Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Rep ; 14(1): 4000, 2024 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369625

RESUMEN

Autophagy is activated in response to a variety of stress conditions including anti-cancer therapies, and tumors cells often depend on autophagy for survival. In this study, we have evaluated inhibition of autophagy as therapeutic strategy in acute lymphoblastic leukemia (ALL) in children, both as a single treatment and in combination with glucocorticoid (GC) Dexamethasone (Dexa). Analysis of proteomics and RNA-seq of ALL cell lines and primary samples identified an upregulation of Vps34 and ATG14 proteins and autophagy and lysosomal pathway enrichment in a genetic subgroup with a recurrent t(12;21) translocation. Cells from this sugbroup were also significantly more sensitive to the selective autophagy or lysosomal inhibitors than cells with other genetic rearrangements. Further, combination of Dexa with either lysosomal or autophagy inhibitors was either synergistic or additive in killing leukemic cells across various genetic and lineage backgrounds, for both cell lines and primary samples, as assessed using viability assays and SynergyFinder as well as apoptotic caspase 3/7-based live-cell assays. Our data demonstrate that targeting autophagy represents a promising strategy for the treatment of pediatric ALL, both as a selective modality for the t(12;21) pre-B-ALL subgroup, and in combination treatments to sensitize to GC-induced cytotoxicity.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Autofagia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Línea Celular , Glucocorticoides/uso terapéutico , Línea Celular Tumoral , Apoptosis
2.
Mol Oncol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506049

RESUMEN

An immunosuppressive tumor microenvironment promotes tumor growth and is one of the main factors limiting the response to cancer immunotherapy. We have previously reported that inhibition of vacuolar protein sorting 34 (VPS34), a crucial lipid kinase in the autophagy/endosomal trafficking pathway, decreases tumor growth in several cancer models, increases infiltration of immune cells and sensitizes tumors to anti-programmed cell death protein 1/programmed cell death 1 ligand 1 therapy by upregulation of C-C motif chemokine 5 (CCL5) and C-X-C motif chemokine 10 (CXCL10) chemokines. The purpose of this study was to investigate the signaling mechanism leading to the VPS34-dependent chemokine increase. NanoString gene expression analysis was applied to tumors from mice treated with the VPS34 inhibitor SB02024 to identify key pathways involved in the anti-tumor response. We showed that VPS34 inhibitors increased the secretion of T-cell-recruitment chemokines in a cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING)-dependent manner in cancer cells. Both pharmacological and small interfering RNA (siRNA)-mediated VPS34 inhibition increased cGAS/STING-mediated expression and secretion of CCL5 and CXCL10. The combination of VPS34 inhibitor and STING agonist further induced cytokine release in both human and murine cancer cells as well as monocytic or dendritic innate immune cells. Finally, the VPS34 inhibitor SB02024 sensitized B16-F10 tumor-bearing mice to STING agonist treatment and significantly improved mice survival. These results show that VPS34 inhibition augments the cGAS/STING pathway, leading to greater tumor control through immune-mediated mechanisms. We propose that pharmacological VPS34 inhibition may synergize with emerging therapies targeting the cGAS/STING pathway.

3.
Hemasphere ; 6(10): e785, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36204688

RESUMEN

Infant acute lymphoblastic leukemia (ALL) with KMT2A-gene rearrangements (KMT2A-r) have few mutations and a poor prognosis. To uncover mutations that are below the detection of standard next-generation sequencing (NGS), a combination of targeted duplex sequencing and NGS was applied on 20 infants and 7 children with KMT2A-r ALL, 5 longitudinal and 6 paired relapse samples. Of identified nonsynonymous mutations, 87 had been previously implicated in cancer and targeted genes recurrently altered in KMT2A-r leukemia and included mutations in KRAS, NRAS, FLT3, TP53, PIK3CA, PAX5, PIK3R1, and PTPN11, with infants having fewer such mutations. Of identified cancer-associated mutations, 62% were below the resolution of standard NGS. Only 33 of 87 mutations exceeded 2% of cellular prevalence and most-targeted PI3K/RAS genes (31/33) and typically KRAS/NRAS. Five patients only had low-frequency PI3K/RAS mutations without a higher-frequency signaling mutation. Further, drug-resistant clones with FLT3 D835H or NRAS G13D/G12S mutations that comprised only 0.06% to 0.34% of diagnostic cells, expanded at relapse. Finally, in longitudinal samples, the relapse clone persisted as a minor subclone from diagnosis and through treatment before expanding during the last month of disease. Together, we demonstrate that infant and childhood KMT2A-r ALL harbor low-frequency cancer-associated mutations, implying a vast subclonal genetic landscape.

4.
Sci Rep ; 11(1): 11023, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040017

RESUMEN

BRAF inhibitors (BRAFi) selectively target oncogenic BRAFV600E/K and are effective in 80% of advanced cutaneous malignant melanoma cases carrying the V600 mutation. However, the development of drug resistance limits their clinical efficacy. Better characterization of the underlying molecular processes is needed to further improve treatments. We previously demonstrated that transcription of PTEN is negatively regulated by the PTEN pseudogene antisense RNA, PTENP1-AS, and here we investigated the impact of this transcript on clinical outcome and BRAFi resistance in melanoma. We observed that increased expression levels of PTENP1-AS in BRAFi resistant cells associated with enrichment of EZH2 and H3K27me3 at the PTEN promoter, consequently reducing the expression levels of PTEN. Further, we showed that targeting of the PTENP1-AS transcript sensitized resistant cells to BRAFi treatment and that high expression of PTENP1-AS in stage III melanoma correlated with poor survival. Collectively, the data presented here show that PTENP1-AS is a promising target for re-sensitizing cells to BRAFi and also a possible prognostic marker for clinical outcome in stage III melanoma.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Neoplasias Cutáneas , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Vemurafenib/farmacología , Melanoma Cutáneo Maligno
5.
Melanoma Res ; 30(5): 443-454, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32467529

RESUMEN

Introduction of targeted therapy in the treatment of metastatic cutaneous malignant melanoma (CMM) has improved clinical outcome during the last years. However, only in a subset of the CMM patients, this will lead to long-term effects. CEBPB is a transcription factor that has been implicated in various physiological and pathological processes, including cancer development. We have investigated its prognostic impact on CMM and unexpectedly found that higher CEBPB mRNA levels correlated with a longer overall survival. Furthermore, in a small cohort of patients with metastatic CMM treated with BRAF-inhibitors, higher levels of CEBPB mRNA expression in the tumor cells prior treatment correlated to a longer progression-free survival. We have characterized an overlapping antisense transcript, CEBPB-AS1, with the aim to investigate the regulation of CEBPB expression in CMM and its impact on BRAF-inhibitor sensitivity. We demonstrated that silencing of CEBPB-AS1 resulted in epigenetic modifications in the CEBPB promoter and in increased CEBPB mRNA and protein levels, inhibited proliferation and partially resensitized BRAF-inhibitor resistant CMM cells to this drug-induced apoptosis. Our data suggest that targeting CEBPB-AS1 may represent a valuable tool to sensitize CMM cells to the BRAF-inhibitor-based therapies.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Melanoma/tratamiento farmacológico , ARN sin Sentido/genética , Vemurafenib/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Proteína beta Potenciadora de Unión a CCAAT/biosíntesis , Proteína beta Potenciadora de Unión a CCAAT/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , ARN sin Sentido/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
EMBO Mol Med ; 12(3): e10419, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31950591

RESUMEN

The deoxycytidine analogue cytarabine (ara-C) remains the backbone treatment of acute myeloid leukaemia (AML) as well as other haematological and lymphoid malignancies, but must be combined with other chemotherapeutics to achieve cure. Yet, the underlying mechanism dictating synergistic efficacy of combination chemotherapy remains largely unknown. The dNTPase SAMHD1, which regulates dNTP homoeostasis antagonistically to ribonucleotide reductase (RNR), limits ara-C efficacy by hydrolysing the active triphosphate metabolite ara-CTP. Here, we report that clinically used inhibitors of RNR, such as gemcitabine and hydroxyurea, overcome the SAMHD1-mediated barrier to ara-C efficacy in primary blasts and mouse models of AML, displaying SAMHD1-dependent synergy with ara-C. We present evidence that this is mediated by dNTP pool imbalances leading to allosteric reduction of SAMHD1 ara-CTPase activity. Thus, SAMHD1 constitutes a novel biomarker for combination therapies of ara-C and RNR inhibitors with immediate consequences for clinical practice to improve treatment of AML.


Asunto(s)
Citarabina/farmacología , Leucemia Mieloide Aguda , Pirofosfatasas/metabolismo , Ribonucleótido Reductasas/antagonistas & inhibidores , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Animales , Trifosfato de Arabinofuranosil Citosina/metabolismo , Ratones
7.
EJNMMI Res ; 8(1): 27, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29619657

RESUMEN

BACKGROUND: Gallium-68-labeled prostate-specific antigen positron emission tomography/computed tomography imaging (Ga68-PSMA-11-PET/CT) has emerged as a potential gold standard for prostate cancer (PCa) diagnosis. However, the imaging limitations of this technique at the early state of PCa recurrence/metastatic spread are still not well characterized. The aim of this study was to determine the quantitative properties and the fundamental imaging limits of Ga68-PSMA-11-PET/CT in localizing small PCa cell deposits. METHODS: The human PCa LNCaP cells (PSMA expressing) were grown and collected as single cell suspension or as 3D-spheroids at different cell numbers and incubated with Ga68-PSMA-11. Thereafter, human HCT116 cells (PSMA negative) were added to a total cell number of 2 × 105 cells per tube. The tubes were then pelleted and the supernatant aspirated. A whole-body PET/CT scanner with a clinical routine protocol was used for imaging the pellets inside of a cylindrical water phantom with increasing amounts of background activity. The actual activity bound to the cells was also measured in an automatic gamma counter. Imaging detection limits and activity recovery coefficients as a function of LNCaP cell number were obtained. The effect of Ga68-PSMA-11 mass concentration on cell binding was also investigated in samples of LnCaP cells incubated with increasing concentrations of radioligand. RESULTS: A total of 1 × 104 LNCaP cells mixed in a pellet of 2 × 105 cells were required to reach a 50% detection probability with Ga68-PSMA-11-PET/CT without background. With a background level of 1 kBq/ml, between 4 × 105 and 1 × 106 cells are required. The radioligand equilibrium dissociation constant was 27.05 nM, indicating high binding affinity. Hence, the specific activity of the radioligand has a profound effect on image quantification. CONCLUSIONS: Ga68-PSMA-11-PET detects a small number of LNCaP cells even when they are mixed in a population of non-PSMA expressing cells and in the presence of background. The obtained image detection limits and characteristic quantification properties of Ga68-PSMA-11-PET/CT are essential hallmarks for the individualization of patient management. The use of the standardized uptake value for Ga68-PSMA-11-PET/CT image quantification should be precluded.

8.
Cell Death Dis ; 9(7): 736, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970884

RESUMEN

The microRNA-34a is a well-studied tumor suppressor microRNA (miRNA) and a direct downstream target of TP53 with roles in several pathways associated with oncogenesis, such as proliferation, cellular growth, and differentiation. Due to its broad tumor suppressive activity, it is not surprising that miR34a expression is altered in a wide variety of solid tumors and hematological malignancies. However, the mechanisms by which miR34a is regulated in these cancers is largely unknown. In this study, we find that a long noncoding RNA transcribed antisense to the miR34a host gene, is critical for miR34a expression and mediation of its cellular functions in multiple types of human cancer. We name this long noncoding RNA lncTAM34a, and characterize its ability to facilitate miR34a expression under different types of cellular stress in both TP53-deficient and wild-type settings.


Asunto(s)
MicroARNs/metabolismo , ARN sin Sentido/fisiología , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/fisiología , Inmunoprecipitación de Cromatina , Biología Computacional , Daño del ADN/genética , Daño del ADN/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Genes Supresores de Tumor/fisiología , Humanos , MicroARNs/genética , Regiones Promotoras Genéticas/genética , ARN sin Sentido/genética , Espectrometría de Masas en Tándem
9.
Cancer Lett ; 435: 32-43, 2018 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-30055290

RESUMEN

Resistance to chemotherapy is a challenging problem for treatment of cancer patients and autophagy has been shown to mediate development of resistance. In this study we systematically screened a library of 306 known anti-cancer drugs for their ability to induce autophagy using a cell-based assay. 114 of the drugs were classified as autophagy inducers; for 16 drugs, the cytotoxicity was potentiated by siRNA-mediated knock-down of Atg7 and Vps34. These drugs were further evaluated in breast cancer cell lines for autophagy induction, and two tyrosine kinase inhibitors, Sunitinib and Erlotinib, were selected for further studies. For the pharmacological inhibition of autophagy, we have characterized here a novel highly potent selective inhibitor of Vps34, SB02024. SB02024 blocked autophagy in vitro and reduced xenograft growth of two breast cancer cell lines, MDA-MB-231 and MCF-7, in vivo. Vps34 inhibitor significantly potentiated cytotoxicity of Sunitinib and Erlotinib in MCF-7 and MDA-MB-231 in vitro in monolayer cultures and when grown as multicellular spheroids. Our data suggests that inhibition of autophagy significantly improves sensitivity to Sunitinib and Erlotinib and that Vps34 is a promising therapeutic target for combination strategies in breast cancer.


Asunto(s)
Autofagia/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas Clase III/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Células MCF-7 , Ratones Endogámicos NOD , Ratones SCID , Inhibidores de Proteínas Quinasas/farmacología , Sunitinib/farmacología
10.
Leuk Lymphoma ; 53(10): 2041-50, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22475310

RESUMEN

Analysis of the microRNA transcriptome following dexa- methasone treatment of the acute lymphocytic leukemia (ALL) cell line RS4;11 showed a global down-regulation of microRNA levels. MIR17HG was rapidly down-regulated following treatment, with chromatin immunoprecipitation (ChIP) analysis demonstrating the promoter to be a direct target of glucocorticoid (GC)-transcriptional repression and revealing the miR17-92 cluster as a prime target for dexamethasone-induced repression. The loss of miR17 family expression and concomitant increases in the miR17 target Bim occurred in an additional ALL cell line SUP-B15 but not in the dexamethasone-resistant REH. Alteration of miR17 levels through up-regulation or inhibition resulted in an decrease and increase, respectively, in Bim protein levels and dexamethasone-induced cell death. Primary ex vivo ALL cells that underwent apoptosis induced by dexamethasone also down-regulated miR17 levels. Thus, down-regulation of miR17 plays an important role in glucocorticoid-induced cell death suggesting that targeting miR17 may improve the current ALL combination therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Glucocorticoides/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Línea Celular Tumoral , Niño , Dexametasona/farmacología , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética/efectos de los fármacos
11.
Exp Cell Res ; 313(19): 4015-24, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17880940

RESUMEN

In multiple myeloma, which commonly depends on interleukin 6, IL-6, survival signaling induced by this cytokine is largely mediated by activation of STAT3. Interferon alpha (IFNalpha) treatment of cell lines derived from multiple myeloma or of myeloma tumor cells ex vivo leads to apoptosis. In this study we demonstrate that IFNalpha treatment of the two myeloma cell lines, U266-1984 and U-1958, results in the decrease of STAT3 activity as demonstrated by a diminished STAT3/3 DNA-binding activity and the shift from STAT3/3 towards STAT1/1 and STAT3/1 complexes in EMSA, leading to the down-regulation of known STAT3 target genes such as Bcl-X(L), Mcl-1 and survivin. Ectopic expression of a form of STAT3, STAT3C, rescued U266-1984 cells from IFNalpha-induced apoptosis. IFNalpha promoted sustained accumulation of tyrosine phosphorylated STAT3C in the nucleus and a prolonged DNA binding of the STAT3/3 homodimers in EMSA. The shift towards a sustained STAT3 response in IFNalpha-treated STAT3C-transfected cells led to a hyper-induction of Bcl-2 and Mcl-1 proteins. Thus our data demonstrated that IFNalpha is able to interfere with IL-6 signaling by inhibiting STAT3 activity and that the abrogation of STAT3 activity accounts for the ability of IFNalpha to induce apoptosis in myeloma cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Interferón-alfa/farmacología , Interleucina-6/metabolismo , Mieloma Múltiple/patología , Factor de Transcripción STAT3/antagonistas & inhibidores , Línea Celular Tumoral , ADN/metabolismo , Dimerización , Regulación de la Expresión Génica , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas de Neoplasias/genética , Fosforilación , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA