Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 27(3): 435-445, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36644817

RESUMEN

Microglia are the primary resident immune cells in the retina. They regulate neuronal survival and synaptic pruning making them essential for normal development. Following injury, they mediate adaptive responses and under pathological conditions they can trigger neurodegeneration exacerbating the effect of a disease. Retinal organoids derived from human induced pluripotent stem cells (hiPSCs) are increasingly being used for a range of applications, including disease modelling, development of new therapies and in the study of retinogenesis. Despite many similarities to the retinas developed in vivo, they lack some key physiological features, including immune cells. We engineered an hiPSC co-culture system containing retinal organoids and microglia-like (iMG) cells and tested their retinal invasion capacity and function. We incorporated iMG into retinal organoids at 13 weeks and tested their effect on function and development at 15 and 22 weeks of differentiation. Our key findings showed that iMG cells were able to respond to endotoxin challenge in monocultures and when co-cultured with the organoids. We show that retinal organoids developed normally and retained their ability to generate spiking activity in response to light. Thus, this new co-culture immunocompetent in vitro retinal model provides a platform with greater relevance to the in vivo human retina.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Microglía , Retina , Organoides , Diferenciación Celular
2.
Toxicol Pathol ; 51(3): 135-147, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37439009

RESUMEN

Branaplam is a splicing modulator previously under development as a therapeutic agent for Spinal Muscular Atrophy Type 1 and Huntington's disease. Branaplam increased the levels of survival motor neuron protein in preclinical studies and was well tolerated in early clinical studies; however, peripheral neurotoxicity was observed in a preclinical safety study in juvenile dogs. The aim of this study was to determine whether serum neurofilament light chain (NfL) concentrations in dogs could serve as a monitoring biomarker for branaplam-induced peripheral neurotoxicity. A 30-week time-course investigative study in dogs treated with vehicle control (negative control), neurotoxic pyridoxine (positive control), or branaplam was conducted to assess neuropathology, nerve morphometry, electrophysiological measurements, gene expression profiles, and correlation to NfL serum concentrations. In branaplam-treated animals, a mild to moderate nerve fiber degeneration was observed in peripheral nerves correlating with increased serum NfL concentrations, but there were no observed signs or changes in electrophysiological parameters. Dogs with pyridoxine-induced peripheral axonal degeneration displayed clinical signs and electrophysiological changes in addition to elevated serum NfL. This study suggests that NfL may be useful as an exploratory biomarker to assist in detecting and monitoring treatment-related peripheral nerve injury, with or without clinical signs, associated with administration of branaplam and other compounds bearing a neurotoxic risk.


Asunto(s)
Filamentos Intermedios , Síndromes de Neurotoxicidad , Animales , Perros , Piridoxina , Biomarcadores , Síndromes de Neurotoxicidad/etiología , Degeneración Nerviosa
3.
J Pharmacol Exp Ther ; 369(3): 428-442, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30894455

RESUMEN

The colony-stimulating factor-1 (CSF-1) receptor pathway has been implicated in a variety of diseases, and CSF-1-dependent mechanisms are also involved in bloodborne protein clearance. Lacnotuzumab is a novel, high-affinity, humanized, anti-CSF-1 monoclonal antibody that prevents CSF-1-mediated receptor activation. This phase 1, two-part, double-blind study in healthy volunteers assessed the safety and tolerability of lacnotuzumab and its pharmacokinetics (PK) and pharmacodynamic properties. Part A (n = 36) was a single, ascending-dose assessment of eight lacnotuzumab doses (0.01-20 mg/kg); in part B (n = 16), lacnotuzumab was administered at either 5 or 10 mg/kg. In each study cohort, individuals were randomized 3:1 to lacnotuzumab or placebo. Lacnotuzumab was generally well tolerated. At higher doses (10 and 20 mg/kg), creatine kinase (CK) elevations (>5× the upper limit of normal, but asymptomatic and reversible) and mild transient periorbital swelling were reported. Most adverse events (AEs) were low-grade, no unexpected or novel AEs were observed, and there were no discontinuations for AEs. Free, unbound lacnotuzumab serum concentration-time profiles showed nonlinear PK across doses from 0.01 to 20 mg/kg, with faster apparent elimination at lower doses or concentrations; this finding was consistent with apparent target-mediated drug disposition. Lacnotuzumab also showed dose-dependent, on-target effects on multiple downstream biomarkers. Preclinical investigations of the CK elevation and periorbital swelling observed after lacnotuzumab administration suggest that these are reversible, nonpathological events linked to inhibition of the CSF-1 pathway. These data support further evaluation of lacnotuzumab in clinical studies.

4.
Bioinformatics ; 33(1): 148-149, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27605099

RESUMEN

The lack of controlled terminology and ontology usage leads to incomplete search results and poor interoperability between databases. One of the major underlying challenges of data integration is curating data to adhere to controlled terminologies and/or ontologies. Finding subject matter experts with the time and skills required to perform data curation is often problematic. In addition, existing tools are not designed for continuous data integration and collaborative curation. This results in time-consuming curation workflows that often become unsustainable. The primary objective of OntoBrowser is to provide an easy-to-use online collaborative solution for subject matter experts to map reported terms to preferred ontology (or code list) terms and facilitate ontology evolution. Additional features include web service access to data, visualization of ontologies in hierarchical/graph format and a peer review/approval workflow with alerting. AVAILABILITY AND IMPLEMENTATION: The source code is freely available under the Apache v2.0 license. Source code and installation instructions are available at http://opensource.nibr.com This software is designed to run on a Java EE application server and store data in a relational database. CONTACT: philippe.marc@novartis.com.


Asunto(s)
Ontologías Biológicas , Curaduría de Datos/métodos , Bases de Datos Factuales/normas , Revisión por Pares/métodos , Programas Informáticos , Vocabulario Controlado
5.
Arch Toxicol ; 92(5): 1877-1891, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29556671

RESUMEN

A high incidence of hemangiosarcoma (HSA) was observed in mice treated for 2 years with siponimod, a sphingosine-1-phosphate receptor 1 (S1P1) functional antagonist, while no such tumors were observed in rats under the same treatment conditions. In 3-month rat (90 mg/kg/day) and 9-month mouse (25 and 75 mg/kg/day) in vivo mechanistic studies, vascular endothelial cell (VEC) activation was observed in both species, but VEC proliferation and persistent increases in circulating placental growth factor 2 (PLGF2) were only seen in the mouse. In mice, these effects were sustained over the 9-month study duration, while in rats increased mitotic gene expression was present at day 3 only and PLGF2 was induced only during the first week of treatment. In the mouse, the persistent VEC activation, mitosis induction, and PLGF2 stimulation likely led to sustained neo-angiogenesis which over life-long treatment may result in HSA formation. In rats, despite sustained VEC activation, the transient mitotic and PLGF2 stimuli did not result in the formation of HSA. In vitro, the mouse and rat primary endothelial cell cultures mirrored their respective in vivo findings for cell proliferation and PLGF2 release. Human VECs, like rat cells, were unresponsive to siponimod treatment with no proliferative response and no release of PLGF2 at all tested concentrations. Hence, it is suggested that the human cells also reproduce a lack of in vivo response to siponimod. In conclusion, the molecular mechanisms leading to siponimod-induced HSA in mice are considered species specific and likely irrelevant to humans.


Asunto(s)
Azetidinas/efectos adversos , Compuestos de Bencilo/efectos adversos , Células Endoteliales/efectos de los fármacos , Hemangiosarcoma/inducido químicamente , Pruebas de Toxicidad Crónica/métodos , Administración Oral , Animales , Azetidinas/administración & dosificación , Compuestos de Bencilo/administración & dosificación , Células Cultivadas , Endotelio Vascular/citología , Hemangiosarcoma/genética , Humanos , Masculino , Ratones Endogámicos , Factor de Crecimiento Placentario/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Receptores de Lisoesfingolípidos/metabolismo , Especificidad de la Especie , Toxicocinética , Transcriptoma/efectos de los fármacos
6.
Drug Metab Dispos ; 43(1): 126-39, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25339109

RESUMEN

Although skin is the largest organ of the human body, cutaneous drug metabolism is often overlooked, and existing experimental models are insufficiently validated. This proof-of-concept study investigated phase II biotransformation of 11 test substrates in fresh full-thickness human skin explants, a model containing all skin cell types. Results show that skin explants have significant capacity for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation. Novel skin metabolites were identified, including acyl glucuronides of indomethacin and diclofenac, glucuronides of 17ß-estradiol, N-acetylprocainamide, and methoxy derivatives of 4-nitrocatechol and 2,3-dihydroxynaphthalene. Measured activities for 10 µM substrate incubations spanned a 1000-fold: from the highest 4.758 pmol·mg skin(-1)·h(-1) for p-toluidine N-acetylation to the lowest 0.006 pmol·mg skin(-1)·h(-1) for 17ß-estradiol 17-glucuronidation. Interindividual variability was 1.4- to 13.0-fold, the highest being 4-methylumbelliferone and diclofenac glucuronidation. Reaction rates were generally linear up to 4 hours, although 24-hour incubations enabled detection of metabolites in trace amounts. All reactions were unaffected by the inclusion of cosubstrates, and freezing of the fresh skin led to loss of glucuronidation activity. The predicted whole-skin intrinsic metabolic clearances were significantly lower compared with corresponding whole-liver intrinsic clearances, suggesting a relatively limited contribution of the skin to the body's total systemic phase II enzyme-mediated metabolic clearance. Nevertheless, the fresh full-thickness skin explants represent a suitable model to study cutaneous phase II metabolism not only in drug elimination but also in toxicity, as formation of acyl glucuronides and sulfate conjugates could play a role in skin adverse reactions.


Asunto(s)
Catecoles/metabolismo , Glutatión/metabolismo , Fase II de la Desintoxicación Metabólica/fisiología , Piel/metabolismo , Acetilación , Adulto , Anciano , Biotransformación/fisiología , Diclofenaco/metabolismo , Femenino , Glucurónidos/metabolismo , Humanos , Hígado/metabolismo , Masculino , Metilación , Persona de Mediana Edad , Naftoles/metabolismo , Sulfatos/metabolismo
7.
Toxicol Pathol ; 43(5): 694-703, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25630683

RESUMEN

Sphingosine-1-phosphate (S1P) lyase is considered as a drug target in autoimmune diseases based on the protective effect of reducing activity of the enzyme in animal models of inflammation. Since S1P lyase deficiency in mice causes a severe, lethal phenotype, it was of interest to investigate any pathological alterations associated with only partially reduced activity of S1P lyase as may be encountered upon pharmacological inhibition. Both genetic reduction of S1P lyase activity in mice and inhibition of S1P lyase with a low-molecular-weight compound in rats consistently resulted in podocyte-based kidney toxicity, which is the most severe finding. In addition, skin irritation and platelet activation were observed in both instances. The similarity of the findings in both the genetic model and the pharmacological study supports the value of analyzing inducible partially target-deficient mice for safety assessment. If the findings described in rodents translate to humans, target-related toxicity, particularly podocyte dysfunction, may limit chronic systemic treatment of autoimmune diseases with S1P lyase inhibitors. Furthermore, partial deficiency or inhibition of S1P lyase appears to provide an in vivo rodent model to enable studies on the mechanism of podocyte dysfunction.


Asunto(s)
Aldehído-Liasas/antagonistas & inhibidores , Aldehído-Liasas/metabolismo , Activación Plaquetaria/fisiología , Podocitos/enzimología , Proteinuria/enzimología , Aldehído-Liasas/genética , Animales , Femenino , Riñón/enzimología , Riñón/patología , Masculino , Ratones , Proteinuria/sangre , Ratas , Piel/enzimología , Piel/patología , Tamoxifeno/farmacología
8.
Drug Metab Dispos ; 42(12): 2049-57, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25249692

RESUMEN

Human aldehyde oxidase (AO) is a molybdoflavoenzyme that commonly oxidizes azaheterocycles in therapeutic drugs. Although high metabolic clearance by AO resulted in several drug failures, existing in vitro-in vivo correlations are often poor and the extrahepatic role of AO practically unknown. This study investigated enzymatic activity of AO in fresh human skin, the largest organ of the body, frequently exposed to therapeutic drugs and xenobiotics. Fresh, full-thickness human skin was obtained from 13 individual donors and assayed with two specific AO substrates: carbazeran and zoniporide. Human skin explants from all donors metabolized carbazeran to 4-hydroxycarbazeran and zoniporide to 2-oxo-zoniporide. Average rates of carbazeran and zoniporide hydroxylations were 1.301 and 0.164 pmol⋅mg skin(-1)⋅h(-1), resulting in 13 and 2% substrate turnover, respectively, after 24 hours of incubation with 10 µM substrate. Hydroxylation activities for the two substrates were significantly correlated (r(2) = 0.769), with interindividual variability ranging from 3-fold (zoniporide) to 6-fold (carbazeran). Inclusion of hydralazine, an irreversible inhibitor of AO, resulted in concentration-dependent decrease of hydroxylation activities, exceeding 90% inhibition of carbazeran 4-hydroxylation at 100 µM inhibitor. Reaction rates were linear up to 4 hours and well described by Michaelis-Menten enzyme kinetics. Comparison of carbazeran and zoniporide hydroxylation with rates of triclosan glucuronidation and sulfation and p-toluidine N-acetylation showed that cutaneous AO activity is comparable to tested phase II metabolic reactions, indicating a significant role of AO in cutaneous drug metabolism. To our best knowledge, this is the first report of AO enzymatic activity in human skin.


Asunto(s)
Aldehído Oxidasa/metabolismo , Piel/enzimología , Piel/metabolismo , Adulto , Anciano , Carbamatos/metabolismo , Femenino , Guanidinas/metabolismo , Humanos , Hidralazina/metabolismo , Hidroxilación/fisiología , Cinética , Masculino , Fase II de la Desintoxicación Metabólica/fisiología , Persona de Mediana Edad , Pirazoles/metabolismo , Toluidinas/metabolismo
9.
Int J Mol Sci ; 15(11): 21136-54, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25405742

RESUMEN

The high-quality in vivo preclinical safety data produced by the pharmaceutical industry during drug development, which follows numerous strict guidelines, are mostly not available in the public domain. These safety data are sometimes published as a condensed summary for the few compounds that reach the market, but the majority of studies are never made public and are often difficult to access in an automated way, even sometimes within the owning company itself. It is evident from many academic and industrial examples, that useful data mining and model development requires large and representative data sets and careful curation of the collected data. In 2010, under the auspices of the Innovative Medicines Initiative, the eTOX project started with the objective of extracting and sharing preclinical study data from paper or pdf archives of toxicology departments of the 13 participating pharmaceutical companies and using such data for establishing a detailed, well-curated database, which could then serve as source for read-across approaches (early assessment of the potential toxicity of a drug candidate by comparison of similar structure and/or effects) and training of predictive models. The paper describes the efforts undertaken to allow effective data sharing intellectual property (IP) protection and set up of adequate controlled vocabularies) and to establish the database (currently with over 4000 studies contributed by the pharma companies corresponding to more than 1400 compounds). In addition, the status of predictive models building and some specific features of the eTOX predictive system (eTOXsys) are presented as decision support knowledge-based tools for drug development process at an early stage.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Preparaciones Farmacéuticas/química , Simulación por Computador , Minería de Datos , Bases de Datos Farmacéuticas , Descubrimiento de Drogas , Humanos , Modelos Biológicos , Vocabulario Controlado
10.
Nat Rev Drug Discov ; 22(4): 317-335, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36781957

RESUMEN

For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.


Asunto(s)
Industria Farmacéutica , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Biomarcadores , Tecnología , Evaluación Preclínica de Medicamentos
11.
Int J Mol Sci ; 13(3): 3820-3846, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22489185

RESUMEN

There is a widespread awareness that the wealth of preclinical toxicity data that the pharmaceutical industry has generated in recent decades is not exploited as efficiently as it could be. Enhanced data availability for compound comparison ("read-across"), or for data mining to build predictive tools, should lead to a more efficient drug development process and contribute to the reduction of animal use (3Rs principle). In order to achieve these goals, a consortium approach, grouping numbers of relevant partners, is required. The eTOX ("electronic toxicity") consortium represents such a project and is a public-private partnership within the framework of the European Innovative Medicines Initiative (IMI). The project aims at the development of in silico prediction systems for organ and in vivo toxicity. The backbone of the project will be a database consisting of preclinical toxicity data for drug compounds or candidates extracted from previously unpublished, legacy reports from thirteen European and European operation-based pharmaceutical companies. The database will be enhanced by incorporation of publically available, high quality toxicology data. Seven academic institutes and five small-to-medium size enterprises (SMEs) contribute with their expertise in data gathering, database curation, data mining, chemoinformatics and predictive systems development. The outcome of the project will be a predictive system contributing to early potential hazard identification and risk assessment during the drug development process. The concept and strategy of the eTOX project is described here, together with current achievements and future deliverables.


Asunto(s)
Bases de Datos Factuales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Sistemas Especialistas , Bases del Conocimiento , Animales , Minería de Datos , Evaluación Preclínica de Medicamentos , Humanos , Difusión de la Información , Medición de Riesgo
12.
Curr Res Toxicol ; 3: 100091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353522

RESUMEN

Sotuletinib (BLZ945), a CSF1-R specific kinase inhibitor developed for the treatment of Amyotrophic Lateral Sclerosis, induced liver enzyme elevation in absence of hepatocellular lesions in preclinical rat and monkey studies. The monocytic cell family, including Kupffer cells, e.g., the liver-resident macrophages, are dependent upon CSF1 pathway activation for their survival, proliferation, and differentiation. Kupffer cells act as the main body compartment responsible for elimination of some blood-borne proteins, like ALT, AST, and few others. The depletion of Kupffer cells through CSF1 pathway inhibition has already been hypothesized as responsible for apparent liver enzyme elevation without detectable corresponding liver damage. However, a release of these biomarkers from unseen hepatic lesions or from other organs cannot be excluded. In order to eliminate a potential contribution of ALT elevation from an internal organ source, we injected recombinant his-Tagged ALT1 into rats pretreated with Sotuletinib. The elimination rate of the exogenous ALT1 was significantly lower in treated animals, demonstrating a delayed clearance independently of any potential organ lesions.

13.
Stem Cells Transl Med ; 11(2): 159-177, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35298655

RESUMEN

Retinal drug toxicity screening is essential for the development of safe treatment strategies for a large number of diseases. To this end, retinal organoids derived from human pluripotent stem cells (hPSCs) provide a suitable screening platform due to their similarity to the human retina and the ease of generation in large-scale formats. In this study, two hPSC cell lines were differentiated to retinal organoids, which comprised all key retinal cell types in multiple nuclear and synaptic layers. Single-cell RNA-Seq of retinal organoids indicated the maintenance of retinal ganglion cells and development of bipolar cells: both cell types segregated into several subtypes. Ketorolac, digoxin, thioridazine, sildenafil, ethanol, and methanol were selected as key compounds to screen on retinal organoids because of their well-known retinal toxicity profile described in the literature. Exposure of the hPSC-derived retinal organoids to digoxin, thioridazine, and sildenafil resulted in photoreceptor cell death, while digoxin and thioridazine additionally affected all other cell types, including Müller glia cells. All drug treatments caused activation of astrocytes, indicated by dendrites sprouting into neuroepithelium. The ability to respond to light was preserved in organoids although the number of responsive retinal ganglion cells decreased after drug exposure. These data indicate similar drug effects in organoids to those reported in in vivo models and/or in humans, thus providing the first robust experimental evidence of their suitability for toxicological studies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Diferenciación Celular , Digoxina/metabolismo , Digoxina/farmacología , Humanos , Retina/metabolismo , Citrato de Sildenafil/metabolismo , Citrato de Sildenafil/farmacología , Tioridazina/metabolismo , Tioridazina/farmacología
14.
Int J Toxicol ; 30(3): 300-12, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21653914

RESUMEN

This article addresses the issue of miscorrelation between hepatic injury biomarkers and histopathological findings in the drug development context. Our studies indicate that the use of toxicogenomics can aid in the drug development decision-making process associated with such miscorrelated data. BLZ945 was developed as a Colony-Stimulating Factor 1 Receptor (CSF-1R) inhibitor. Treatment of BLZ945 in rats and monkeys increased serum alanine aminotransferase (ALT) and aspartate transaminase (AST). However, liver hypertrophy was the only histopathological liver finding in rats, and there was no change in the livers of monkeys. Longer treatment of BLZ945 in rats for 6 weeks caused up to 6-fold elevation of ALT, yet hepatocyte necrosis was not detected microscopically. Toxicogenomic profiling of liver samples demonstrated that the genes associated with early response to liver injury, apoptosis/necrosis, inflammation, oxidative stress, and metabolic enzymes were upregulated. Studies are ongoing to evaluate the mechanisms underlying BL945-induced ALT and AST elevations.


Asunto(s)
Benzotiazoles/toxicidad , Biomarcadores/sangre , Hígado/efectos de los fármacos , Farmacogenética , Ácidos Picolínicos/toxicidad , Pruebas de Toxicidad , Alanina Transaminasa/sangre , Alanina Transaminasa/genética , Animales , Aspartato Aminotransferasas/sangre , Aspartato Aminotransferasas/genética , Regulación hacia Abajo/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Hígado/enzimología , Hígado/patología , Macaca fascicularis , ARN Mensajero/genética , Ratas , Ratas Wistar , Regulación hacia Arriba/efectos de los fármacos
15.
ALTEX ; 38(2): 187-197, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33637997

RESUMEN

Pre-competitive data sharing can offer the pharmaceutical industry significant benefits in terms of reducing the time and costs involved in getting a new drug to market through more informed testing strategies and knowledge gained by pooling data. If sufficient data is shared and can be co-analyzed, then it can also offer the potential for reduced animal usage and improvements in the in silico prediction of toxicological effects. Data sharing benefits can be further enhanced by applying the FAIR Guiding Principles, reducing time spent curating, transforming and aggregating datasets and allowing more time for data mining and analysis. We hope to facilitate data sharing by other organizations and initiatives by describing lessons learned as part of the Enhancing TRANslational SAFEty Assessment through Integrative Knowledge Management (eTRANSAFE) project, an Innovative Medicines Initiative (IMI) partnership which aims to integrate publicly available data sources with proprietary preclinical and clinical data donated by pharmaceutical organizations. Methods to foster trust and overcome non-technical barriers to data sharing such as legal and IPR (intellectual property rights) are described, including the security requirements that pharmaceutical organizations generally expect to be met. We share the consensus achieved among pharmaceutical partners on decision criteria to be included in internal clearance pro­cedures used to decide if data can be shared. We also report on the consensus achieved on specific data fields to be excluded from sharing for sensitive preclinical safety and pharmacology data that could otherwise not be shared.


Asunto(s)
Minería de Datos , Difusión de la Información , Animales , Simulación por Computador , Industria Farmacéutica
16.
bioRxiv ; 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33791693

RESUMEN

Repurposing drugs as treatments for COVID-19 has drawn much attention. A common strategy has been to screen for established drugs, typically developed for other indications, that are antiviral in cells or organisms. Intriguingly, most of the drugs that have emerged from these campaigns, though diverse in structure, share a common physical property: cationic amphiphilicity. Provoked by the similarity of these repurposed drugs to those inducing phospholipidosis, a well-known drug side effect, we investigated phospholipidosis as a mechanism for antiviral activity. We tested 23 cationic amphiphilic drugs-including those from phenotypic screens and others that we ourselves had found-for induction of phospholipidosis in cell culture. We found that most of the repurposed drugs, which included hydroxychloroquine, azithromycin, amiodarone, and four others that have already progressed to clinical trials, induced phospholipidosis in the same concentration range as their antiviral activity; indeed, there was a strong monotonic correlation between antiviral efficacy and the magnitude of the phospholipidosis. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the gross physical properties of drugs, and does not reflect specific target-based activities, rather it may be considered a confound in early drug discovery. Understanding its role in infection, and detecting its effects rapidly, will allow the community to better distinguish between drugs and lead compounds that more directly impact COVID-19 from the large proportion of molecules that manifest this confounding effect, saving much time, effort and cost.

17.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800393

RESUMEN

eTRANSAFE is a research project funded within the Innovative Medicines Initiative (IMI), which aims at developing integrated databases and computational tools (the eTRANSAFE ToxHub) that support the translational safety assessment of new drugs by using legacy data provided by the pharmaceutical companies that participate in the project. The project objectives include the development of databases containing preclinical and clinical data, computational systems for translational analysis including tools for data query, analysis and visualization, as well as computational models to explain and predict drug safety events.

18.
Science ; 373(6554): 541-547, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34326236

RESUMEN

Repurposing drugs as treatments for COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drawn much attention. Beginning with sigma receptor ligands and expanding to other drugs from screening in the field, we became concerned that phospholipidosis was a shared mechanism underlying the antiviral activity of many repurposed drugs. For all of the 23 cationic amphiphilic drugs we tested, including hydroxychloroquine, azithromycin, amiodarone, and four others already in clinical trials, phospholipidosis was monotonically correlated with antiviral efficacy. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the physicochemical properties of drugs and does not reflect specific target-based activities-rather, it may be considered a toxic confound in early drug discovery. Early detection of phospholipidosis could eliminate these artifacts, enabling a focus on molecules with therapeutic potential.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , Lipidosis/inducido químicamente , Fosfolípidos/metabolismo , SARS-CoV-2/efectos de los fármacos , Células A549 , Animales , Antivirales/química , Antivirales/uso terapéutico , Antivirales/toxicidad , COVID-19/virología , Cationes , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , SARS-CoV-2/fisiología , Tensoactivos/química , Tensoactivos/farmacología , Tensoactivos/toxicidad , Células Vero , Replicación Viral/efectos de los fármacos
19.
ALTEX ; 37(3): 343-349, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32242633

RESUMEN

Sharing legacy data from in vivo toxicity studies offers the opportunity to analyze the variability of control groups stratified for strain, age, duration of study, vehicle and other experimental conditions. Historical animal control group data may lead to a repository, which could be used to construct virtual control groups (VCGs) for toxicity studies. VCGs are an established concept in clinical trials, but the idea of replacing living beings with virtual data sets has so far not been introduced into the design of regulatory animal studies. The use of VCGs has the potential of a 25% reduction in animal use by replacing the control group animals with existing randomized data sets. Prerequisites for such an approach are the availability of large and well-structured control data sets as well as thorough statistical evaluations. the foundation of data sharing has been laid within the Innovative Medicines Initiatives projects eTOX and eTRANSAFE. For a proof of principle participating companies have started to collect control group data for subacute (4-week) GLP studies with Wistar rats (the strain preferentially used in Europe) and are characterizing these data for its variability. In a second step, the control group data will be shared among the companies and cross-company variability will be investigated. In a third step, a set of studies will be analyzed to assess whether the use of VCG data would have influenced the outcome of the study compared to the real control group.


Asunto(s)
Bases de Datos Factuales , Evaluación Preclínica de Medicamentos/métodos , Difusión de la Información , Proyectos de Investigación , Pruebas de Toxicidad/métodos , Bases del Conocimiento
20.
EXS ; 99: 259-88, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19157065

RESUMEN

Recent advances in technological approaches for mapping and characterizing the epigenome are generating a wealth of new opportunities for exploring the relationship between epigenetic modifications, human disease and the therapeutic potential of pharmaceutical drugs. While the best examples for xenobiotic-induced epigenetic perturbations come from the field of non-genotoxic carcinogenesis, there is growing evidence for the relevance of epigenetic mechanisms associated with a wide range of disease areas and drug targets. The application of epigenomic profiling technologies to drug safety sciences has great potential for providing novel insights into the molecular basis of long-lasting cellular perturbations including increased susceptibility to disease and/or toxicity, memory of prior immune stimulation and/or drug exposure, and transgenerational effects.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Epigénesis Genética , Toxicología/métodos , Animales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Toxicología/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA