Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 96(1): 147-52, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25500261

RESUMEN

Abnormal ocular motility is a common clinical feature in congenital cranial dysinnervation disorder (CCDD). To date, eight genes related to neuronal development have been associated with different CCDD phenotypes. By using linkage analysis, candidate gene screening, and exome sequencing, we identified three mutations in collagen, type XXV, alpha 1 (COL25A1) in individuals with autosomal-recessive inheritance of CCDD ophthalmic phenotypes. These mutations affected either stability or levels of the protein. We further detected altered levels of sAPP (neuronal protein involved in axon guidance and synaptogenesis) and TUBB3 (encoded by TUBB3, which is mutated in CFEOM3) as a result of null mutations in COL25A1. Our data suggest that lack of COL25A1 might interfere with molecular pathways involved in oculomotor neuron development, leading to CCDD phenotypes.


Asunto(s)
Genes Recesivos , Colágenos no Fibrilares/genética , Trastornos de la Motilidad Ocular/genética , Enfermedades del Nervio Oculomotor/genética , Niño , Exoma , Femenino , Ligamiento Genético , Humanos , Masculino , Mutación , Neurogénesis/genética , Colágenos no Fibrilares/metabolismo , Fenotipo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
2.
Heart Fail Rev ; 23(2): 261-272, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29396779

RESUMEN

More than any other organ, the heart is particularly sensitive to gene expression deregulation, often leading in the long run to impaired contractile performances and excessive fibrosis deposition progressing to heart failure. Recent investigations provide evidences that the protein phosphatases (PPs), as their counterpart protein kinases, are important regulators of cardiac physiology and development. Two main groups, the protein serine/threonine phosphatases and the protein tyrosine phosphatases (PTPs), constitute the PPs family. Here, we provide an overview of the role of PTP subfamily in the development of the heart and in cardiac pathophysiology. Based on recent in silico studies, we highlight the importance of PTPs as therapeutic targets for the development of new drugs to restore PTPs signaling in the early and late events of heart failure.


Asunto(s)
Insuficiencia Cardíaca/enzimología , Miocardio/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Volumen Sistólico/fisiología , Animales , Biomarcadores/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Transducción de Señal
3.
Am J Hum Genet ; 94(1): 73-9, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24360803

RESUMEN

Ciliopathies are characterized by a pattern of multisystem involvement that is consistent with the developmental role of the primary cilium. Within this biological module, mutations in genes that encode components of the cilium and its anchoring structure, the basal body, are the major contributors to both disease causality and modification. However, despite rapid advances in this field, the majority of the genes that drive ciliopathies and the mechanisms that govern the pronounced phenotypic variability of this group of disorders remain poorly understood. Here, we show that mutations in CSPP1, which encodes a core centrosomal protein, are disease causing on the basis of the independent identification of two homozygous truncating mutations in three consanguineous families (one Arab and two Hutterite) affected by variable ciliopathy phenotypes ranging from Joubert syndrome to the more severe Meckel-Gruber syndrome with perinatal lethality and occipital encephalocele. Consistent with the recently described role of CSPP1 in ciliogenesis, we show that mutant fibroblasts from one affected individual have severely impaired ciliogenesis with concomitant defects in sonic hedgehog (SHH) signaling. Our results expand the list of centrosomal proteins implicated in human ciliopathies.


Asunto(s)
Proteínas de Ciclo Celular/genética , Centrosoma/metabolismo , Cilios/patología , Proteínas Asociadas a Microtúbulos/genética , Mutación , Fenotipo , Anomalías Múltiples , Enfermedades Cerebelosas/genética , Cerebelo/anomalías , Niño , Cilios/genética , Trastornos de la Motilidad Ciliar/genética , Consanguinidad , Encefalocele/genética , Anomalías del Ojo/genética , Femenino , Homocigoto , Humanos , Lactante , Enfermedades Renales Quísticas/genética , Masculino , Linaje , Enfermedades Renales Poliquísticas/genética , Retina/anomalías , Retinitis Pigmentosa , Transducción de Señal
4.
J Biol Chem ; 290(42): 25411-26, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26324717

RESUMEN

Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) signaling in the heart regulates cardiomyocyte contractility and growth in response to elevated intracellular Ca(2+). The δB isoform of CaMKII is the predominant nuclear splice variant in the adult heart and regulates cardiomyocyte hypertrophic gene expression by signaling to the histone deacetylase HDAC4. However, the role of CaMKIIδ in cardiac progenitor cells (CPCs) has not been previously explored. During post-natal growth endogenous CPCs display primarily cytosolic CaMKIIδ, which localizes to the nuclear compartment of CPCs after myocardial infarction injury. CPCs undergoing early differentiation in vitro increase levels of CaMKIIδB in the nuclear compartment where the kinase may contribute to the regulation of CPC commitment. CPCs modified with lentiviral-based constructs to overexpress CaMKIIδB (CPCeδB) have reduced proliferative rate compared with CPCs expressing eGFP alone (CPCe). Additionally, stable expression of CaMKIIδB promotes distinct morphological changes such as increased cell surface area and length of cells compared with CPCe. CPCeδB are resistant to oxidative stress induced by hydrogen peroxide (H2O2) relative to CPCe, whereas knockdown of CaMKIIδB resulted in an up-regulation of cell death and cellular senescence markers compared with scrambled treated controls. Dexamethasone (Dex) treatment increased mRNA and protein expression of cardiomyogenic markers cardiac troponin T and α-smooth muscle actin in CPCeδB compared with CPCe, suggesting increased differentiation. Therefore, CaMKIIδB may serve as a novel modulatory protein to enhance CPC survival and commitment into the cardiac and smooth muscle lineages.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Linaje de la Célula , Núcleo Celular/enzimología , Supervivencia Celular , Isoenzimas/metabolismo , Miocitos Cardíacos/citología , Transducción de Señal , Células Madre/citología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Técnicas de Silenciamiento del Gen , Isoenzimas/genética , Masculino , Ratones , Miocitos Cardíacos/enzimología , Células Madre/enzimología
5.
J Pathol ; 235(4): 606-18, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25421395

RESUMEN

Heart failure is associated with the reactivation of a fetal cardiac gene programme that has become a hallmark of cardiac hypertrophy and maladaptive ventricular remodelling, yet the mechanisms that regulate this transcriptional reprogramming are not fully understood. Using mice with genetic ablation of calcium/calmodulin-dependent protein kinase II δ (CaMKIIδ), which are resistant to pathological cardiac stress, we show that CaMKIIδ regulates the phosphorylation of histone H3 at serine-10 during pressure overload hypertrophy. H3 S10 phosphorylation is strongly increased in the adult mouse heart in the early phase of cardiac hypertrophy and remains detectable during cardiac decompensation. This response correlates with up-regulation of CaMKIIδ and increased expression of transcriptional drivers of pathological cardiac hypertrophy and of fetal cardiac genes. Similar changes are detected in patients with end-stage heart failure, where CaMKIIδ specifically interacts with phospho-H3. Robust H3 phosphorylation is detected in both adult ventricular myocytes and in non-cardiac cells in the stressed myocardium, and these signals are abolished in CaMKIIδ-deficient mice after pressure overload. Mechanistically, fetal cardiac genes are activated by increased recruitment of CaMKIIδ and enhanced H3 phosphorylation at hypertrophic promoter regions, both in mice and in human failing hearts, and this response is blunted in CaMKIIδ-deficient mice under stress. We also document that the chaperone protein 14-3-3 binds phosphorylated H3 in response to stress, allowing proper elongation of fetal cardiac genes by RNA polymerase II (RNAPII), as well as elongation of transcription factors regulating cardiac hypertrophy. These processes are impaired in CaMKIIδ-KO mice after pathological stress. The findings reveal a novel in vivo function of CaMKIIδ in regulating H3 phosphorylation and suggest a novel epigenetic mechanism by which CaMKIIδ controls cardiac hypertrophy.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/enzimología , Insuficiencia Cardíaca/enzimología , Hemodinámica , Histonas/metabolismo , Miocitos Cardíacos/enzimología , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animales , Sitios de Unión , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/deficiencia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Cardiomegalia/prevención & control , Células Cultivadas , Ensamble y Desensamble de Cromatina , Modelos Animales de Enfermedad , Epigénesis Genética , Regulación Enzimológica de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Humanos , Masculino , Ratones Noqueados , Fosforilación , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Polimerasa II/metabolismo , Ratas , Transcripción Genética , Transfección
6.
J Pathol ; 237(4): 482-94, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26213100

RESUMEN

The low molecular weight protein tyrosine phosphatase (LMPTP), encoded by the ACP1 gene, is a ubiquitously expressed phosphatase whose in vivo function in the heart and in cardiac diseases remains unknown. To investigate the in vivo role of LMPTP in cardiac function, we generated mice with genetic inactivation of the Acp1 locus and studied their response to long-term pressure overload. Acp1(-/-) mice develop normally and ageing mice do not show pathology in major tissues under basal conditions. However, Acp1(-/-) mice are strikingly resistant to pressure overload hypertrophy and heart failure. Lmptp expression is high in the embryonic mouse heart, decreased in the postnatal stage, and increased in the adult mouse failing heart. We also show that LMPTP expression increases in end-stage heart failure in humans. Consistent with their protected phenotype, Acp1(-/-) mice subjected to pressure overload hypertrophy have attenuated fibrosis and decreased expression of fibrotic genes. Transcriptional profiling and analysis of molecular signalling show that the resistance of Acp1(-/-) mice to pathological cardiac stress correlates with marginal re-expression of fetal cardiac genes, increased insulin receptor beta phosphorylation, as well as PKA and ephrin receptor expression, and inactivation of the CaMKIIδ pathway. Our data show that ablation of Lmptp inhibits pathological cardiac remodelling and suggest that inhibition of LMPTP may be of therapeutic relevance for the treatment of human heart failure.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Cardiomiopatía de Takotsubo/metabolismo , Animales , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Ratas
7.
Hum Mol Genet ; 22(11): 2200-13, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23418308

RESUMEN

Primary microcephaly (PM) is a developmental disorder of early neuroprogenitors that results in reduction of the brain mass, particularly the cortex. To gain fresh insight into the pathogenesis of PM, we describe a consanguineous family with a novel genetic variant responsible for the disease. We performed autozygosity mapping followed by exome sequencing to detect the causal genetic variant. Several functional assays in cells expressing the wild-type or mutant gene were performed to understand the pathogenesis of the identified mutation. We identify a novel mutation in PHC1, a human orthologue of the Drosophila polyhomeotic member of polycomb group (PcG), which significantly decreases PHC1 protein expression, increases Geminin protein level and markedly abolishes the capacity to ubiquitinate histone H2A in patient cells. PHC1 depletion in control cells similarly enhances Geminin expression and decreases histone H2A ubiquitination. The ubiquitination defect and accumulation of Geminin with consequent defect in cell cycle are rescued by over-expression of PHC1 in patient cells. Although patients with the PHC1 mutation exhibit PM with no overt progression of the disease, patient cells also show aberrant DNA damage repair, which is rescued by PHC1 overexpression. These findings reveal several cellular defects in cells carrying the PHC1 mutation and highlight the role of chromatin remodeling in the pathogenesis of PM.


Asunto(s)
Ensamble y Desensamble de Cromatina , Microcefalia/genética , Mutación , Complejo Represivo Polycomb 1/genética , Adolescente , Ciclo Celular/genética , Niño , Consanguinidad , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Exoma , Femenino , Geminina/metabolismo , Expresión Génica , Ligamiento Genético , Sitios Genéticos , Histonas/metabolismo , Humanos , Masculino , Microcefalia/metabolismo , Modelos Biológicos , Linaje , Complejo Represivo Polycomb 1/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Análisis de Secuencia de ADN , Ubiquitinación
8.
Nucleic Acids Res ; 41(16): 7656-72, 2013 09.
Artículo en Inglés | MEDLINE | ID: mdl-23804765

RESUMEN

Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a central role in pathological cardiac hypertrophy, but the mechanisms by which it modulates gene activity in the nucleus to mediate hypertrophic signaling remain unclear. Here, we report that nuclear CaMKII activates cardiac transcription by directly binding to chromatin and regulating the phosphorylation of histone H3 at serine-10. These specific activities are demonstrated both in vitro and in primary neonatal rat cardiomyocytes. Activation of CaMKII signaling by hypertrophic agonists increases H3 phosphorylation in primary cardiac cells and is accompanied by concomitant cellular hypertrophy. Conversely, specific silencing of nuclear CaMKII using RNA interference reduces both H3 phosphorylation and cellular hypertrophy. The hyper-phosphorylation of H3 associated with increased chromatin binding of CaMKII occurs at specific gene loci reactivated during cardiac hypertrophy. Importantly, H3 Ser-10 phosphorylation and CaMKII recruitment are associated with increased chromatin accessibility and are required for chromatin-mediated transcription of the Mef2 transcription factor. Unlike phosphorylation of H3 by other kinases, which regulates cellular proliferation and immediate early gene activation, CaMKII-mediated signaling to H3 is associated with hypertrophic growth. These observations reveal a previously unrecognized function of CaMKII as a kinase signaling to histone H3 and remodeling chromatin. They suggest a new epigenetic mechanism controlling cardiac hypertrophy.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/enzimología , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Aumento de la Célula , Núcleo Celular/genética , Células Cultivadas , Cromatina/metabolismo , Histonas/genética , Mutación , Factores Reguladores Miogénicos/metabolismo , Nucleosomas/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Ratas , Activación Transcripcional
9.
J Pathol ; 231(2): 147-57, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23813473

RESUMEN

The manipulation of chromatin structure regulates gene expression and the flow of genetic information. Histone modifications and ATP-dependent chromatin remodeling together with DNA methylation are dynamic processes that modify chromatin architecture and profoundly modulate gene expression. Their coordinated control is key to ensuring proper cell commitment and organ development, as well as adaption to environmental cues. Recent studies indicate that abnormal epigenetic status of the genome, in concert with alteration of transcriptional networks, contribute to the development of adult cardiomyopathy such as pathological cardiac hypertrophy. Here we consider the emerging role of different classes of chromatin regulators and how their dysregulation in the adult heart alters specific gene programs with subsequent development of major cardiomyopathies. Understanding the functional significance of the different epigenetic marks as points of genetic control may represent a promising future therapeutic tool.


Asunto(s)
Cardiomiopatías/genética , Cardiomiopatías/patología , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Animales , Humanos
10.
EMBO Rep ; 12(2): 164-71, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21212806

RESUMEN

Despite having distinct expression patterns and phenotypes in mutant mice, the myogenic regulatory factors Myf5 and MyoD have been considered to be functionally equivalent. Here, we report that these factors have a different response to DNA damage, due to the presence in MyoD and absence in Myf5 of a consensus site for Abl-mediated tyrosine phosphorylation that inhibits MyoD activity in response to DNA damage. Genotoxins failed to repress skeletal myogenesis in MyoD-null embryos; reintroduction of wild-type MyoD, but not mutant Abl phosphorylation-resistant MyoD, restored the DNA-damage-dependent inhibition of muscle differentiation. Conversely, introduction of the Abl-responsive phosphorylation motif converts Myf5 into a DNA-damage-sensitive transcription factor. Gene-dosage-dependent reduction of Abl kinase activity in MyoD-expressing cells attenuated the DNA-damage-dependent inhibition of myogenesis. The presence of a DNA-damage-responsive phosphorylation motif in vertebrate, but not in invertebrate MyoD suggests an evolved response to environmental stress, originated from basic helix-loop-helix gene duplication in vertebrate myogenesis.


Asunto(s)
Desarrollo de Músculos/efectos de los fármacos , Mutágenos/toxicidad , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Evolución Biológica , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Reactivos de Enlaces Cruzados/toxicidad , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Etopósido/toxicidad , Femenino , Técnicas de Silenciamiento del Gen , Metilmetanosulfonato/toxicidad , Ratones/embriología , Mitomicina/toxicidad , Proteína MioD/genética , Factor 5 Regulador Miogénico/genética , Fosforilación , Embarazo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/fisiología , Interferencia de ARN , Somitos/efectos de los fármacos , Somitos/metabolismo , Proteínas Supresoras de Tumor/metabolismo
11.
Commun Biol ; 4(1): 884, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272480

RESUMEN

Endoplasmic reticulum (ER) stress induction of cell death is implicated in cardiovascular diseases. Sustained activation of ER-stress induces the unfolded protein response (UPR) pathways, which in turn activate three major effector proteins. We previously reported a missense homozygous mutation in FBXO32 (MAFbx, Atrogin-1) causing advanced heart failure by impairing autophagy. In the present study, we performed transcriptional profiling and biochemical assays, which unexpectedly revealed a reduced activation of UPR effectors in patient mutant hearts, while a strong up-regulation of the CHOP transcription factor and of its target genes are observed. Expression of mutant FBXO32 in cells is sufficient to induce CHOP-associated apoptosis, to increase the ATF2 transcription factor and to impair ATF2 ubiquitination. ATF2 protein interacts with FBXO32 in the human heart and its expression is especially high in FBXO32 mutant hearts. These findings provide a new underlying mechanism for FBXO32-mediated cardiomyopathy, implicating abnormal activation of CHOP. These results suggest alternative non-canonical pathways of CHOP activation that could be considered to develop new therapeutic targets for the treatment of FBXO32-associated DCM.


Asunto(s)
Apoptosis , Cardiomiopatía Dilatada/genética , Estrés del Retículo Endoplásmico/genética , Proteínas Musculares/genética , Mutación Missense , Proteínas Ligasas SKP Cullina F-box/genética , Regulación hacia Arriba , Apoptosis/genética , Proteínas Musculares/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo
12.
J Biol Chem ; 284(37): 24857-68, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19602725

RESUMEN

Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a central role in cardiac contractility and heart disease. However, the specific role of alternatively spliced variants of CaMKII in cardiac disease and apoptosis remains poorly explored. Here we report that the deltaB subunit of CaMKII (CaMKIIdeltaB), which is the predominant nuclear isoform of calcium/calmodulin-dependent protein kinases in heart muscle, acts as an anti-apoptotic factor and is a novel target of the antineoplastic and cardiomyopathic drug doxorubicin (Dox (adriamycin)). Hearts of rats that develop cardiomyopathy following chronic treatment with Dox also show down-regulation of CaMKIIdeltaB mRNA, which correlates with decreased cardiac function in vivo, reduced expression of sarcomeric proteins, and increased tissue damage associated with Dox cardiotoxicity. Overexpression of CaMKIIdeltaB in primary cardiac cells inhibits Dox-mediated apoptosis and prevents the loss of the anti-apoptotic protein Bcl-2. Specific silencing of CaMKIIdeltaB by small interfering RNA prevents the formation of organized sarcomeres and decreases the expression of Bcl-2, which all mimic the effect of Dox. CaMKIIdeltaB is required for GATA-4-mediated co-activation and binding to the Bcl-2 promoter. These results reveal that CaMKIIdeltaB plays an essential role in cardiomyocyte survival and provide a mechanism for the protective role of CaMKIIdeltaB. These results suggest that selective targeting of CaMKII in the nuclear compartment might represent a strategy to regulate cardiac apoptosis and to reduce Dox-mediated cardiotoxicity.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Cardiomiopatías/enzimología , Núcleo Celular/metabolismo , Miocitos Cardíacos/enzimología , Animales , Apoptosis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomiopatías/patología , Supervivencia Celular , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Silenciador del Gen , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Sprague-Dawley , Transfección
13.
Heliyon ; 6(5): e03864, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32420474

RESUMEN

Heart failure remains a major cause of hospitalization and death worldwide. Heart failure can be caused by abnormalities in the epigenome resulting from dysregulation of histone-modifying enzymes. While chromatin enzymes catalyzing lysine acetylation and methylation of histones have been the topic of many investigations, the role of arginine methyltransferases has been overlooked. In an effort to understand regulatory mechanisms implicated in cardiac hypertrophy and heart failure, we assessed the expression of protein arginine methyltransferases (PRMTs) in the left ventricle of failing human hearts and control hearts. Our results show a significant up-regulation of protein arginine methyltransferase 6 (PRMT6) in failing human hearts compared to control hearts, which also occurs in the early phase of cardiac hypertrophy in mouse hearts subjected to pressure overload hypertrophy induced by trans-aortic constriction (TAC), and in neonatal rat ventricular myocytes (NRVM) stimulated with the hypertrophic agonist phenylephrine (PE). These changes are associated with a significant increase in arginine 2 asymmetric methylation of histone H3 (H3R2Me2a) and reduced lysine 4 tri-methylation of H3 (H3K4Me3) observed both in NRVM and in vivo. Importantly, forced expression of PRMT6 in NRVM enhances the expression of the hypertrophic marker, atrial natriuretic peptide (ANP). Conversely, specific silencing of PRMT6 reduces ANP protein expression and cell size, indicating that PRMT6 is critical for the PE-mediated hypertrophic response. Silencing of PRMT6 reduces H3R2Me2a, a mark normally associated with transcriptional repression. Furthermore, evaluation of cardiac contractility and global ion channel activity in live NRVM shows a striking reduction of spontaneous beating rates and prolongation of extra-cellular field potentials in cells expressing low-level PRMT6. Altogether, our results indicate that PRMT6 is a critical regulator of cardiac hypertrophy, implicating H3R2Me2a as an important histone modification. This study identifies PRMT6 as a new epigenetic regulator and suggests a new point of control in chromatin to inhibit pathological cardiac remodeling.

14.
Mol Cell Biol ; 25(7): 2673-87, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15767673

RESUMEN

p300 and CBP are general transcriptional coactivators implicated in different cellular processes, including regulation of the cell cycle, differentiation, tumorigenesis, and apoptosis. Posttranslational modifications such as phosphorylation are predicted to select a specific function of p300/CBP in these processes; however, the identification of the kinases that regulate p300/CBP activity in response to individual stimuli and the physiological significance of p300 phosphorylation have not been elucidated. Here we demonstrate that the cardiotoxic anticancer agent doxorubicin (adriamycin) induces the phosphorylation of p300 in primary neonatal cardiomyocytes. Hyperphosphorylation precedes the degradation of p300 and parallels apoptosis in response to doxorubicin. Doxorubicin-activated p38 kinases alpha and beta associate with p300 and are implicated in the phosphorylation-mediated degradation of p300, as pharmacological blockade of p38 prevents p300 degradation. p38 phosphorylates p300 in vitro at both the N and C termini of the protein, and enforced activation of p38 by the constitutively active form of its upstream kinase (MKK6EE) triggers p300 degradation. These data support the conclusion that p38 mitogen-activated protein kinase regulates p300 protein stability and function in cardiomyocytes undergoing apoptosis in response to doxorubicin.


Asunto(s)
Doxorrubicina/farmacología , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Proteína p300 Asociada a E1A , Activación Enzimática/efectos de los fármacos , Factor de Transcripción GATA4 , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/enzimología , Proteínas Nucleares/genética , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Treonina/metabolismo , Transactivadores/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
15.
Toxicol Lett ; 280: 151-158, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28822817

RESUMEN

Rosiglitazone is an anti-diabetic agent that raised a major controversy over its cardiovascular adverse effects. There is in vivo evidence that Rosiglitazone promotes cardiac hypertrophy by PPAR-γ-independent mechanisms. However, whether Rosiglitazone directly alters hypertrophic growth in cardiac cells is unknown. Chromatin remodeling by histone post-translational modifications has emerged as critical for many cardiomyopathies. Based on these observations, this study was initiated to investigate the cardiac hypertrophic effect of Rosiglitazone in a cellular model of primary neonatal rat cardiomyocytes (NRCM). We assessed whether the drug alters cardiac hypertrophy and its relationship with histone H3 phosphorylation. Our study showed that Rosiglitazone is a mild pro-hypertrophic agent. Rosiglitazone caused a significant increase in the release of brain natriuretic peptide (BNP) into the cell media and also increased cardiomyocytes surface area and atrial natriuretic peptide (ANP) protein expression significantly. These changes correlated with increased cardiac phosphorylation of p38 MAPK and enhanced phosphorylation of H3 at serine 10 globally and at one cardiac hypertrophic gene locus. These results demonstrate that Rosiglitazone causes direct cardiac hypertrophy in NRCM and alters H3 phosphorylation status. They suggest a new mechanism of Rosiglitazone cardiotoxicity implicating chromatin remodeling secondary to H3 phosphorylation, which activate the fetal cardiac gene program.


Asunto(s)
Cardiomegalia/inducido químicamente , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Fibrinolíticos/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Tiazolidinedionas/toxicidad , Animales , Factor Natriurético Atrial/metabolismo , Epigénesis Genética , Femenino , Fibrinolíticos/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Rosiglitazona , Tiazolidinedionas/administración & dosificación , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
J Pharm Pharmacol ; 68(2): 219-32, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26817709

RESUMEN

OBJECTIVE: To investigate whether ruboxistaurin (a selective PKC-ß inhibitor) mediates renoprotective effect via interference with TGF-ß1/Smad-GRAP cross-signalling. METHOD: Diabetes was induced in rats by a single intraperitoneal injection of streptozotocin (55 mg/kg). Then, the diabetic rats were treated with ruboxistaurin (10 mg/kg, p.o) for 6 weeks. Valsartan (15 mg/kg, p.o) was used as a positive control. After 6 weeks of treatment, diabetic nephropathy biomarkers were assessed. TGF-ß1, Smad2, and Smad3 mRNA and protein levels were detected using qPCR and western blot analysis. KEY FINDINGS: Data showed that serum creatinine, kidney/body weight ratio and urinary albumin excretion significantly increased in diabetic rats. These changes were significantly attenuated by treatment with ruboxistaurin. A significant up-regulation of TGF-ß1, Smad2 and Smad3 mRNA expression was observed in diabetic rats, which was alleviated by administration of ruboxistaurin. Furthermore, immunoblotting showed a significant improvement in protein levels of TGF-ß1 (P < 0.01), Smad2/3 (P < 0.01) and p-Smad3 (P < 0.001) in diabetic rats treated with ruboxistaurin compared to untreated. Importantly, the reduction in GRAP protein expression in diabetic kidney was prevented by treatment with ruboxistaurin. CONCLUSION: These data suggest that the renoprotective effect of ruboxistaurin is possibly due to down-regulation of TGF-ß1/Smad pathway and normalization of GRAP protein expression.


Asunto(s)
Nefropatías Diabéticas/prevención & control , Proteína Adaptadora GRB2/metabolismo , Indoles/uso terapéutico , Maleimidas/uso terapéutico , Proteína Quinasa C beta/antagonistas & inhibidores , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Indoles/administración & dosificación , Pruebas de Función Renal , Masculino , Maleimidas/administración & dosificación , Ratas Wistar , Transducción de Señal
17.
Genome Biol ; 17: 2, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26753747

RESUMEN

BACKGROUND: Dilated cardiomyopathy (DCM) is a common form of cardiomyopathy causing systolic dysfunction and heart failure. Rare variants in more than 30 genes, mostly encoding sarcomeric proteins and proteins of the cytoskeleton, have been implicated in familial DCM to date. Yet, the majority of variants causing DCM remain to be identified. The goal of the study is to identify novel mutations causing familial dilated cardiomyopathy. RESULTS: We identify FBXO32 (ATROGIN 1), a member of the F-Box protein family, as a novel DCM-causing locus. The missense mutation affects a highly conserved amino acid and is predicted to severely impair binding to SCF proteins. This is validated by co-immunoprecipitation experiments from cells expressing the mutant protein and from human heart tissue from two of the affected patients. We also demonstrate that the hearts of the patients with the FBXO32 mutation show accumulation of selected proteins regulating autophagy. CONCLUSION: Our results indicate that abnormal SCF activity with subsequent impairment of the autophagic flux due to a novel FBXO32 mutation is implicated in the pathogenesis of DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , Insuficiencia Cardíaca/genética , Proteínas Musculares/genética , Proteínas Ligasas SKP Cullina F-box/genética , Secuencia de Aminoácidos/genética , Autofagia/genética , Cardiomiopatía Dilatada/patología , Citoesqueleto/genética , Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Ligamiento Genético , Predisposición Genética a la Enfermedad , Insuficiencia Cardíaca/patología , Humanos , Proteínas Musculares/metabolismo , Mutación Missense/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Sarcómeros/genética , Sarcómeros/metabolismo
18.
Cardiovasc Res ; 59(2): 450-9, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12909328

RESUMEN

OBJECTIVE: Brief episodes of ischemia of 20 min or less have the potential to protect the heart. Such episodes are associated primarily with reversible ischemic injury yet they induce changes in gene expression. The purpose of the study was to determine whether activation of protective genes takes place within 4 h following a brief episode of ischemia that would mimic angina pectoris. METHODS: Three groups of rats were studied. In the control (Ctrl) group, hearts were immediately excised following anesthesia; in the sham-operated (SO) group, opened-chest rats received 4 h and 20 min of no intervention; and in the group subjected to ischemia (SI) hearts received 20 min of proximal coronary occlusion followed by 4 h of reperfusion. Hearts from the SI group were divided into nonischemic (NI) and ischemic (Isc) areas. Changes in gene expression pattern were analyzed by using Affymetrix Gene Chips. RESULTS: Ischemia led to strong upregulation of mRNA transcripts for heat shock proteins 70, 27, 105, 86 and 40 kDa, vascular endothelial growth factor, brain-derived neurotrophic factor, plasminogen activator inhibitor-1, activating transcription factor 3, B-cell translocation gene 2, and growth arrest and DNA damage inducible 45 alpha protein compared to the NI tissue. The majority of mRNAs whose levels increased following brief ischemia were of a protective nature. CONCLUSION: Genetic reprogramming emerging during or following brief episodes of ischemia that simulate angina, can be characterized as protective in nature. Developing new therapeutic strategies aimed to promote this protective response represents a legitimate target for future research.


Asunto(s)
Perfilación de la Expresión Génica , Proteínas de Choque Térmico , Precondicionamiento Isquémico Miocárdico , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Animales , Secuencia de Bases , Northern Blotting/métodos , Calgranulina A/genética , Calgranulina B/genética , Femenino , Proteínas de Choque Térmico HSP27 , Proteínas HSP70 de Choque Térmico/genética , Datos de Secuencia Molecular , Proteínas de Neoplasias/genética , Inhibidor 1 de Activador Plasminogénico/genética , Ratas , Ratas Sprague-Dawley
19.
Genome Biol ; 16: 240, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26537248

RESUMEN

BACKGROUND: Embryonic lethality is a recognized phenotypic expression of individual gene mutations in model organisms. However, identifying embryonic lethal genes in humans is challenging, especially when the phenotype is manifested at the preimplantation stage. RESULTS: In an ongoing effort to exploit the highly consanguineous nature of the Saudi population to catalog recessively acting embryonic lethal genes in humans, we have identified two families with a female-limited infertility phenotype. Using autozygosity mapping and whole exome sequencing, we map this phenotype to a single mutation in TLE6, a maternal effect gene that encodes a member of the subcortical maternal complex in mammalian oocytes. Consistent with the published phenotype of mouse Tle6 mutants, embryos from female patients who are homozygous for the TLE6 mutation fail to undergo early cleavage, with resulting sterility. The human mutation abrogates TLE6 phosphorylation, a step that is reported to be critical for the PKA-mediated progression of oocyte meiosis II. Furthermore, the TLE6 mutation impairs its binding to components of the subcortical maternal complex. CONCLUSION: In this first report of a human defect in a member of the subcortical maternal subcritical maternal complex, we show that the TLE6 mutation is gender-specific and leads to the earliest known human embryonic lethality phenotype.


Asunto(s)
Desarrollo Embrionario/genética , Infertilidad Femenina/genética , Oocitos/crecimiento & desarrollo , Factores de Transcripción/genética , Adulto , Animales , Proteínas Co-Represoras , Consanguinidad , Femenino , Fertilización In Vitro , Regulación del Desarrollo de la Expresión Génica , Genes Letales , Ligamiento Genético , Humanos , Infertilidad Femenina/patología , Masculino , Meiosis/genética , Ratones , Mutación , Oocitos/patología , Fenotipo , Arabia Saudita
20.
Semin Nephrol ; 24(5): 437-40, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15490406

RESUMEN

Similar to the kidney in uremia, end-stage cardiac failure is an outcome common to many disparate disease processes including hypertension, various inflammatory pathologies, as well as ischemic loss of tissue. In regard to the heart, cellular and molecular mechanisms responsible for heart failure have been investigated with renewed intensity over the past several years with newer techniques of molecular genetics, genomic analysis, and cell biology. Although this article reviews some recent advances made in our understanding of molecular and cellular events in the heart leading to heart failure and explores possible new targets for therapeutics, the main point is to stress the importance of investigative interactions between organ physiologists and molecular and cellular biologists. These interactions between organ physiologists and molecular geneticists is stressed and supported as a mechanism for rapid advancement for both understanding the underlying pathophysiology of human disease and the development of therapeutic strategies.


Asunto(s)
Cardiopatías/terapia , Investigación Biomédica , Sistema Cardiovascular/embriología , Diferenciación Celular , Terapia Genética/métodos , Humanos , Miocitos Cardíacos/fisiología , Neovascularización Fisiológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA