEN

A balanced interaction between dopaminergic and cholinergic signaling in the striatum is critical to goal-directed behavior. But how this interaction modulates corticostriatal synaptic plasticity underlying learned actions remains unclear--particularly in direct-pathway spiny projection neurons (dSPNs). Our studies show that in dSPNs, endogenous cholinergic signaling through M4 muscarinic receptors (M4Rs) promoted long-term depression of corticostriatal glutamatergic synapses, by suppressing regulator of G protein signaling type 4 (RGS4) activity, and blocked D1 dopamine receptor dependent long-term potentiation (LTP). Furthermore, in a mouse model of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in Parkinson's disease (PD), boosting M4R signaling with positive allosteric modulator (PAM) blocked aberrant LTP in dSPNs, enabled LTP reversal, and attenuated dyskinetic behaviors. An M4R PAM also was effective in a primate LID model. Taken together, these studies identify an important signaling pathway controlling striatal synaptic plasticity and point to a novel pharmacological strategy for alleviating LID in PD patients.


Asunto(s)
Dopaminérgicos/toxicidad , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/toxicidad , Neostriado/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Proteínas RGS/metabolismo , Receptor Muscarínico M4/metabolismo , Regulación Alostérica , Animales , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/etiología , Ácido Glutámico , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Macaca mulatta , Ratones , Ratones Transgénicos , Neostriado/metabolismo , Neuronas , Transducción de Señal
20.
Methods Mol Biol ; 1183: 171-82, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25023308

RESUMEN

As the main input nucleus to the basal ganglia, the striatum is responsible for receiving and integrating highly convergent afferents to ultimately guide action selection and movement initiation. Although the majority of this synaptic integration occurs in the dendrites of striatal projection neurons (SPNs), their thin diameter makes them inaccessible with traditional recording electrodes. Recent advances in optical imaging technologies have allowed us and others to start lifting the veil on the mechanisms governing synaptic integration in the striatum by enabling direct dendritic measurements and manipulations. Here we describe how our lab has approached combining 2-photon imaging and photolysis with electrophysiological recordings to study dendritic excitability and synaptic integration in the striatum.


Asunto(s)
Cuerpo Estriado/fisiología , Dendritas/fisiología , Imagen Óptica/métodos , Técnicas de Placa-Clamp/métodos , Sinapsis/fisiología , Animales , Calcio/análisis , Calcio/metabolismo , Dendritas/ultraestructura , Electrofisiología/instrumentación , Electrofisiología/métodos , Diseño de Equipo , Ácido Glutámico/análisis , Ácido Glutámico/metabolismo , Humanos , Rayos Láser , Microscopía/instrumentación , Microscopía/métodos , Imagen Óptica/instrumentación , Técnicas de Placa-Clamp/instrumentación , Fotólisis , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA