Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JCI Insight ; 8(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36951952

RESUMEN

BACKGROUNDDue to their immunoregulatory and tissue regenerative features, mesenchymal stromal cells (MSCs) are a promising novel tool for the management of ulcerative proctitis (UP). Here we report on a phase IIa clinical study that evaluated the impact of local MSC therapy on UP.METHODSThirteen refractory UP patients, with an endoscopic Mayo score (EMS) of 2 or 3, were included. Seven patients received 20-40 million allogeneic MSCs (cohort 1), while 6 patients received 40-80 million MSCs (cohort 2). Adverse events (AEs) were assessed at baseline and on weeks 2, 6, 12, and 24. Clinical, endoscopic, and biochemical parameters were assessed at baseline and on weeks 2 and 6. Furthermore, we evaluated the engraftment of MSCs, the presence of donor-specific human leukocyte antigen (HLA) antibodies (DSAs), and we determined the impact of MSC therapy on the local immune compartment.RESULTSNo serious AEs were observed. The clinical Mayo score was significantly improved on weeks 2 and 6, and the EMS was significantly improved on week 6, compared with baseline. On week 6, donor MSCs were still detectable in rectal biopsies from 4 of 9 patients and DSAs against both HLA class I and class II were found. Mass cytometry showed a reduction in activated CD8+ T cells and CD16+ monocytes and an enrichment in mononuclear phagocytes and natural killer cells in biopsies after local MSC therapy.CONCLUSIONLocal administration of allogeneic MSCs is safe, tolerable, and feasible for treatment of refractory UP and shows encouraging signs of clinical efficacy and modulation of local immune responses. This sets the stage for larger clinical trials.TRIAL REGISTRATIONEU Clinical Trials Register (EudraCT, 2017-003524-75) and the Dutch Trial Register (NTR7205).FUNDINGECCO grant 2020.


Asunto(s)
Colitis Ulcerosa , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Proctitis , Humanos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Colitis Ulcerosa/terapia , Antígenos de Histocompatibilidad Clase I , Proctitis/terapia
2.
Stem Cells Transl Med ; 11(9): 932-945, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35984079

RESUMEN

Locally applied mesenchymal stromal cells (MSCs) have the capacity to promote the healing of perianal fistulas in Crohn's disease (CD) and are under clinical development for the treatment of proctitis in ulcerative colitis (UC). Despite these clinical advances, the mechanism of action of local MSC therapy in inflammatory bowel disease (IBD) is largely unknown. We hypothesized that the local cytokine environment in IBD patients affects the immunomodulatory properties of MSCs. To evaluate this, 11 cytokines were analyzed in inflamed tissues obtained from CD and UC patients. Based on the identified cytokine profiles 4 distinct cytokine mixtures that mimic various inflammatory IBD environments were established. Next, MSCs were cultured in the presence of either of these 4 cytokine mixtures after which the expression of immunomodulatory and tissue regenerative molecules and the capacity of MSCs to modulate T-cell proliferation and dendritic cell (DC) differentiation were assessed. Our data show that MSCs respond, in a cytokine-specific manner, by upregulation of immunomodulatory and tissue regenerative molecules, including cyclooxygenase-2, indoleamine 2,3-dioxygenase, and transforming growth factor-ß1. Functional studies indicate that MSCs exposed to a cytokine profile mimicking one of the 2 UC cytokine milieus were less effective in inhibition of DC differentiation. In conclusion, our data indicate that cytokine mixes mimicking the local cytokine milieus of inflamed UC colonic or CD fistulas tissues can differentially affect the immunomodulatory and tissue regenerative characteristics of MSCs. These data support the hypothesis that the local intestinal cytokine milieu serves as a critical factor in the efficacy of local MSC treatment.


Asunto(s)
Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Células Madre Mesenquimatosas , Enfermedad de Crohn/terapia , Ciclooxigenasa 2 , Citocinas/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Enfermedades Inflamatorias del Intestino/terapia , Fenotipo , Factor de Crecimiento Transformador beta1/metabolismo
3.
Front Immunol ; 13: 966067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405760

RESUMEN

Inflammatory bowel disease (IBD) is a chronic relapsing inflammation of the intestinal tract with currently not well-understood pathogenesis. In addition to the involvement of immune cells, increasing studies show an important role for fibroblasts in the pathogenesis of IBD. Previous work showed that glycolysis is the preferred energy source for fibroblasts in fibrotic diseases. 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) is a key kinase supporting glycolysis. Increased expression of PFKFB3 in several cancers and inflammatory diseases has been previously reported, but the metabolic status of fibroblasts and the role of PFKFB3 in patients with IBD are currently unknown. Therefore, in this study, we evaluated the role of glycolysis and PFKFB3 expression in IBD. Single-sample gene set enrichment analysis (ssGSEA) revealed that glycolysis was significantly higher in IBD intestinal samples, compared to healthy controls, which was confirmed in the validation cohorts of IBD patients. Single-cell sequencing data indicated that PFKFB3 expression was higher in IBD-derived stromal cells. In vitro, PFKFB3 expression in IBD-derived fibroblasts was increased after the stimulation with pro-inflammatory cytokines. Using seahorse real-time cell metabolic analysis, inflamed fibroblasts were shown to have a higher extracellular acidification rate and a lower oxygen consumption rate, which could be reversed by inhibition of JAK/STAT pathway. Furthermore, increased expression of pro-inflammatory cytokines and chemokines in fibroblasts could be reverted by PFK15, a specific inhibitor of PFKFB3. In vivo experiments showed that PFK15 reduced the severity of dextran sulfate sodium (DSS)- and Tcell transfer induced colitis, which was accompanied by a reduction in immune cell infiltration in the intestines. These findings suggest that increased stromal PFKFB3 expression contributes to inflammation and the pathological function of fibroblasts in IBD. Inhibition of PFKFB3 suppressed their inflammatory characteristics.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Quinasas Janus , Humanos , Transducción de Señal , Factores de Transcripción STAT , Glucólisis/fisiología , Inflamación , Citocinas , Fosfofructoquinasa-2/genética
4.
J Immunother Cancer ; 10(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264435

RESUMEN

BACKGROUND: Cross-presentation of exogenous antigens in HLA-class I molecules by professional antigen presenting cells (APCs) is crucial for CD8+ T cell function. Recent murine studies show that several non-professional APCs, including cancer-associated fibroblasts (CAFs) also possess this capacity. Whether human CAFs are able to cross-present exogenous antigen, which molecular pathways are involved in this process and how this ultimately affects tumor-specific CD8+ T cell function is unknown. METHODS: In this study, we investigated the ability of human colorectal cancer (CRC)-derived CAFs to cross-present neoantigen-derived synthetic long peptides (SLPs), corresponding to tumor-derived mutant peptides, and how this affects tumor-specific T-cell function. Processing of the SLP was studied by targeting components of the cross-presentation machinery through CRISPR/Cas9 and siRNA-mediated genetic ablation to identify the key molecules involved in fibroblast-mediated cross-presentation. Multispectral flow cytometry and killing assays were performed to study the effect of fibroblast cross-presentation on T cell function. RESULTS: Here, we show that human CRC-derived CAFs display an enhanced capacity to cross-present neoantigen-derived SLPs when compared with normal colonic fibroblasts. Cross-presentation of antigens by fibroblasts involved the lysosomal protease cathepsin S. Cathepsin S expression by CAFs was detected in situ in human CRC tissue, was upregulated in ex vivo cultured CRC-derived CAFs and showed increased expression in normal fibroblasts after exposure to CRC-conditioned medium. Cognate interaction between CD8+ T cells and cross-presenting CAFs suppressed T cell function, reflected by decreased cytotoxicity, reduced activation (CD137) and increased exhaustion (TIM3, LAG3 and CD39) marker expression. CONCLUSION: These data indicate that CAFs may directly suppress tumor-specific T cell function in an antigen-dependent fashion in human CRC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Catepsinas , Neoplasias Colorrectales/genética , Reactividad Cruzada , Humanos , Lisosomas/metabolismo , Ratones , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA