Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 22(1): 561, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34814826

RESUMEN

BACKGROUND: Ab initio prediction of splice sites is an essential step in eukaryotic genome annotation. Recent predictors have exploited Deep Learning algorithms and reliable gene structures from model organisms. However, Deep Learning methods for non-model organisms are lacking. RESULTS: We developed Spliceator to predict splice sites in a wide range of species, including model and non-model organisms. Spliceator uses a convolutional neural network and is trained on carefully validated data from over 100 organisms. We show that Spliceator achieves consistently high accuracy (89-92%) compared to existing methods on independent benchmarks from human, fish, fly, worm, plant and protist organisms. CONCLUSIONS: Spliceator is a new Deep Learning method trained on high-quality data, which can be used to predict splice sites in diverse organisms, ranging from human to protists, with consistently high accuracy.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Animales , Genoma , Humanos
2.
RNA ; 25(12): 1714-1730, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31506380

RESUMEN

The origin of the genetic code remains enigmatic five decades after it was elucidated, although there is growing evidence that the code coevolved progressively with the ribosome. A number of primordial codes were proposed as ancestors of the modern genetic code, including comma-free codes such as the RRY, RNY, or GNC codes (R = G or A, Y = C or T, N = any nucleotide), and the X circular code, an error-correcting code that also allows identification and maintenance of the reading frame. It was demonstrated previously that motifs of the X circular code are significantly enriched in the protein-coding genes of most organisms, from bacteria to eukaryotes. Here, we show that imprints of this code also exist in the ribosomal RNA (rRNA). In a large-scale study involving 133 organisms representative of the three domains of life, we identified 32 universal X motifs that are conserved in the rRNA of >90% of the organisms. Intriguingly, most of the universal X motifs are located in rRNA regions involved in important ribosome functions, notably in the peptidyl transferase center and the decoding center that form the original "proto-ribosome." Building on the existing accretion models for ribosome evolution, we propose that error-correcting circular codes represented an important step in the emergence of the modern genetic code. Thus, circular codes would have allowed the simultaneous coding of amino acids and synchronization of the reading frame in primitive translation systems, prior to the emergence of more sophisticated start codon recognition and translation initiation mechanisms.


Asunto(s)
Evolución Molecular , Código Genético , Motivos de Nucleótidos , Biosíntesis de Proteínas , Ribosomas/genética , Ribosomas/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Conformación de Ácido Nucleico , ARN Ribosómico/química , ARN Ribosómico/genética , Ribosomas/química , Relación Estructura-Actividad
3.
Nucleic Acids Res ; 47(D1): D411-D418, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30380106

RESUMEN

OrthoInspector is one of the leading software suites for orthology relations inference. In this paper, we describe a major redesign of the OrthoInspector online resource along with a significant increase in the number of species: 4753 organisms are now covered across the three domains of life, making OrthoInspector the most exhaustive orthology resource to date in terms of covered species (excluding viruses). The new website integrates original data exploration and visualization tools in an ergonomic interface. Distributions of protein orthologs are represented by heatmaps summarizing their evolutionary histories, and proteins with similar profiles can be directly accessed. Two novel tools have been implemented for comparative genomics: a phylogenetic profile search that can be used to find proteins with a specific presence-absence profile and investigate their functions and, inversely, a GO profiling tool aimed at deciphering evolutionary histories of molecular functions, processes or cell components. In addition to the re-designed website, the OrthoInspector resource now provides a REST interface for programmatic access. OrthoInspector 3.0 is available at http://lbgi.fr/orthoinspectorv3.


Asunto(s)
Bases de Datos Genéticas , Genómica , Algoritmos , Bacterias/genética , Clasificación , Eucariontes/genética , Evolución Molecular , Predicción , Ontología de Genes , Internet , Filogenia , Proteoma , Homología de Secuencia de Ácido Nucleico , Programas Informáticos , Especificidad de la Especie
4.
BMC Bioinformatics ; 21(1): 513, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33172385

RESUMEN

BACKGROUND: Recent advances in sequencing technologies have led to an explosion in the number of genomes available, but accurate genome annotation remains a major challenge. The prediction of protein-coding genes in eukaryotic genomes is especially problematic, due to their complex exon-intron structures. Even the best eukaryotic gene prediction algorithms can make serious errors that will significantly affect subsequent analyses. RESULTS: We first investigated the prevalence of gene prediction errors in a large set of 176,478 proteins from ten primate proteomes available in public databases. Using the well-studied human proteins as a reference, a total of 82,305 potential errors were detected, including 44,001 deletions, 27,289 insertions and 11,015 mismatched segments where part of the correct protein sequence is replaced with an alternative erroneous sequence. We then focused on the mismatched sequence errors that cause particular problems for downstream applications. A detailed characterization allowed us to identify the potential causes for the gene misprediction in approximately half (5446) of these cases. As a proof-of-concept, we also developed a simple method which allowed us to propose improved sequences for 603 primate proteins. CONCLUSIONS: Gene prediction errors in primate proteomes affect up to 50% of the sequences. Major causes of errors include undetermined genome regions, genome sequencing or assembly issues, and limitations in the models used to represent gene exon-intron structures. Nevertheless, existing genome sequences can still be exploited to improve protein sequence quality. Perspectives of the work include the characterization of other types of gene prediction errors, as well as the development of a more comprehensive algorithm for protein sequence error correction.


Asunto(s)
Sistemas de Lectura Abierta/genética , Primates/metabolismo , Proteoma , Secuencia de Aminoácidos , Animales , Bases de Datos de Proteínas , Eliminación de Gen , Humanos , Mutagénesis Insercional , Proteínas Tirosina Fosfatasas Similares a Receptores/química , Proteínas Tirosina Fosfatasas Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Similares a Receptores/metabolismo , Alineación de Secuencia
5.
Hum Mutat ; 41(1): 240-254, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31549751

RESUMEN

Polydactyly is one of the most frequent inherited defects of the limbs characterized by supernumerary digits and high-genetic heterogeneity. Among the many genes involved, either in isolated or syndromic forms, eight have been implicated in postaxial polydactyly (PAP). Among those, IQCE has been recently identified in a single consanguineous family. Using whole-exome sequencing in patients with uncharacterized ciliopathies, including PAP, we identified three families with biallelic pathogenic variations in IQCE. Interestingly, the c.895_904del (p.Val301Serfs*8) was found in all families without sharing a common haplotype, suggesting a recurrent mechanism. Moreover, in two families, the systemic phenotype could be explained by additional pathogenic variants in known genes (TULP1, ATP6V1B1). RNA expression analysis on patients' fibroblasts confirms that the dysfunction of IQCE leads to the dysregulation of genes associated with the hedgehog-signaling pathway, and zebrafish experiments demonstrate a full spectrum of phenotypes linked to defective cilia: Body curvature, kidney cysts, left-right asymmetry, misdirected cilia in the pronephric duct, and retinal defects. In conclusion, we identified three additional families confirming IQCE as a nonsyndromic PAP gene. Our data emphasize the importance of taking into account the complete set of variations of each individual, as each clinical presentation could finally be explained by multiple genes.


Asunto(s)
Ciliopatías/diagnóstico , Ciliopatías/genética , Dedos/anomalías , Predisposición Genética a la Enfermedad , Variación Genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Fenotipo , Polidactilia/diagnóstico , Polidactilia/genética , Dedos del Pie/anomalías , Animales , Consanguinidad , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Estudios de Asociación Genética/métodos , Homocigoto , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Linaje , Transducción de Señal , Transcriptoma , Secuenciación del Exoma , Pez Cebra
6.
BMC Genomics ; 21(1): 293, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32272892

RESUMEN

BACKGROUND: The draft genome assemblies produced by new sequencing technologies present important challenges for automatic gene prediction pipelines, leading to less accurate gene models. New benchmark methods are needed to evaluate the accuracy of gene prediction methods in the face of incomplete genome assemblies, low genome coverage and quality, complex gene structures, or a lack of suitable sequences for evidence-based annotations. RESULTS: We describe the construction of a new benchmark, called G3PO (benchmark for Gene and Protein Prediction PrOgrams), designed to represent many of the typical challenges faced by current genome annotation projects. The benchmark is based on a carefully validated and curated set of real eukaryotic genes from 147 phylogenetically disperse organisms, and a number of test sets are defined to evaluate the effects of different features, including genome sequence quality, gene structure complexity, protein length, etc. We used the benchmark to perform an independent comparative analysis of the most widely used ab initio gene prediction programs and identified the main strengths and weaknesses of the programs. More importantly, we highlight a number of features that could be exploited in order to improve the accuracy of current prediction tools. CONCLUSIONS: The experiments showed that ab initio gene structure prediction is a very challenging task, which should be further investigated. We believe that the baseline results associated with the complex gene test sets in G3PO provide useful guidelines for future studies.


Asunto(s)
Biología Computacional/métodos , Eucariontes/genética , Anotación de Secuencia Molecular/métodos , Animales , Curaduría de Datos , Evolución Molecular , Humanos , Filogenia
7.
Virol J ; 17(1): 131, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854725

RESUMEN

BACKGROUND: The Covid19 infection is caused by the SARS-CoV-2 virus, a novel member of the coronavirus (CoV) family. CoV genomes code for a ORF1a / ORF1ab polyprotein and four structural proteins widely studied as major drug targets. The genomes also contain a variable number of open reading frames (ORFs) coding for accessory proteins that are not essential for virus replication, but appear to have a role in pathogenesis. The accessory proteins have been less well characterized and are difficult to predict by classical bioinformatics methods. METHODS: We propose a computational tool GOFIX to characterize potential ORFs in virus genomes. In particular, ORF coding potential is estimated by searching for enrichment in motifs of the X circular code, that is known to be over-represented in the reading frames of viral genes. RESULTS: We applied GOFIX to study the SARS-CoV-2 and related genomes including SARS-CoV and SARS-like viruses from bat, civet and pangolin hosts, focusing on the accessory proteins. Our analysis provides evidence supporting the presence of overlapping ORFs 7b, 9b and 9c in all the genomes and thus helps to resolve some differences in current genome annotations. In contrast, we predict that ORF3b is not functional in all genomes. Novel putative ORFs were also predicted, including a truncated form of the ORF10 previously identified in SARS-CoV-2 and a little known ORF overlapping the Spike protein in Civet-CoV and SARS-CoV. CONCLUSIONS: Our findings contribute to characterizing sequence properties of accessory genes of SARS coronaviruses, and especially the newly acquired genes making use of overlapping reading frames.


Asunto(s)
Betacoronavirus/genética , Genoma Viral , Sistemas de Lectura Abierta , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Proteínas Reguladoras y Accesorias Virales/genética , Animales , Codón , Biología Computacional , Evolución Molecular , Genes Virales , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas de la Matriz Viral/genética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Reguladoras y Accesorias Virales/química
8.
Bioinformatics ; 34(19): 3390-3392, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29741582

RESUMEN

Summary: Comparative studies of protein sequences are widely used in evolutionary and comparative genomics studies, but there is a lack of efficient tools to identify conserved regions ab initio within a protein multiple alignment. PROBE provides a fully automatic analysis of protein family conservation, to identify conserved regions, or 'blocks', that may correspond to structural/functional domains or motifs. Conserved blocks are identified at two different levels: (i) family level blocks indicate sites that are probably of central importance to the protein's structure or function, and (ii) sub-family level blocks highlight regions that may signify functional specialization, such as binding partners, etc. All conserved blocks are mapped onto a phylogenetic tree and can also be visualized in the context of the multiple sequence alignment. PROBE thus facilitates in-depth studies of sequence-structure-function-evolution relationships, and opens the way to block-level phylogenetic profiling. Availability and implementation: Freely available on the web at http://www.lbgi.fr/∼julie/probe/web.


Asunto(s)
Evolución Molecular , Proteínas/genética , Programas Informáticos , Secuencia de Aminoácidos , Biología Computacional , Secuencia Conservada , Filogenia , Alineación de Secuencia
9.
Clin Genet ; 95(3): 384-397, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30614526

RESUMEN

Bardet-Biedl syndrome (BBS) is an emblematic ciliopathy associated with retinal dystrophy, obesity, postaxial polydactyly, learning disabilities, hypogonadism and renal dysfunction. Before birth, enlarged/cystic kidneys as well as polydactyly are the hallmark signs of BBS to consider in absence of familial history. However, these findings are not specific to BBS, raising the problem of differential diagnoses and prognosis. Molecular diagnosis during pregnancies remains a timely challenge for this heterogeneous disease (22 known genes). We report here the largest cohort of BBS fetuses to better characterize the antenatal presentation. Prenatal ultrasound (US) and/or autopsy data from 74 fetuses with putative BBS diagnosis were collected out of which molecular diagnosis was established in 51 cases, mainly in BBS genes (45 cases) following the classical gene distribution, but also in other ciliopathy genes (6 cases). Based on this, an updated diagnostic decision tree is proposed. No genotype/phenotype correlation could be established but postaxial polydactyly (82%) and renal cysts (78%) were the most prevalent symptoms. However, autopsy revealed polydactyly that was missed by prenatal US in 55% of the cases. Polydactyly must be carefully looked for in pregnancies with apparently isolated renal anomalies in fetuses.


Asunto(s)
Síndrome de Bardet-Biedl/diagnóstico , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Fenotipo , Alelos , Sustitución de Aminoácidos , Autopsia , Síndrome de Bardet-Biedl/genética , Biopsia , Genotipo , Humanos , Mutación , Diagnóstico Prenatal , Secuenciación del Exoma
10.
Mol Biol Evol ; 34(8): 2016-2034, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460059

RESUMEN

Cilia (flagella) are important eukaryotic organelles, present in the Last Eukaryotic Common Ancestor, and are involved in cell motility and integration of extracellular signals. Ciliary dysfunction causes a class of genetic diseases, known as ciliopathies, however current knowledge of the underlying mechanisms is still limited and a better characterization of genes is needed. As cilia have been lost independently several times during evolution and they are subject to important functional variation between species, ciliary genes can be investigated through comparative genomics. We performed phylogenetic profiling by predicting orthologs of human protein-coding genes in 100 eukaryotic species. The analysis integrated three independent methods to predict a consensus set of 274 ciliary genes, including 87 new promising candidates. A fine-grained analysis of the phylogenetic profiles allowed a partitioning of ciliary genes into modules with distinct evolutionary histories and ciliary functions (assembly, movement, centriole, etc.) and thus propagation of potential annotations to previously undocumented genes. The cilia/basal body localization was experimentally confirmed for five of these previously unannotated proteins (LRRC23, LRRC34, TEX9, WDR27, and BIVM), validating the relevance of our approach. Furthermore, our multi-level analysis sheds light on the core gene sets retained in gamete-only flagellates or Ecdysozoa for instance. By combining gene-centric and species-oriented analyses, this work reveals new ciliary and ciliopathy gene candidates and provides clues about the evolution of ciliary processes in the eukaryotic domain. Additionally, the positive and negative reference gene sets and the phylogenetic profile of human genes constructed during this study can be exploited in future work.


Asunto(s)
Cilios/genética , Ciliopatías/genética , Animales , Movimiento Celular/genética , Cilios/metabolismo , Ciliopatías/metabolismo , Bases de Datos de Ácidos Nucleicos , Eucariontes , Células Eucariotas , Evolución Molecular , Flagelos/genética , Flagelos/metabolismo , Genómica , Humanos , Filogenia , Análisis de Secuencia de ADN/métodos
11.
Hum Mutat ; 38(10): 1316-1324, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28608363

RESUMEN

Numerous mutations in each of the mitochondrial aminoacyl-tRNA synthetases (aaRSs) have been implicated in human diseases. The mutations are autosomal and recessive and lead mainly to neurological disorders, although with pleiotropic effects. The processes and interactions that drive the etiology of the disorders associated with mitochondrial aaRSs (mt-aaRSs) are far from understood. The complexity of the clinical, genetic, and structural data requires concerted, interdisciplinary efforts to understand the molecular biology of these disorders. Toward this goal, we designed MiSynPat, a comprehensive knowledge base together with an ergonomic Web server designed to organize and access all pertinent information (sequences, multiple sequence alignments, structures, disease descriptions, mutation characteristics, original literature) on the disease-linked human mt-aaRSs. With MiSynPat, a user can also evaluate the impact of a possible mutation on sequence-conservation-structure in order to foster the links between basic and clinical researchers and to facilitate future diagnosis. The proposed integrated view, coupled with research on disease-related mt-aaRSs, will help to reveal new functions for these enzymes and to open new vistas in the molecular biology of the cell. The purpose of MiSynPat, freely available at http://misynpat.org, is to constitute a reference and a converging resource for scientists and clinicians.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Bases de Datos Genéticas , Mitocondrias/enzimología , Mutación/genética , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/química , Evolución Molecular , Enfermedades Genéticas Congénitas/genética , Humanos , Mitocondrias/genética , Estructura Molecular , Conformación Proteica
12.
Infect Immun ; 85(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28069815

RESUMEN

MicroRNAs (miRNAs) are short, noncoding RNAs involved in the regulation of several processes associated with inflammatory diseases and infection. Bacterial infection modulates miRNA expression to subvert any innate immune response. In this study we analyzed, using microarray analysis, the bacterial modulation of miRNAs in bone marrow-derived macrophages (BMMs) in which activity was induced by infection with Porphyromonas gingivalis The expression of several miRNAs was modulated 3 h postinfection (at a multiplicity of infection of 25). A bioinformatic analysis was performed to further identify pathways related to the innate immune host response under the influence of selected miRNAs. To assess the effects of the miRNAs identified on cytokine secretion (tumor necrosis factor alpha [TNF-α] and interleukin-10 [IL-10]), BMMs were transfected with selected miRNA mimics and inhibitors. Transfection with mmu-miR-155 and mmu-miR-2137 did not modify TNF-α secretion, while their inhibitors increased it. Inhibitors of mmu-miR-2137 and mmu-miR-7674 increased the secretion of the anti-inflammatory factor IL-10. In P. gingivalis-infected BMMs, mmu-miR-155-5p significantly decreased TNF-α secretion while inhibitor of mmu-miR-2137 increased IL-10 secretion. In vivo, in a mouse model of P. gingivalis-induced calvarial bone resorption, injection of mmu-miR-155-5p or anti-mmu-miR-2137 reduced the size of the lesion significantly. Furthermore, anti-mmu-miR-2137 significantly reduced inflammatory cell infiltration, osteoclast activity, and bone loss. Bioinformatic analysis demonstrated that pathways related to cytokine- and chemokine-related pathways but also osteoclast differentiation may be involved in the effects observed. This study contributes further to our understanding of P. gingivalis-induced modulation of miRNAs and their physiological effects. It highlights the potential therapeutic merits of targeting mmu-miR-155-5p and mmu-miR-2137 to control inflammation induced by P. gingivalis infection.


Asunto(s)
Infecciones por Bacteroidaceae/genética , Infecciones por Bacteroidaceae/microbiología , Regulación de la Expresión Génica , Macrófagos/metabolismo , Macrófagos/microbiología , MicroARNs/genética , Porphyromonas gingivalis/fisiología , Animales , Infecciones por Bacteroidaceae/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Interleucina-10/biosíntesis , Macrófagos/inmunología , Ratones , Interferencia de ARN , ARN Mensajero/genética , Factor de Necrosis Tumoral alfa/biosíntesis
13.
J Med Internet Res ; 19(6): e212, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28623182

RESUMEN

BACKGROUND: The constant and massive increase of biological data offers unprecedented opportunities to decipher the function and evolution of genes and their roles in human diseases. However, the multiplicity of sources and flow of data mean that efficient access to useful information and knowledge production has become a major challenge. This challenge can be addressed by taking inspiration from Web 2.0 and particularly social networks, which are at the forefront of big data exploration and human-data interaction. OBJECTIVE: MyGeneFriends is a Web platform inspired by social networks, devoted to genetic disease analysis, and organized around three types of proactive agents: genes, humans, and genetic diseases. The aim of this study was to improve exploration and exploitation of biological, postgenomic era big data. METHODS: MyGeneFriends leverages conventions popularized by top social networks (Facebook, LinkedIn, etc), such as networks of friends, profile pages, friendship recommendations, affinity scores, news feeds, content recommendation, and data visualization. RESULTS: MyGeneFriends provides simple and intuitive interactions with data through evaluation and visualization of connections (friendships) between genes, humans, and diseases. The platform suggests new friends and publications and allows agents to follow the activity of their friends. It dynamically personalizes information depending on the user's specific interests and provides an efficient way to share information with collaborators. Furthermore, the user's behavior itself generates new information that constitutes an added value integrated in the network, which can be used to discover new connections between biological agents. CONCLUSIONS: We have developed MyGeneFriends, a Web platform leveraging conventions from popular social networks to redefine the relationship between humans and biological big data and improve human processing of biomedical data. MyGeneFriends is available at lbgi.fr/mygenefriends.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Pruebas Genéticas/métodos , Red Social , Telemedicina/estadística & datos numéricos , Amigos , Humanos , Investigadores
14.
Genes Dev ; 23(18): 2210-23, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19759265

RESUMEN

Development of the germline requires consecutive differentiation events. Regulation of these has been associated with germ cell-specific and pluripotency-associated transcription factors, but the role of general transcription factors (GTFs) remains elusive. TATA-binding protein (TBP) is a GTF involved in transcription by all RNA polymerases. During ovarian folliculogenesis in mice the vertebrate-specific member of the TBP family, TBP2/TRF3, is expressed exclusively in oocytes. To determine TBP2 function in vivo, we generated TBP2-deficient mice. We found that Tbp2(-/-) mice are viable with no apparent phenotype. However, females lacking TBP2 are sterile due to defective folliculogenesis, altered chromatin organization, and transcriptional misregulation of key oocyte-specific genes. TBP2 binds to promoters of misregulated genes, suggesting that TBP2 directly regulates their expression. In contrast, TBP ablation in the female germline results in normal ovulation and fertilization, indicating that in these cells TBP is dispensable. We demonstrate that TBP2 is essential for the differentiation of female germ cells, and show the mutually exclusive functions of these key core promoter-binding factors, TBP and TBP2, in the mouse.


Asunto(s)
Diferenciación Celular , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Animales , Proliferación Celular , Femenino , Perfilación de la Expresión Génica , Genoma/genética , Ratones , Ratones Noqueados , Oocitos/citología , Regiones Promotoras Genéticas , Unión Proteica , Cigoto/metabolismo
15.
BMC Bioinformatics ; 17(1): 271, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27387560

RESUMEN

BACKGROUND: A standard procedure in many areas of bioinformatics is to use a multiple sequence alignment (MSA) as the basis for various types of homology-based inference. Applications include 3D structure modelling, protein functional annotation, prediction of molecular interactions, etc. These applications, however sophisticated, are generally highly sensitive to the alignment used, and neglecting non-homologous or uncertain regions in the alignment can lead to significant bias in the subsequent inferences. RESULTS: Here, we present a new method, LEON-BIS, which uses a robust Bayesian framework to estimate the homologous relations between sequences in a protein multiple alignment. Sequences are clustered into sub-families and relations are predicted at different levels, including 'core blocks', 'regions' and full-length proteins. The accuracy and reliability of the predictions are demonstrated in large-scale comparisons using well annotated alignment databases, where the homologous sequence segments are detected with very high sensitivity and specificity. CONCLUSIONS: LEON-BIS uses robust Bayesian statistics to distinguish the portions of multiple sequence alignments that are conserved either across the whole family or within subfamilies. LEON-BIS should thus be useful for automatic, high-throughput genome annotations, 2D/3D structure predictions, protein-protein interaction predictions etc.


Asunto(s)
Teorema de Bayes , Biología Computacional/métodos , Proteínas/química , Alineación de Secuencia/métodos , Secuencia de Aminoácidos , Humanos , Proteínas/genética , Homología de Secuencia de Aminoácido
16.
Hum Mol Genet ; 23(2): 491-501, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24026677

RESUMEN

Inherited retinal diseases are a group of clinically and genetically heterogeneous disorders for which a significant number of cases remain genetically unresolved. Increasing knowledge on underlying pathogenic mechanisms with precise phenotype-genotype correlation is, however, critical for establishing novel therapeutic interventions for these yet incurable neurodegenerative conditions. We report phenotypic and genetic characterization of a large family presenting an unusual autosomal dominant retinal dystrophy. Phenotypic characterization revealed a retinopathy dominated by inner retinal dysfunction and ganglion cell abnormalities. Whole-exome sequencing identified a missense variant (c.782A>C, p.Glu261Ala) in ITM2B coding for Integral Membrane Protein 2B, which co-segregates with the disease in this large family and lies within the 24.6 Mb interval identified by microsatellite haplotyping. The physiological role of ITM2B remains unclear and has never been investigated in the retina. RNA in situ hybridization reveals Itm2b mRNA in inner nuclear and ganglion cell layers within the retina, with immunostaining demonstrating the presence of the corresponding protein in the same layers. Furthermore, ITM2B in the retina co-localizes with its known interacting partner in cerebral tissue, the amyloid ß precursor protein, critical in Alzheimer disease physiopathology. Interestingly, two distinct ITM2B mutations, both resulting in a longer protein product, had already been reported in two large autosomal dominant families with Alzheimer-like dementia but never in subjects with isolated retinal diseases. These findings should better define pathogenic mechanism(s) associated with ITM2B mutations underlying dementia or retinal disease and add a new candidate to the list of genes involved in inherited retinal dystrophies.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Glicoproteínas de Membrana/genética , Mutación Missense , Retina/metabolismo , Distrofias Retinianas/genética , Distrofias Retinianas/patología , Proteínas Adaptadoras Transductoras de Señales , Anciano , Demencia/genética , Exoma , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Fenotipo , Retina/patología , Distrofias Retinianas/metabolismo , Análisis de Secuencia de ADN
17.
Am J Hum Genet ; 92(1): 67-75, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23246293

RESUMEN

Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440(∗)]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384(∗)]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs(∗)59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Proteínas de la Membrana/genética , Miopía/genética , Ceguera Nocturna/genética , Polimorfismo Genético , Exoma , Femenino , Humanos , Masculino , Proteínas de la Membrana/análisis , Persona de Mediana Edad , Mutación , Retina/química
18.
Bioinformatics ; 31(3): 447-8, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25273105

RESUMEN

SUMMARY: We previously developed OrthoInspector, a package incorporating an original algorithm for the detection of orthology and inparalogy relations between different species. We have added new functionalities to the package. While its original algorithm was not modified, performing similar orthology predictions, we facilitated the prediction of very large databases (thousands of proteomes), refurbished its graphical interface, added new visualization tools for comparative genomics/protein family analysis and facilitated its deployment in a network environment. Finally, we have released three online databases of precomputed orthology relationships. AVAILABILITY: Package and databases are freely available at http://lbgi.fr/orthoinspector with all major browsers supported. CONTACT: odile.lecompte@unistra.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Gráficos por Computador , Bases de Datos Factuales , Proteómica/métodos , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Humanos , Anotación de Secuencia Molecular , Filogenia
19.
BMC Evol Biol ; 15: 222, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26459560

RESUMEN

BACKGROUND: Transposable elements (TE) have attracted much attention since they shape the genome and contribute to species evolution. Organisms have evolved mechanisms to control TE activity. Testis expressed 19 (Tex19) represses TE expression in mouse testis and placenta. In the human and mouse genomes, Tex19 and Secreted and transmembrane 1 (Sectm1) are neighbors but are not homologs. Sectm1 is involved in immunity and its molecular phylogeny is unknown. METHODS: Using multiple alignments of complete protein sequences (MACS), we inferred Tex19 and Sectm1 molecular phylogenies. Protein conserved regions were identified and folds were predicted. Finally, expression patterns were studied across tissues and species using RNA-seq public data and RT-PCR. RESULTS: We present 2 high quality alignments of 58 Tex19 and 58 Sectm1 protein sequences from 48 organisms. First, both genes are eutherian-specific, i.e., exclusively present in mammals except monotremes (platypus) and marsupials. Second, Tex19 and Sectm1 have both duplicated in Sciurognathi and Bovidae while they have remained as single copy genes in all further placental mammals. Phylogenetic concordance between both genes was significant (p-value < 0.05) and supported co-evolution and functional relationship. At the protein level, Tex19 exhibits 3 conserved regions and 4 invariant cysteines. In particular, a CXXC motif is present in the N-terminal conserved region. Sectm1 exhibits 2 invariant cysteines and an Ig-like domain. Strikingly, Tex19 C-terminal conserved region was lost in Haplorrhini primates while a Sectm1 C-terminal extra domain was acquired. Finally, we have determined that Tex19 and Sectm1 expression levels anti-correlate across the testis of several primates (ρ = -0.72) which supports anti-regulation. CONCLUSIONS: Tex19 and Sectm1 co-evolution and anti-regulated expressions support a strong functional relationship between both genes. Since Tex19 operates a control on TE and Sectm1 plays a role in immunity, Tex19 might suppress an immune response directed against cells that show TE activity in eutherian reproductive tissues.


Asunto(s)
Evolución Molecular , Mamíferos/genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Secuencia de Aminoácidos , Animales , Femenino , Expresión Génica , Humanos , Masculino , Mamíferos/clasificación , Mamíferos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Filogenia , Placenta/metabolismo , Embarazo , Proteínas de Unión al ARN , Ratas , Retroelementos , Testículo/metabolismo
20.
Am J Hum Genet ; 90(2): 321-30, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22325361

RESUMEN

Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.


Asunto(s)
Exoma , Mutación , Miopía/genética , Ceguera Nocturna/genética , Receptores Acoplados a Proteínas G/genética , Alelos , Animales , Electrorretinografía/métodos , Enfermedades Hereditarias del Ojo , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X , Heterogeneidad Genética , Técnicas de Genotipaje/métodos , Heterocigoto , Homocigoto , Humanos , Masculino , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Proteoglicanos/genética , Receptores de Glutamato Metabotrópico/genética , Retina/anomalías , Canales Catiónicos TRPM/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA