Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metab Eng ; 66: 137-147, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33887459

RESUMEN

In the yeast Saccharomyces cerevisiae, microbial fuels and chemicals production on lignocellulosic hydrolysates is constrained by poor sugar transport. For biotechnological applications, it is desirable to source transporters with novel or enhanced function from nonconventional organisms in complement to engineering known transporters. Here, we identified and functionally screened genes from three strains of early-branching anaerobic fungi (Neocallimastigomycota) that encode sugar transporters from the recently discovered Sugars Will Eventually be Exported Transporter (SWEET) superfamily in Saccharomyces cerevisiae. A novel fungal SWEET, NcSWEET1, was identified that localized to the plasma membrane and complemented growth in a hexose transporter-deficient yeast strain. Single cross-over chimeras were constructed from a leading NcSWEET1 expression-enabling domain paired with all other candidate SWEETs to broadly scan the sequence and functional space for enhanced variants. This led to the identification of a chimera, NcSW1/PfSW2:TM5-7, that enhanced the growth rate significantly on glucose, fructose, and mannose. Additional chimeras with varied cross-over junctions identified residues in TM1 that affect substrate selectivity. Furthermore, we demonstrate that NcSWEET1 and the enhanced NcSW1/PfSW2:TM5-7 variant facilitated novel co-consumption of glucose and xylose in S. cerevisiae. NcSWEET1 utilized 40.1% of both sugars, exceeding the 17.3% utilization demonstrated by the control HXT7(F79S) strain. Our results suggest that SWEETs from anaerobic fungi are beneficial tools for enhancing glucose and xylose co-utilization and offers a promising step towards biotechnological application of SWEETs in S. cerevisiae.


Asunto(s)
Saccharomyces cerevisiae , Azúcares , Anaerobiosis , Quimera , Glucosa , Saccharomyces cerevisiae/genética , Xilosa
2.
Curr Opin Biotechnol ; 73: 198-204, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34482155

RESUMEN

Lignocellulose processing yields a heterogeneous mixture of substances, which are poorly utilized by current industrial strains. For efficient valorization of recalcitrant biomass, it is critical to identify and engineer new membrane proteins that enable the broad uptake of hydrolyzed substrates. Whereas glucose consumption rarely presents a bottleneck for cell factories, there is also a lack of transporters that allow co-consumption of glucose with other abundant biomass sugars such as xylose. This review discusses recent efforts to bioinformatically identify membrane proteins of high biotech potential for lignocellulose conversion and metabolic engineering in both model and nonconventional organisms. Of particular interest are transporters sourced from anaerobic gut fungi resident to large herbivores, which produce Sugars Will Eventually be Exported Transporters (SWEETs) that enhance xylose transport in the yeast Saccharomyces cerevisiae and enable glucose and xylose co-utilization. Additionally, recently identified fungal cellodextrin transporters are valuable alternatives to mitigate glucose repression and transporter inhibition.


Asunto(s)
Proteínas de la Membrana , Xilosa , Fermentación , Glucosa/metabolismo , Lignina/metabolismo , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo
3.
Annu Rev Chem Biomol Eng ; 10: 105-128, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-30883214

RESUMEN

Industrial biotechnology has the potential to decrease our reliance on petroleum for fuel and bio-based chemical production and also enable valorization of waste streams. Anaerobic microorganisms thrive in resource-limited environments and offer an array of novel bioactivities in this regard that could revolutionize biomanufacturing. However, they have not been adopted for widespread industrial use owing to their strict growth requirements, limited number of available strains, difficulty in scale-up, and genetic intractability. This review provides an overview of current and future uses for anaerobes in biotechnology and bioprocessing in the postgenomic era. We focus on the recently characterized anaerobic fungi (Neocallimastigomycota) native to the digestive tract of large herbivores, which possess a trove of enzymes, pathways, transporters, and other biomolecules that can be harnessed for numerous biotechnological applications. Resolving current genetic intractability, scale-up, and cultivation challenges will unlock the potential of these lignocellulolytic fungi and other nonmodel micro-organisms to accelerate bio-based production.


Asunto(s)
Anaerobiosis , Biotecnología , Microbiología , Enzimas/metabolismo , Fermentación , Hongos/metabolismo , Microbioma Gastrointestinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA