Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Commun Signal ; 21(1): 111, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189117

RESUMEN

BACKGROUND: Sepsis is one of the leading causes of death worldwide and characterized by blood stream infections associated with a dysregulated host response and endothelial cell (EC) dysfunction. Ribonuclease 1 (RNase1) acts as a protective factor of vascular homeostasis and is known to be repressed by massive and persistent inflammation, associated to the development of vascular pathologies. Bacterial extracellular vesicles (bEVs) are released upon infection and may interact with ECs to mediate EC barrier dysfunction. Here, we investigated the impact of bEVs of sepsis-related pathogens on human EC RNase1 regulation. METHODS: bEVs from sepsis-associated bacteria were isolated via ultrafiltration and size exclusion chromatography and used for stimulation of human lung microvascular ECs combined with and without signaling pathway inhibitor treatments. RESULTS: bEVs from Escherichia coli, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium significantly reduced RNase1 mRNA and protein expression and activated ECs, while TLR2-inducing bEVs from Streptococcus pneumoniae did not. These effects were mediated via LPS-dependent TLR4 signaling cascades as they could be blocked by Polymyxin B. Additionally, LPS-free ClearColi™ had no impact on RNase1. Further characterization of TLR4 downstream pathways involving NF-кB and p38, as well as JAK1/STAT1 signaling, revealed that RNase1 mRNA regulation is mediated via a p38-dependent mechanism. CONCLUSION: Blood stream bEVs from gram-negative, sepsis-associated bacteria reduce the vascular protective factor RNase1, opening new avenues for therapeutical intervention of EC dysfunction via promotion of RNase1 integrity. Video Abstract.


Asunto(s)
Vesículas Extracelulares , Sepsis , Humanos , Células Endoteliales/metabolismo , Ribonucleasas/metabolismo , Receptor Toll-Like 4/metabolismo , Factores Protectores , Pulmón/metabolismo , ARN Mensajero/metabolismo , Bacterias , Sepsis/metabolismo
2.
Cell Commun Signal ; 21(1): 65, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978183

RESUMEN

Gram-negative bacteria naturally secrete nano-sized outer membrane vesicles (OMVs), which are important mediators of communication and pathogenesis. OMV uptake by host cells activates TLR signalling via transported PAMPs. As important resident immune cells, alveolar macrophages are located at the air-tissue interface where they comprise the first line of defence against inhaled microorganisms and particles. To date, little is known about the interplay between alveolar macrophages and OMVs from pathogenic bacteria. The immune response to OMVs and underlying mechanisms are still elusive. Here, we investigated the response of primary human macrophages to bacterial vesicles (Legionella pneumophila, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Streptococcus pneumoniae) and observed comparable NF-κB activation across all tested vesicles. In contrast, we describe differential type I IFN signalling with prolonged STAT1 phosphorylation and strong Mx1 induction, blocking influenza A virus replication only for Klebsiella, E.coli and Salmonella OMVs. OMV-induced antiviral effects were less pronounced for endotoxin-free Clear coli OMVs and Polymyxin-treated OMVs. LPS stimulation could not mimic this antiviral status, while TRIF knockout abrogated it. Importantly, supernatant from OMV-treated macrophages induced an antiviral response in alveolar epithelial cells (AEC), suggesting OMV-induced intercellular communication. Finally, results were validated in an ex vivo infection model with primary human lung tissue. In conclusion, Klebsiella, E.coli and Salmonella OMVs induce antiviral immunity in macrophages via TLR4-TRIF-signaling to reduce viral replication in macrophages, AECs and lung tissue. These gram-negative bacteria induce antiviral immunity in the lung through OMVs, with a potential decisive and tremendous impact on bacterial and viral coinfection outcome. Video Abstract.


Asunto(s)
Vesículas Extracelulares , Receptor Toll-Like 4 , Humanos , Proteínas Adaptadoras del Transporte Vesicular , Escherichia coli , Macrófagos , Replicación Viral
3.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805982

RESUMEN

Adipose tissue and its crosstalk with other organs plays an essential role in the metabolic homeostasis of the entire body. Alteration of this communication (i.e., due to obesity) is related to the development of several comorbidities including type 2 diabetes, cardiovascular diseases, or cancer. Within the adipose depot, adipocytes are the main cell type and thus the main source of secreted molecules, which exert modulating effects not only at a local but also at a systemic level. Extracellular vesicles (EVs) have recently emerged as important mediators in cell-cell communication and account for part of the cellular secretome. In recent years, there has been a growing body of research on adipocyte-derived extracellular vesicles (Ad-EVs). However, there is still a lack of standardized methodological approaches, especially regarding primary adipocytes. In this review, we will provide an outline of crucial aspects when working on adipose-derived material, with a special focus on primary adipocytes. In parallel, we will point out current methodological challenges in the EV field and how they impact the transcriptomic, proteomic and functional evaluations of Ad-EVs.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/fisiología , Comunicación Celular , Tejido Adiposo Pardo/fisiología , Animales , Células Cultivadas , Comorbilidad , Vesículas Extracelulares/metabolismo , Humanos , Ratones , Obesidad/metabolismo , Proteómica , Reproducibilidad de los Resultados , Células Madre/citología , Transcriptoma
4.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671836

RESUMEN

NKp30 (Natural Cytotoxicity Receptor 1, NCR1) is a powerful cytotoxicity receptor expressed on natural killer (NK) cells which is involved in tumor cell killing and the regulation of antitumor immune responses. Ligands for NKp30, including BAG6 and B7-H6, are upregulated in virus-infected and tumor cells but rarely detectable on healthy cells. These ligands are released by tumor cells as part of the cellular secretome and interfere with NK cell activity. BAG6 is secreted via the exosomal pathway, and BAG6-positive extracellular vesicles (EV-BAG6) trigger NK cell cytotoxicity and cytokine release, whereas the soluble protein diminishes NK cell activity. However, the extracellular format and activity of B7-H6 remain elusive. Here, we used HEK293 as a model cell line to produce recombinant ligands and to study their impact on NK cell activity. Using this system, we demonstrate that soluble B7-H6 (sB7-H6), like soluble BAG6 (sBAG6), inhibits NK cell-mediated target cell killing. This was associated with a diminished cell surface expression of NKG2D and NCRs (NKp30, NKp40, and NKp46). Strikingly, a reduced NKp30 mRNA expression was observed exclusively in response to sBAG6. Of note, B7-H6 was marginally released in association with EVs, and EVs collected from B7-H6 expressing cells did not stimulate NK cell-mediated killing. The molecular analysis of EVs on a single EV level using nano flow cytometry (NanoFCM) revealed a similar distribution of vesicle-associated tetraspanins within EVs purified from wildtype, BAG6, or B7-H6 overexpressing cells. NKp30 is a promising therapeutic target to overcome NK cell immune evasion in cancer patients, and it is important to unravel how extracellular NKp30 ligands inhibit NK cell functions.


Asunto(s)
Antígenos B7/metabolismo , Chaperonas Moleculares/metabolismo , Receptor 3 Gatillante de la Citotoxidad Natural/metabolismo , Antígenos B7/genética , Vesículas Extracelulares/metabolismo , Células HEK293 , Humanos , Integrina beta1/metabolismo , Células K562 , Células Asesinas Naturales/metabolismo , Ligandos , Chaperonas Moleculares/genética , Receptor 3 Gatillante de la Citotoxidad Natural/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escape del Tumor
5.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830067

RESUMEN

Mesenchymal stromal cells isolated from menstrual blood (MenSCs) exhibit a potent pro-angiogenic and immunomodulatory capacity. Their therapeutic effect is mediated by paracrine mediators released by their secretomes. In this work, we aimed to evaluate the effect of a specific priming condition on the phenotype and secretome content of MenSCs. Our results revealed that the optimal condition for priming MenSCs was the combination of interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) that produced a synergistic and additive effect on IDO1 release and immune-related molecule expression. The analyses of MenSC-derived secretomes after IFNγ and TNFα priming also revealed an increase in EV release and in the differentially expressed miRNAs involved in the immune response and inflammation. Proliferation assays on lymphocyte subsets demonstrated a decrease in CD4+ T cells and CD8+ T cells co-cultured with secretomes, especially in the lymphocytes co-cultured with secretomes from primed cells. Additionally, the expression of immune checkpoints (PD-1 and CTLA-4) was increased in the CD4+ T cells co-cultured with MenSC-derived secretomes. These findings demonstrate that the combination of IFNγ and TNFα represents an excellent priming strategy to enhance the immunomodulatory capacity of MenSCs. Moreover, the secretome derived from primed MenSCs may be postulated as a therapeutic option for the regulation of adverse inflammatory reactions.


Asunto(s)
Interferón gamma/farmacología , Menstruación/sangre , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Secretoma/inmunología , Secretoma/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Adulto , Antígenos de Superficie/análisis , Técnicas de Cocultivo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Voluntarios Sanos , Humanos , Inmunomodulación/efectos de los fármacos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , MicroARNs/efectos de los fármacos , MicroARNs/metabolismo , Secretoma/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo
6.
Blood ; 125(26): 4024-31, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-25887777

RESUMEN

AFM13 is a bispecific, tetravalent chimeric antibody construct (TandAb) designed for the treatment of CD30-expressing malignancies. AFM13 recruits natural killer (NK) cells via binding to CD16A as immune effector cells. In this phase 1 dose-escalation study, 28 patients with heavily pretreated relapsed or refractory Hodgkin lymphoma received AFM13 at doses of 0.01 to 7 mg/kg body weight. Primary objectives were safety and tolerability. Secondary objectives included pharmacokinetics, antitumor activity, and pharmacodynamics. Adverse events were generally mild to moderate. The maximum tolerated dose was not reached. Pharmacokinetics assessment revealed a half-life of up to 19 hours. Three of 26 evaluable patients achieved partial remission (11.5%) and 13 patients achieved stable disease (50%), with an overall disease control rate of 61.5%. AFM13 was also active in brentuximab vedotin-refractory patients. In 13 patients who received doses of ≥1.5 mg/kg AFM13, the overall response rate was 23% and the disease control rate was 77%. AFM13 treatment resulted in a significant NK-cell activation and a decrease of soluble CD30 in peripheral blood. In conclusion, AFM13 represents a well-tolerated, safe, and active targeted immunotherapy of Hodgkin lymphoma. A phase 2 study is currently planned to optimize the dosing schedule in order to further improve the therapeutic efficacy. This phase 1 study was registered at www.clinicaltrials.gov as #NCT01221571.


Asunto(s)
Anticuerpos Biespecíficos/administración & dosificación , Enfermedad de Hodgkin/tratamiento farmacológico , Inmunoterapia/métodos , Adulto , Anciano , Anticuerpos Biespecíficos/farmacocinética , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Antígeno Ki-1/inmunología , Masculino , Persona de Mediana Edad , Receptores de IgG/inmunología , Recurrencia , Adulto Joven
7.
Blood ; 121(17): 3431-3, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23444403

RESUMEN

Galectin-1 (Gal1) is a member of a highly conserved family of carbohydrate-binding proteins. It modulates innate and adaptive immune responses and fosters tumor-immune escape. Hodgkin lymphoma (HL) Reed-Sternberg cells overexpress and secrete Gal1, which selectively kills T helper (Th)1 and Th17 cells and cytotoxic T cells and promotes the immunosuppressive Th2/regulatory T-cell-predominant HL microenvironment. We developed a sandwich enzyme-linked immunosorbent assay and assessed serum Gal1 levels in 293 newly diagnosed, previously untreated patients with classical HL (cHL) enrolled in 3 risk-adapted clinical trials. Serum Gal1 levels were significantly higher in patients with cHL than in normal controls (P < .0001). Gal1 serum levels also increased with Ann Arbor stage (P = .012), areas of nodal involvement (P < .0001), and the International Prognostic Score (2-7, P = .019). We conclude that Gal1 serum levels are significantly associated with tumor burden and related clinical features in newly diagnosed cHL patients.


Asunto(s)
Biomarcadores de Tumor/sangre , Galectina 1/sangre , Enfermedad de Hodgkin/sangre , Enfermedad de Hodgkin/patología , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Estudios Retrospectivos , Carga Tumoral
8.
Blood ; 121(18): 3658-65, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23509156

RESUMEN

Natural killer (NK) cells are a major component of the anti-tumor immune response. NK cell dysfunctions have been reported in various hematologic malignancies, including chronic lymphocytic leukemia (CLL). Here we investigated the role of tumor cell-released soluble and exosomal ligands for NK cell receptors that modulate NK cell activity. Soluble CLL plasma factors suppressed NK cell cytotoxicity and down-regulated the surface receptors CD16 and CD56 on NK cells of healthy donors. The inhibition of NK cell cytotoxicity was attributed to the soluble ligand BAG6/BAT3 that engages the activating receptor NKp30 expressed on NK cells. Soluble BAG6 was detectable in the plasma of CLL patients, with the highest levels at the advanced disease stages. In contrast, NK cells were activated when BAG6 was presented on the surface of exosomes. The latter form was induced in non-CLL cells by cellular stress via an nSmase2-dependent pathway. Such cells were eliminated by lymphocytes in a xenograft tumor model in vivo. Here, exosomal BAG6 was essential for tumor cell killing because BAG6-deficient cells evaded immune detection. Taken together, the findings show that the dysregulated balance of exosomal vs soluble BAG6 expression may cause immune evasion of CLL cells.


Asunto(s)
Células Asesinas Naturales/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , Chaperonas Moleculares/farmacología , Receptores de Células Asesinas Naturales/metabolismo , Escape del Tumor/efectos de los fármacos , Animales , Antígeno CD56/metabolismo , Antígeno CD56/fisiología , Células Cultivadas , Exosomas/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/fisiología , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Ligandos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Ratones , Ratones SCID , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Receptores de IgG/metabolismo , Receptores de IgG/fisiología , Receptores de Células Asesinas Naturales/agonistas , Receptores de Células Asesinas Naturales/antagonistas & inhibidores , Solubilidad , Escape del Tumor/genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
9.
J Pathol ; 232(4): 405-14, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24659185

RESUMEN

Classical Hodgkin's lymphoma (cHL)-affected lymphoid tissue contains only a few malignant Hodgkin and Reed-Sternberg (HRS) cells, which are disseminated within a massive infiltrate of reactive cells. In particular, the innate immune infiltrate is deemed to support tumour growth by direct cell-cell interaction. Since they are rarely found in close proximity to the malignant cells in situ, we investigated whether cHL-derived extracellular vesicles might substitute for a direct cell-cell contact. We studied the crosstalk of the transmembrane proteins CD30 and CD30 ligand (CD30L) because they are selectively expressed on HRS and innate immune cells, respectively. Here, we showed that HRS cells released both the ectodomain as a soluble molecule (sCD30) and the entire receptor on the surface of extracellular vesicles. The vesicle diameter was 40-800 nm, as determined by cryo- and immune electron microscopy. In addition to CD30, typical extracellular vesicle markers were detected by mass spectrometry and flow cytometry, including tetraspanins, flotillins, heat shock proteins and adhesion molecules. In contrast to sCD30, vesicles caused a CD30-dependent release of interleukin-8 in CD30L(+) eosinophil-like EoL-1 cells and primary granulocytes from healthy donors, underscoring the functionality of CD30 on vesicles. In extracellular matrix (ECM)-embedded culture of HRS cells, a network of actin and tubulin-based protrusions guided CD30(+) vesicles into the micro-environment. This network targeted CD30(+) vesicles towards distant immune cells and caused a robust polarization of CD30L. Confocal laser scanning microscopy of 30 µm sections showed a CD30 vesicle-containing network also in cHL-affected lymphoid tissue of both mixed-cellularity and nodular sclerosing subtypes. This network might facilitate the communication between distant cell types in cHL tissue and allow a functional CD30-CD30L interaction in trans. The tubulin backbone of the network may provide a target for the therapy of cHL with antitubulin-based CD30 antibody constructs.


Asunto(s)
Comunicación Celular , Extensiones de la Superficie Celular/metabolismo , Enfermedad de Hodgkin/metabolismo , Antígeno Ki-1/metabolismo , Células de Reed-Sternberg/metabolismo , Vesículas Secretoras/metabolismo , Transducción de Señal , Microambiente Tumoral , Biomarcadores de Tumor/metabolismo , Ligando CD30/metabolismo , Línea Celular Tumoral , Extensiones de la Superficie Celular/inmunología , Extensiones de la Superficie Celular/ultraestructura , Microscopía por Crioelectrón , Eosinófilos/inmunología , Eosinófilos/metabolismo , Citometría de Flujo , Granulocitos/inmunología , Granulocitos/metabolismo , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/patología , Humanos , Interleucina-8/metabolismo , Espectrometría de Masas , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Tamaño de los Orgánulos , Células de Reed-Sternberg/inmunología , Células de Reed-Sternberg/ultraestructura , Vesículas Secretoras/inmunología , Vesículas Secretoras/ultraestructura
10.
STAR Protoc ; 5(2): 103045, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38691460

RESUMEN

The unbiased identification of less-abundant transcription factors, which direct the expression of a target gene, is technically challenging. Here, we present a protocol to analyze the locus-specific chromatin-regulating proteome using in situ capture of chromatin interactions by an inactive Cas9 (dCas9). We describe steps for designing guide RNAs and transfection, followed by precipitation of chromatin and associated proteins. In the last step, we describe the elution of DNA and proteins for PCR and mass spectrometric analysis, respectively. For complete details on the use and execution of this protocol, please refer to Alkhayer et al.1.


Asunto(s)
Sistemas CRISPR-Cas , Regiones Promotoras Genéticas , Proteómica , Humanos , Proteómica/métodos , Sistemas CRISPR-Cas/genética , Regiones Promotoras Genéticas/genética , Células HEK293 , Cromatina/genética , Cromatina/metabolismo , Cromatina/química , ARN Guía de Sistemas CRISPR-Cas/genética , Proteoma/metabolismo , Proteoma/análisis , Proteoma/genética
11.
J Extracell Vesicles ; 13(5): e12447, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38766978

RESUMEN

The continuous emergence of multidrug-resistant bacterial pathogens poses a major global healthcare challenge, with Klebsiella pneumoniae being a prominent threat. We conducted a comprehensive study on K. pneumoniae's antibiotic resistance mechanisms, focusing on outer membrane vesicles (OMVs) and polymyxin, a last-resort antibiotic. Our research demonstrates that OMVs protect bacteria from polymyxins. OMVs derived from Polymyxin B (PB)-stressed K. pneumoniae exhibited heightened protective efficacy due to increased vesiculation, compared to OMVs from unstressed Klebsiella. OMVs also shield bacteria from different bacterial families. This was validated ex vivo and in vivo using precision cut lung slices (PCLS) and Galleria mellonella. In all models, OMVs protected K. pneumoniae from PB and reduced the associated stress response on protein level. We observed significant changes in the lipid composition of OMVs upon PB treatment, affecting their binding capacity to PB. The altered binding capacity of single OMVs from PB stressed K. pneumoniae could be linked to a reduction in the lipid A amount of their released vesicles. Although the amount of lipid A per vesicle is reduced, the overall increase in the number of vesicles results in an increased protection because the sum of lipid A and therefore PB binding sites have increased. This unravels the mechanism of the altered PB protective efficacy of OMVs from PB stressed K. pneumoniae compared to control OMVs. The lipid A-dependent protective effect against PB was confirmed in vitro using artificial vesicles. Moreover, artificial vesicles successfully protected Klebsiella from PB ex vivo and in vivo. The findings indicate that OMVs act as protective shields for bacteria by binding to polymyxins, effectively serving as decoys and preventing antibiotic interaction with the cell surface. Our findings provide valuable insights into the mechanisms underlying antibiotic cross-protection and offer potential avenues for the development of novel therapeutic interventions to address the escalating threat of multidrug-resistant bacterial infections.


Asunto(s)
Antibacterianos , Klebsiella pneumoniae , Polimixina B , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Antibacterianos/farmacología , Animales , Polimixina B/farmacología , Membrana Externa Bacteriana/metabolismo , Polimixinas/farmacología , Vesículas Extracelulares/metabolismo , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/metabolismo , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos
12.
Cell Mol Immunol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942797

RESUMEN

Recent studies reveal a critical role of tumor cell-released extracellular vesicles (EVs) in pancreatic cancer (PC) progression. However, driver genes that direct EV function, the EV-recipient cells, and their cellular response to EV uptake remain to be identified. Therefore, we studied the role of Bcl-2-associated-anthanogene 6 (BAG6), a regulator of EV biogenesis for cancer progression. We used a Cre recombinase/LoxP-based reporter system in combination with single-cell RNA sequencing to monitor in vivo EV uptake and tumor microenvironment (TME) changes in mouse models for pancreatic ductal adenocarcinoma (PDAC) in a Bag6 pro- or deficient background. In vivo data were validated using mouse and human organoids and patient samples. Our data demonstrated that Bag6-deficient subcutaneous and orthotopic PDAC tumors accelerated tumor growth dependent on EV release. Mechanistically, this was attributed to mast cell (MC) activation via EV-associated IL33. Activated MCs promoted tumor cell proliferation and altered the composition of the TME affecting fibroblast polarization and immune cell infiltration. Tumor cell proliferation and fibroblast polarization were mediated via the MC secretome containing high levels of PDGF and CD73. Patients with high BAG6 gene expression and high protein plasma level have a longer overall survival indicating clinical relevance. The current study revealed a so far unknown tumor-suppressing activity of BAG6 in PDAC. Bag6-deficiency allowed the release of EV-associated IL33 which modulate the TME via MC activation promoting aggressive tumor growth. MC depletion using imatinib diminished tumor growth providing a scientific rationale to consider imatinib for patients stratified with low BAG6 expression and high MC infiltration. EVs derived from BAG6-deficient pancreatic cancer cells induce MC activation via IL33/Il1rl1. The secretome of activated MCs induces tumor proliferation and changes in the TME, particularly shifting fibroblasts into an inflammatory cancer-associated fibroblast (iCAF) phenotype. Blocking EVs or depleting MCs restricts tumor growth.

13.
Nat Microbiol ; 9(4): 905-921, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528146

RESUMEN

Some viruses are rarely transmitted orally or sexually despite their presence in saliva, breast milk, or semen. We previously identified that extracellular vesicles (EVs) in semen and saliva inhibit Zika virus infection. However, the antiviral spectrum and underlying mechanism remained unclear. Here we applied lipidomics and flow cytometry to show that these EVs expose phosphatidylserine (PS). By blocking PS receptors, targeted by Zika virus in the process of apoptotic mimicry, they interfere with viral attachment and entry. Consequently, physiological concentrations of EVs applied in vitro efficiently inhibited infection by apoptotic mimicry dengue, West Nile, Chikungunya, Ebola and vesicular stomatitis viruses, but not severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus 1, hepatitis C virus and herpesviruses that use other entry receptors. Our results identify the role of PS-rich EVs in body fluids in innate defence against infection via viral apoptotic mimicries, explaining why these viruses are primarily transmitted via PS-EV-deficient blood or blood-ingesting arthropods rather than direct human-to-human contact.


Asunto(s)
Líquidos Corporales , Vesículas Extracelulares , Virus , Infección por el Virus Zika , Virus Zika , Femenino , Humanos , Fosfatidilserinas , Acoplamiento Viral
14.
J Exp Clin Cancer Res ; 42(1): 203, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563605

RESUMEN

BACKGROUND: TP53, encoding the tumor suppressor p53, is frequently mutated in various cancers, producing mutant p53 proteins (mutp53) which can exhibit neomorphic, gain-of-function properties. The latter transform p53 into an oncoprotein that promotes metastatic tumor progression via downstream effectors such as ENTPD5, an endoplasmic reticulum UDPase involved in the calnexin/calreticulin cycle of N-glycoprotein biosynthesis. Elucidating the mechanisms underlying the pro-metastatic functions of the mutp53-ENTPD5 axis is crucial for developing targeted therapies for aggressive metastatic cancer. METHODS: We analyzed pancreatic, lung, and breast adenocarcinoma cells with p53 missense mutations to study the impact of mutp53 and ENTPD5 on the N-glycoproteins integrin-α5 (ITGA5) and integrin-ß1 (ITGB1), which heterodimerize to form the key fibronectin receptor. We assessed the role of the mutp53-ENTPD5 axis in integrin-dependent tumor-stroma interactions and tumor cell motility using adhesion, migration, and invasion assays, identifying and validating therapeutic intervention targets. We employed an orthotopic xenograft model of pancreatic ductal adenocarcinoma to examine in vivo targeting of mutp53-ENTPD5-mediated ITGA5 regulation for cancer therapy. RESULTS: Mutp53 depletion diminished ITGA5 and ITGB1 expression and impaired tumor cell adhesion, migration, and invasion, rescued by ENTPD5. The mutp53-ENTPD5 axis maintained ITGA5 expression and function via the calnexin/calreticulin cycle. Targeting this axis using ITGA5-blocking antibodies, α-glucosidase inhibitors, or pharmacological degradation of mutp53 by HSP90 inhibitors, such as Ganetespib, effectively inhibited ITGA5-mediated cancer cell motility in vitro. In the orthotopic xenograft model, Ganetespib reduced ITGA5 expression and metastasis in an ENTPD5-dependent manner. CONCLUSIONS: The mutp53-ENTPD5 axis fosters ITGA5 and ITGB1 expression and tumor cell motility through the calnexin/calreticulin cycle, contributing to cancer metastasis. ITGA5-blocking antibodies or α-glucosidase inhibitors target this axis and represent potential therapeutic options worth exploring in preclinical models. The pharmacologic degradation of mutp53 by HSP90 inhibitors effectively blocks ENTPD5-ITGA5-mediated cancer cell motility and metastasis in vivo, warranting further clinical evaluation in p53-mutant cancers. This research underscores the significance of understanding the complex interplay between mutp53, ENTPD5, and the calnexin/calreticulin cycle in integrin-mediated metastatic tumor progression, offering valuable insights for the development of potential therapeutic strategies.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Animales , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Calnexina/genética , Calnexina/metabolismo , Integrina alfa5/metabolismo , Calreticulina/metabolismo , Anticuerpos Bloqueadores/metabolismo , Inhibidores de Glicósido Hidrolasas , Línea Celular Tumoral , Chaperonas Moleculares/metabolismo , Modelos Animales de Enfermedad , Pirofosfatasas/metabolismo , Proteínas Oncogénicas/metabolismo
15.
Stem Cell Res Ther ; 14(1): 187, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507751

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) have been shown to exert their therapeutic effects through the secretion of broad spectrum of paracrine factors, including extracellular vesicles (EVs). Accordingly, EVs are being pursued as a promising alternative to cell-based therapies. Menstrual blood-derived stromal cells (MenSCs) are a type of MSC that, due to their immunomodulatory and regenerative properties, have emerged as an innovative source. Additionally, new strategies of cell priming may potentially alter the concentration and cargo of released EVs, leading to modification of their biological properties. In this study, we aimed to characterize the EVs released by MenSCs and compare their therapeutic potential under three different preconditioning conditions (proinflammatory stimuli, physioxia, and acute hypoxia). METHODS: MenSCs were isolated from five healthy women. Following culturing to 80% confluence, MenSCs were exposed to different priming conditions: basal (21% O2), proinflammatory stimuli (IFNγ and TNFα, 21% O2), physioxia (1-2% O2), and acute hypoxia (< 1% O2) for 48-72 h. Conditioned media from MenSCs was collected after 48 h and EVs were isolated by a combination of ultra-filtration and differential centrifugation. An extensive characterization ranging from nano-flow cytometry (nFC) to quantitative high-throughput shotgun proteomics was performed. Bioinformatics analyses were used to derive hypotheses on their biological properties. RESULTS: No differences in the morphology, size, or number of EVs released were detected between priming conditions. The proteome analysis associated with basal MenSC-EVs prominently revealed their immunomodulatory and regenerative capabilities. Furthermore, quantitative proteomic analysis of differentially produced MenSC-EVs provided sufficient evidence for the utility of the differential preconditioning in purpose-tailoring EVs for their therapeutic application: proinflammatory priming enhanced the anti-inflammatory, regenerative and immunomodulatory capacity in the innate response of EVs, physioxia priming also improves tissue regeneration, angiogenesis and their immunomodulatory capacity targeting on the adaptive response, while acute hypoxia priming, increased hemostasis and apoptotic processes regulation in MenSC-EVs, also by stimulating immunomodulation mainly through the adaptive response. CONCLUSIONS: Priming of MenSCs under proinflammatory and hypoxic conditions affected the cargo proteome of EVs released, resulting in different therapeutic potential, and thus warrants experimental exploration with the aim to generate better-defined MSC-derived bioproducts.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Femenino , Proteómica , Proteoma , Hipoxia/terapia
16.
iScience ; 26(12): 108401, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38047087

RESUMEN

A crucial requirement for metastasis formation in ovarian high-grade serous carcinoma (HGSC) is the disruption of the protective peritoneal mesothelium. Using co-culture systems of primary human cells, we discovered that tumor-associated NK cells induce TRAIL-dependent apoptosis in mesothelial cells via death receptors DR4 and DR5 upon encounter with activated T cells. Upregulation of TRAIL expression in NK cells concomitant with enhanced cytotoxicity toward mesothelial cells was driven predominantly by T-cell-derived TNFα, as shown by affinity proteomics-based analysis of the T cell secretome in conjunction with functional studies. Consistent with these findings, we detected apoptotic mesothelial cells in the peritoneal fluid of HGSC patients. In contrast to mesothelial cells, HGSC cells express negligible levels of both DR4 and DR5 and are TRAIL resistant, indicating cell-type-selective killing by NK cells. Our data point to a cooperative action of T and NK in breaching the mesothelial barrier in HGSC patients.

17.
Nat Commun ; 14(1): 7197, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938588

RESUMEN

Bioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost. Here, we established a cell-free protein synthesis (CFPS) pipeline for the rapid and inexpensive production of antimicrobial peptides (AMPs) directly from DNA templates. To validate our platform, we used deep learning to design thousands of AMPs de novo. Using computational methods, we prioritized 500 candidates that we produced and screened with our CFPS pipeline. We identified 30 functional AMPs, which we characterized further through molecular dynamics simulations, antimicrobial activity and toxicity. Notably, six de novo-AMPs feature broad-spectrum activity against multidrug-resistant pathogens and do not develop bacterial resistance. Our work demonstrates the potential of CFPS for high throughput and low-cost production and testing of bioactive peptides within less than 24 h.


Asunto(s)
Péptidos Antimicrobianos , Aprendizaje Profundo , Replicación del ADN , Simulación de Dinámica Molecular , Biosíntesis de Proteínas
18.
Front Cell Dev Biol ; 10: 878620, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172289

RESUMEN

E-cadherin, a transmembrane protein involved in epithelial cell-cell adhesion and signaling, is found in exosomal fractions isolated from human body fluids. A cellular mechanism for recruitment of E-cadherin into extracellular vesicles (EVs) has not yet been defined. Here, we show that E-cadherin is incorporated into the membrane of EVs with the extracellular domain exposed at the vesicle surface. This recruitment depends on the endosomal sorting complex required for transport I (ESCRT-I) component Tsg101 and a highly conserved tetrapeptide P(S/T)AP late domain motif in the cytoplasmic tail of E-cadherin that mediates interaction with Tsg101. Mutation of this motif results in a loss of interaction and a dramatic decrease in exosomal E-cadherin secretion. We conclude, that the process of late domain mediated exosomal recruitment is exerted by this endogenous non-ESCRT transmembrane protein.

19.
Biomedicines ; 10(3)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35327424

RESUMEN

Extracellular vesicles (EVs) are released by virtually all cells and may serve as intercellular communication structures by transmitting molecules such as proteins, lipids, and nucleic acids between cells. MicroRNAs (miRNAs) are an abundant class of vesicular RNA playing a pivotal role in regulating intracellular processes. In this work, we aimed to characterize vesicular miRNA profiles released in a side-directed manner by bronchial epithelial cells from healthy and asthmatic subjects using an air-liquid interface cell culture model. EVs were isolated from a culture medium collected from either the basolateral or apical cell side of the epithelial cell cultures and characterized by nano-flow cytometry (NanoFCM) and bead-based flow cytometry. EV-associated RNA profiles were assessed by small RNA sequencing and subsequent bioinformatic analyses. Furthermore, miRNA-associated functions and targets were predicted and miRNA network analyses were performed. EVs were released at higher numbers to the apical cell side of the epithelial cells and were considerably smaller in the apical compared to the basolateral compartment. EVs from both compartments showed a differential tetraspanins surface marker expression. Furthermore, 236 miRNAs were differentially expressed depending on the EV secretion side, regardless of the disease phenotype. On the apical cell side, 32 miRNAs were significantly altered in asthmatic versus healthy conditions, while on the basolateral cell side, 23 differentially expressed miRNAs could be detected. Downstream KEGG pathway analysis predicted mTOR and MAPK signaling pathways as potential downstream targets of apically secreted miRNAs. In contrast, miRNAs specifically detected at the basolateral side were associated with processes of T and B cell receptor signaling. The study proves a compartmentalized packaging of EVs by bronchial epithelial cells supposedly associated with site-specific functions of cargo miRNAs, which are considerably affected by disease conditions such as asthma.

20.
Cancers (Basel) ; 13(18)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34572948

RESUMEN

Extracellular vesicles released by tumor cells (T-EVs) are known to contain danger-associated molecular patterns (DAMPs), which are released in response to cellular stress to alert the immune system to the dangerous cell. Part of this defense mechanism is the heat shock protein 70 (HSP70), and HSP70-positive T-EVs are known to trigger anti-tumor immune responses. Moreover, extracellular HSP70 acts as an immunogen that contributes to the cross-presentation of major histocompatibility complex (MHC) class I molecules. However, the release of DAMPs, including HSP70, may also induce chronic inflammation or suppress immune cell activity, promoting tumor growth. Here, we summarize the current knowledge on soluble, membrane-bound, and EV-associated HSP70 regarding their functions in regulating tumor-associated immune cells in the tumor microenvironment. The molecular mechanisms involved in the translocation of HSP70 to the plasma membrane of tumor cells and its release via exosomes or soluble proteins are summarized. Furthermore, perspectives for immunotherapies aimed to target HSP70 and its receptors for cancer treatment are discussed and presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA