Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230208, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38736336

RESUMEN

The selected ice nanoparticle accelerator, SELINA, was used to prepare beams of single ice particles with positive or negative charge. Positively charged particles were prepared from deionized water and 0.05-0.2 molar solutions of sodium chloride in water, and negatively charged ice particles were generated from water without salt. Depending on the electrospray source configuration, the measured particles vary from 50 to 1000 nm in diameter. The kinetic energy per charge for all particles was set to 200 eV by the collisional equilibration in quadrupoles, which resulted in primary velocities up to 600 m/s for the lowest m/z particles. The electrospray ionization and thus particle formation from SELINA become less efficient with increasing salt concentration, resulting in a lower detected particle frequency and size. Good instrument operation is achievable for concentrations below 0.2 M. After we have verified and characterized positively and negatively charged ice particles, we have combined SELINA with a target and time-of-flight spectrometer for a 'proof-of-principle' post acceleration of 120 nm particles towards hypervelocity (v ~ 3000 m/s) and detection of fragments from the particle impact (SELINA-HIMS). General conditions are discussed for the acceleration of particles between 50 and 1000 nm to velocities well above 3000 m/s with SELINA-HIMS instrument. This article is part of the theme issue 'Dust in the Solar System and beyond'.

2.
Molecules ; 29(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38398562

RESUMEN

The gas-phase reaction between the ethyl cation (C2H5+) and ethyne (C2H2) is re-investigated by measuring absolute reactive cross sections (CSs) and branching ratios (BRs) as a function of collision energy, in the thermal and hyperthermal energy range, via tandem-guided ion beam mass spectrometry under single collision conditions. Dissociative photoionization of C2H5Br using tuneable VUV radiation in the range 10.5-14.0 eV is employed to generate C2H5+, which has also allowed us to explore the impact of increasing (vibrational) excitation on the reactivity. Reactivity experiments are complemented by theoretical calculations, at the G4 level of theory, of the relative energies and structures of the most relevant stationary points on the reactive potential energy hypersurface (PES) and by mass-analyzed ion kinetic energy (MIKE) spectrometry experiments to probe the metastable decomposition from the [C4H7]+ PES and elucidate the underlying reaction mechanisms. Two main product channels have been identified at a centre-of-mass collision energy of ∼0.1 eV: (a) C3H3++CH4, with BR = 0.76±0.05 and (b) C4H5++H2, with BR = 0.22±0.02. A third channel giving C2H3+ in association with C2H4 is shown to emerge at both high internal excitation of C2H5+ and high collision energies. From CS measurements, energy-dependent total rate constants in the range 4.3×10-11-5.2×10-10 cm3·molecule-1·s-1 have been obtained. Theoretical calculations indicate that both channels stem from a common covalently bound intermediate, CH3CH2CHCH+, from which barrierless and exothermic pathways exist for the production of both cyclic c-C3H3+ and linear H2CCCH+ isomers of the main product channel. For the minor C4H5+ product, two isomers are energetically accessible: the three-member cyclic isomer c-C3H2(CH3)+ and the higher energy linear structure CH2CHCCH2+, but their formation requires multiple isomerization steps and passages via transition states lying only 0.11 eV below the reagents' energy, thus explaining the smaller BR. Results have implications for the modeling of hydrocarbon chemistry in the interstellar medium and the atmospheres of planets and satellites as well as in laboratory plasmas (e.g., plasma-enhanced chemical vapor deposition of carbon nanotubes and diamond-like carbon films).

3.
Anal Chem ; 95(7): 3621-3628, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36753610

RESUMEN

The coupling of an Orbitrap-based mass analyzer to the laser-induced liquid beam ion desorption (LILBID) technique has been investigated, with the aim to reproduce the mass spectra recorded by Cassini's Cosmic Dust Analyzer (CDA) in the vicinity of Saturn's icy moon Enceladus. LILBID setups are usually coupled with time-of-flight (TOF) mass analyzers, with a limited mass resolution (∼800 m/Δm). Thanks to the Orbitrap technology, we developed a unique analytical setup that is able to simulate hypervelocity ice grains' impact in the laboratory (at speeds in the range of 15-18 km/s) with an unprecedented high mass resolution of up to 150 000 m/Δm (at m/z 19 for a 500 ms signal duration). The results will be implemented in the LILBID database and will be useful for the calibration and future data interpretation of the Europa Clipper's SUrface Dust Analyzer (SUDA), which will characterize the habitability of Jupiter's icy moon Europa.

4.
Electrophoresis ; 43(9-10): 930-938, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34751959

RESUMEN

CE method for the baseline separation of structurally similar flavonolignans silybin A, silybin B, isosilybin A, isosilybin B, silychristin, silydianin, and their precursor taxifolin in silymarin complex has been developed and validated. The optimized background electrolyte was 100 mmol/L boric acid (pH 9.0) containing 5 mmol/L heptakis(2,3,6-tri-O-methyl)-ß-CD and 10% (v/v) of methanol. The separation was carried out in an 80.5/72 cm (50 µm id) fused silica capillary at +25 kV with UV detection at 200 nm. Genistein (10 µg/mL) was used as internal standard. The resolution between the diastereomers of silybin and isosilybin was 1.73 and 2.59, respectively. The method was validated for each analyte in a concentration range of 2.5-50 µg/mL. The calibration curves were rectilinear with correlation coefficients ≥0.9972. The method was applied to determine flavonolignans in two dietary supplements containing Silybum marianum extract. The accuracy was evaluated by comparing the results of the CE analyses of the dietary supplements with those of the reference United States Pharmacopeial HPLC method. The unpaired t-test did not show a statistically significant difference between the results of both the proposed CE and the reference method (p > 0.05, n = 3).


Asunto(s)
Silybum marianum , Silimarina , Antioxidantes , Cromatografía Líquida de Alta Presión , Electroforesis Capilar
5.
Rapid Commun Mass Spectrom ; 35(22): e9187, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34473872

RESUMEN

RATIONALE: Secondary electrospray ionization (SESI) is currently only semi-quantitative. In the Zspray™ arrangement of SESI-MS, the transfer of ions from near atmospheric pressure to a triple quadrupole is achieved by guiding electric fields that partially desolvate both reagent and analyte ions which must be understood. Also, to make SESI-MS more quantitative, the mechanisms and the kinetics of the reaction processes, especially ligand switching reactions of hydrated hydronium reagent ions, H3 O+ (H2 O)n , with volatile organic compound (VOC) molecules, need to be understood. METHODS: A modified Zspray™ ESI ion source operating at sub-atmospheric pressure with analyte sample gas introduced via an inlet coaxial with the spray was used. Variation of the ion-guiding electric fields was used to reveal the degree of desolvation of both reagent and analyte ions. The instrument sensitivity was determined for several classes of VOCs by introducing bag samples of suitably varying concentrations as quantified on-line using selected ion flow tube MS. RESULTS: Electric field desolvation resulted in largely protonated VOCs, MH+ , and their monohydrates, MH+ H2 O, and for some VOCs proton-bound dimer ions, MH+ M, were formed. There was a highly linear response of the ion signal to the measured VOC sample concentration, which provided the instrument sensitivities, S, for 25 VOCs. The startling results show very wide variations in S from near 0 to 1 for hydrocarbons, and up to 100, on a relative scale, for polar compounds such as monoketones and unsaturated aldehydes. CONCLUSIONS: The complex ion chemistry occurring in the SESI ion source, largely involving gas-phase ligand switching, results in widely variable sensitivities for different classes of VOCs. The sensitivity is observed to depend on the dipole moment and proton affinity of the analyte VOC molecule, M, and to decrease with the observed fraction of MH+ H2 O, but other yet unrecognized factors must play a significant role.

6.
Electrophoresis ; 41(18-19): 1557-1563, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33180330

RESUMEN

The stability of α-bromophenylacetic acid (BPAA) in 50% aqueous methanol solution has been tested. CE in different running buffers was used to separate BPAA from the decomposition reaction products α-hydroxyphenylacetic (mandelic) acid and α-methoxyphenylacetic acid. Suitable CE separation of all three compounds and other product, bromide, was achieved in 60 mmol/L formate buffer (pH 3.0) at -30 kV in 50 µm (i.d.) poly(vinyl alcohol)-coated fused silica capillary (30 cm/24.5 cm) with UV detection at 200 nm. The CE method was applied to determine the reaction order of the decomposition of BPAA (0.47 mmol/L) via nucleophilic substitution in 50% aqueous methanol. The first-order reaction kinetics was confirmed by linear and non-linear regression, giving the rate constants 1.52 × 10-4 ± 2.76 × 10-5 s-1 and 7.89 × 10-5 ± 5.02 × 10-6 s-1, respectively. Additionally, the degradation products were identified by CE coupled to mass spectrometric (MS) detection. The CE-MS experiments carried out in 60 mmol/L formate buffer (pH 3.0) and in 60 mmol/L acetate buffer (pH 5.0) confirmed the results obtained by CE-UV. Furthermore, the stability of BPAA in polar solvents was tested by 1H NMR experiments. Our results provide strong evidence of the instability and fast degradation of BPAA in 50% aqueous methanol indicating that BPAA is not suitable as the model analyte for chiral separations.


Asunto(s)
Electroforesis Capilar/métodos , Electroforesis Capilar/normas , Modelos Químicos , Fenilacetatos/química , Fenilacetatos/aislamiento & purificación , Estabilidad de Medicamentos , Espectrometría de Masas/métodos , Reproducibilidad de los Resultados , Estereoisomerismo
7.
Phys Chem Chem Phys ; 22(40): 23141-23147, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33025990

RESUMEN

In a combined experimental and theoretical study we probe the transient anion states (resonances) in cyanogen. Experimentally, we utilize electron energy loss spectroscopy which reveals the resonance positions by monitoring the excitation functions for vibrationally inelastic electron scattering. Four resonances are visible in the spectra, centered around 0.36 eV, 4.1, 5.3 and 7.3 eV. Theoretically, we explore the resonant states by using the regularized analytical continuation method. A very good agreement with the experiment is obtained for low-lying resonances, however, the computational method becomes unstable for higher-lying states. The lowest shape resonance (2Πu) is independently explored by the complex adsorbing potential method. In the experiment, this resonance is manifested by a pronounced boomerang structure. We show that the naive picture of viewing NCCN as a pseudodihalogen and focusing only on the CC stretch is invalid.

8.
Electrophoresis ; 39(20): 2550-2557, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29664166

RESUMEN

A micellar electrokinetic chromatography method for the determination of indomethacin impurities (4-chlorobenzoic acid, 5-methoxy-2-methyl-3-indoleacetic acid, and 3,4-dichloroindomethacin) has been developed. A 64.5/56-cm fused silica 50 µm id capillary with extended light path (150 µm id) detection window was used. Internal standard was 1-naphthylacetic acid. The analytes were separated at 30 kV with DAD detection at 224 nm. A central composite face-centered design was applied for the optimization of the separation conditions. The effect of SDS concentration, content of methanol, concentration of phosphate buffer, and pH of the buffer were studied at three levels. The optimized background electrolyte was 20 mmol/L phosphate buffer (pH 7.57) containing 58 mmol/L SDS and 0% MeOH. Sufficient resolution of all compounds with Rs ≥ 3.5 was achieved within 10 min. The method was validated for a range of 1.25-80 µg/mL of each impurity corresponding to 0.05-3.2% relative to the concentration of indomethacin (2.5 mg/mL). The calibration curves were rectilinear with correlation coefficients r2 exceeding 0.9994. The lower limit of quantification was 0.05% or 1.25 µg/mL that complies with the reporting limits regarding the ICH Q3A guideline. The method was applied to purity assay of indomethacin in both bulk drug and gel.


Asunto(s)
Cromatografía Capilar Electrocinética Micelar/métodos , Contaminación de Medicamentos , Indometacina/análisis , Indometacina/química , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
9.
Phys Chem Chem Phys ; 20(8): 5377-5388, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29044258

RESUMEN

A theoretical and experimental investigation of the reaction C5N- + C2H2 has been carried out. This reaction is of astrophysical interest since the growth mechanism of large anions that have been detected in Titan's upper atmosphere by the Cassini plasma spectrometer are still largely unknown. The experimental studies have been performed using a tandem quadrupole mass spectrometer which allows identification of the different reaction channels and assessment of their reaction thresholds. Results of these investigations were compared with the predictions of ab initio calculations, which identified possible pathways leading to the observed products and their thermodynamical properties. These computations yielded that the majority of these products are only accessible via energy barriers situated more than 1 eV above the reactant energies. In many cases, the thresholds predicted by the ab initio calculations are in good agreement with the experimentally observed ones. For example, the chain elongation reaction leading to C7N-, although being slightly exoergic, possesses an energy barrier of 1.91 eV. Therefore, the title reaction can be regarded to be somewhat unlikely to be responsible for the formation of large anions in cold environments such as interstellar medium or planetary ionospheres.

10.
J Chem Phys ; 147(15): 154302, 2017 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-29055295

RESUMEN

The methyl carbocation is ubiquitous in gaseous environments, such as planetary ionospheres, cometary comae, and the interstellar medium, as well as combustion systems and plasma setups for technological applications. Here we report on a joint experimental and theoretical study on the mechanism of the reaction CH3+ + CH3CCCH3 (but-2-yne, also known as dimethylacetylene), by combining guided ion beam mass spectrometry experiments with ab initio calculations of the potential energy hypersurface. Such a reaction is relevant in understanding the chemical evolution of Saturn's largest satellite, Titan. Two complementary setups have been used: in one case, methyl cations are generated via electron ionization, while in the other case, direct vacuum ultraviolet photoionization with synchrotron radiation of methyl radicals is used to study internal energy effects on the reactivity. Absolute reactive cross sections have been measured as a function of collision energy, and product branching ratios have been derived. The two most abundant products result from electron and hydride transfer, occurring via direct and barrierless mechanisms, while other channels are initiated by the electrophilic addition of the methyl cation to the triple bond of but-2-yne. Among the minor channels, special relevance is placed on the formation of C5H7+, stemming from H2 loss from the addition complex. This is the only observed condensation product with the formation of new C-C bonds, and it might represent a viable pathway for the synthesis of complex organic species in astronomical environments and laboratory plasmas.

11.
Inorg Chem ; 55(24): 12815-12821, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989211

RESUMEN

Cyclic voltammograms of 12-iodinated icosahedral carborane anions [1-X-12-I-CB11Me10-] (X = H, CH3, C2H5, C3H7, C4H9, C6H13, and COOCH3) show two one-electron anodic oxidation peaks at the Pt electrode in liquid SO2. Oddly, the first is irreversible and the second partially reversible. Mass spectrometry of the principal anionic product of preparative anodic oxidation of [1-H-12-I-CB11Me11-], identical with the anionic product of its reaction with [Et3Si-H-SiEt3]+ and/or Et3Si+, allows it to be identified as the iodonium ylide anion [{12-(1-H-CB11Me10-)}2I+]. Its reversible oxidation to a neutral ylide radical [{12-(1-H-CB11Me10•)}{12-(1-H-CB11Me10-)}I+] is responsible for the second peak. A DFT geometry optimization suggests that both the ylide anion and the ylide radical are very crowded and have an unusually large C-I-C valence angle of ∼132°; they are the first compounds with two bulky highly methylated CB11 cages attached to the same atom. Molecular iodine is another product of the electrolysis. We propose an electrode mechanism in which initial one-electron oxidation of [1-X-12-I-CB11Me10-] is followed by a transfer of an iodine atom from the B-I bond to SO2 to yield a weakly bound radical ISO2• which disproportionates into SO2 and I2. The other product is the borenium ylide [12-dehydro-1-X-CB11Me10], which has a strongly Lewis acidic naked vertex in position 12 that rapidly adds to another [1-X-12-I-CB11Me10-] anion to form the observed stable ylide anion [{12-(1-X-CB11Me10-)}2I+]. In acetonitrile, where it presumably exists as a solvent adduct, [12-dehydro-1-X-CB11Me10] has been trapped with H2O and, to a small extent, with MeOH, but not with several other potential trapping agents.

12.
J Phys Chem A ; 120(27): 5041-52, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26890990

RESUMEN

Experimental and theoretical studies have been carried out to demonstrate the selective generation of two different C2H3N(+) isomers, namely, the acetonitrile [CH3CN](•+) and the ketenimine [CH2CNH](•+) radical cations. Photoionization and dissociative photoionization experiments from different neutral precursors (acetonitrile and butanenitrile) have been performed using vacuum ultraviolet (VUV) synchrotron radiation in the 10-15 eV energy range, delivered by the DESIRS beamline at the SOLEIL storage ring. For butanenitrile (CH3CH2CH2CN) an experimental ionization threshold of 11.29 ± 0.05 eV is obtained, whereas the appearance energy for the formation of [CH2CNH](•+) fragments is 11.52 ± 0.05 eV. Experimental findings are fully supported by theoretical calculations at the G4 level of theory (ZPVE corrected energies at 0 K), giving a value of 11.33 eV for the adiabatic ionization energy of butanenitrile and an exothermicity of 0.49 for fragmentation into [CH2CNH](•+) plus C2H4, hampered by an energy barrier of 0.29 eV. The energy difference between [CH3CN](•+) and [CH2CNH](•+) is 2.28 eV (with the latter being the lowest energy isomer), and the isomerization barrier is 0.84 eV. Reactive monitoring experiments of the [CH3CN](•+) and [CH2CNH](•+) isomers with C2H4 have been performed using the CERISES guided ion beam tandem mass spectrometer and exploiting the selectivity of ethylene that gives exothermic charge exchange and proton transfer reactions with [CH3CN](•+) but not with [CH2CNH](•+) isomers. In addition, minor reactive channels are observed leading to the formation of new C-C bonds upon reaction of [CH3CN](•+) with C2H4, and their astrochemical implications are briefly discussed.

13.
J Phys Chem A ; 120(27): 5337-47, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27135984

RESUMEN

The reaction of C3N(-) with acetylene was studied using three different experimental setups, a triple quadrupole mass spectrometer (Trento), a tandem quadrupole mass spectrometer (Prague), and the "CERISES" guided ion beam apparatus at Orsay. The process is of astrophysical interest because it can function as a chain elongation mechanism to produce larger anions that have been detected in Titan's ionosphere by the Cassini Plasma Spectrometer. Three major products of primary processes, C2H(-), CN(-), and C5N(-), have been identified, whereby the production of the cyanide anion is probably partly due to collisional induced dissociation. The formations of all these products show considerable reaction thresholds and also display comparatively small cross sections. Also, no strong signals of anionic products for collision energies lower than 1 eV have been observed. Ab initio calculations have been performed to identify possible pathways leading to the observed products of the title reaction and to elucidate the thermodynamics of these processes. Although the productions of CN(-) and C5N(-) are exoergic, all reaction pathways have considerable barriers. Overall, the results of these computations are in agreement with the observed reaction thresholds. Due to the existence of considerable reaction energy barriers and the small observed cross sections, the title reaction is not very likely to play a major role in the buildup of large anions in cold environments like the interstellar medium or planetary and satellite ionospheres.

14.
Orig Life Evol Biosph ; 46(4): 533-538, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27108425

RESUMEN

Reliable theoretical models of the chemical kinetics of the ionosphere of Saturn's moon, Titan, is highly dependent on the precision of the rates of the reactions of ambient ions with hydrocarbon molecules at relevant temperatures. A Variable Temperature Selected Ions Flow Tube technique, which has been developed primarily to study these reactions at temperatures within the range of 200-330 K, is briefly described. The flow tube temperature regulation system and the thermalisation of ions are also discussed. Preliminary studies of two reactions have been carried out to check the reliability and efficacy of kinetics measurements: (i) Rate constants of the reaction of CH3+ ions with molecular oxygen were measured at different temperatures, which indicate values in agreement with previous ion cyclotron resonance measurements ostensibly made at 300 K. (ii) Formation of CH3+ ions in the reaction of N2+ ions with CH4 molecules were studied at temperatures within the range 240-310 K which showed a small but statistically significant decrease of the ratio of product CH3+ ions to reactant N2+ ions with reaction temperature.


Asunto(s)
Atmósfera/química , Medio Ambiente Extraterrestre , Saturno , Iones/química , Cinética , Modelos Químicos , Proyectos Piloto , Temperatura
15.
Electrophoresis ; 36(21-22): 2754-2761, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26312780

RESUMEN

A fast micellar electrokinetic chromatography (MEKC) method for simultaneous assay of aesculin, aesculetin, and phenylephrine was developed and validated. The separation was carried out in a fused-silica capillary (50 µm id, total length 64.5 cm, effective length 8.5 cm) with UV detection at 210 nm, temperature 25°C and separation voltage -25 kV. The samples were loaded hydrodynamically at a pressure of -50 mbar for 6 s. The background electrolyte of pH 8.6 contained 20 mM boric acid, 60 mM SDS, and 5% (v/v) of methanol. The calibration curves were linear in the range 10-500 µg/mL for aesculin and aesculetin and 12.5-625 µg/mL for phenylephrine. The RSD values of corrected peak areas were 0.6-1.2% (n = 6) when determining 0.2 mg/mL of aesculin and aesculetin and 0.25 mg/mL of phenylephrine in prepared standard mixtures. The method was successfully applied to the assay of aesculin and phenylephrine in a pharmaceutical preparation (RSD  =  1.9-2.0%; n  =  3) and the robustness of the method for both, the determination of analytes and the system suitability test parameter values, was evaluated with the use of Plackett-Burman design.

16.
J Phys Chem A ; 119(23): 6082-98, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-25721439

RESUMEN

An experimental study has been carried out on the reactions of state selected O(+)((4)S, (2)D, (2)P) ions with methane with the aims of characterizing the effects of both the parent ion internal energy and collision energy on the reaction dynamics and determining the fate of oxygen species in complex media, in particular the Titan ionosphere. Absolute cross sections and product velocity distributions have been determined for the reactions of (16)O(+) or (18)O(+) ions with CH4 or CD4 from thermal to 5 eV collision energies by using the guided ion beam (GIB) technique. Dissociative photoionization of O2 with vacuum ultraviolet (VUV) synchrotron radiation delivered by the DESIRS beamline at the SOLEIL storage ring and the threshold photoion photoelectron coincidence (TPEPICO) technique are used for the preparation of purely state-selected O(+)((4)S, (2)D, (2)P) ions. A complete inversion of the product branching ratio between CH4(+) and CH3(+) ions in favor of the latter is observed for excitation of O(+) ions from the (4)S ground state to either the (2)D or the (2)P metastable state. CH4(+) and CH3(+) ions, which are by far the major products for the reaction of ground state and excited states, are strongly backward scattered in the center of mass frame relative to O(+) parent ions. For the reaction of O(+)((4)S), CH3(+) production also rises with increasing collision energy but with much less efficiency than with O(+) excitation. We found that a mechanism of dissociative charge transfer, mediated by an initial charge transfer step, can account very well for all the observations, indicating that CH3(+) production is associated with the formation of H and O atoms (CH3(+) + H + O) rather than with OH formation by an hydride transfer process (CH3(+) + OH). Therefore, as the CH4(+) production by charge transfer is also associated with O atoms, the fate of oxygen species in these reactions is essentially the O production, except for the reaction of O(+)((4)S), which also produces appreciable amounts of H2O(+) ions but only at very low collision energy. The production of O atoms and the nature of the states in which they are formed are discussed for the reactions of O(+) ions with CH4 and N2.

17.
Electrophoresis ; 35(17): 2546-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24789757

RESUMEN

A sensitive capillary electrophoretic method featuring spectrophotometric detection using a commercial Z-cell was devised for the assay of 8-hydroxy-2'-deoxyguanosine (8OHdG) in human urine. Solid-phase extraction (SPE) based on hydrophilic-lipophilic-balanced RP sorbent was utilized for urine sample pretreatment and analyte preconcentration. The separation was carried out in conventional fused-silica capillaries employing a Z-cell with hydrodynamic sample injection (at 50 mbar for 12 s). The BGE (pH* 9.2, adjusted with 1 M NaOH) contained 0.15 M boric acid and 10% v/v ACN. The detection wavelength was 282 nm. The calibration curve for 8OHdG (measured in spiked urine) was linear in the range 10-1000 ng/mL; R(2) = 0.9993. The LOD was 3 ng/mL (11 nmol/L) of 8OHdG. Determination of the 8OHdG urinary levels was possible even in healthy individuals.


Asunto(s)
Desoxiguanosina/análogos & derivados , Electroforesis Capilar/métodos , Extracción en Fase Sólida/métodos , 8-Hidroxi-2'-Desoxicoguanosina , Desoxiguanosina/química , Desoxiguanosina/orina , Humanos , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
18.
Eur J Mass Spectrom (Chichester) ; 20(3): 233-47, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24892294

RESUMEN

2,2-Dinitroethene-1,1-diamine (FOX-7) was studied by means of electrospray ionization (ESI) and chemical ionization (CI) mass spectrometry in both positive and negative ion mode. Detailed mechanisms of unimolecular fragmentations of protonated and deprotonated FOX-7 were investigated using high- and low- energy collision-induced dissociation (CID) mass spectrometry, neutral fragment reionization mass spectrometry and quantum chemistry calculations. In deprotonated FOX-7, elimination of the carbodiimide molecule was identified as the energetically most favored fragmentation channel, closely resembling the base hydrolysis of FOX-7. The dinitromethanide ion is formed during this fragmentation as revealed by comparison with CID mass spectra of an isobaric ion prepared by the ESI of authentic sodium dinitromethanide. The proton affinity of FOX-7 was estimated as 855 kJ mo(-1) by high-accuracy quantum chemistry calculations. This value corresponds to protonation at the C-2 position, though the oxygen-protonated tautomer was found to be nearly isoenergetic in the gas phase. In acetonitrile, the nitro group-protonated FOX-7 was found to be significantly less stable then its C-2 tautomer. These theoretical findings are clearly reflected in differences in fragmentations of ESI- and CI-generated [M+H(]+) ions. Interestingly, the consecutive losses of OH∙ and NO2∙ radicals instead of a whole HNO3 molecule were found to account for the most abundant fragment ion in the positive ESI CID mass spectra. In the CI-generated [M+H](+) and [M+D](+) ions, substantial internal energy effects upon the CID were observed.

19.
Crit Rev Anal Chem ; : 1-27, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462842

RESUMEN

Boswellia resin is an exudate from the cut bark of Boswellia trees. The main constituents of pharmacological interest are boswellic acids (pentacyclic triterpenoids), namely α-boswellic acid, ß-boswellic acid, 3-O-acetyl-α-boswellic acid, 3-O-acetyl-ß-boswellic acid, 11-keto-ß-boswellic acid, and 3-O-acetyl-11-keto-ß-boswellic acid. Nowadays, dietary supplements with Boswellia serrata extract are used in the treatment of inflammatory joint diseases. Additionally, the constituents of Boswellia resin have shown potential for the treatment of other chronic inflammatory diseases and various types of cancer. Separation methods including ultra/high-performance liquid chromatography, gas chromatography, thin layer chromatography, supercritical fluid chromatography, and capillary electrochromatography coupled with UV or MS detection have been used for the determination of boswellic acids in various matrices (mostly plant material and biological samples). This review aims to provide a comprehensive summary of these separation methods, offering a critical discussion of their strengths and limitations in the analysis of boswellic acids. The knowledge of various separation methods plays a pivotal role in the quality control of herbal dietary supplements and the monitoring of the metabolism and pharmacokinetics of their constituents. The approaches based on metabolomics and network pharmacology represent new ways of fingerprinting secondary metabolites in Boswellia resin increasing the comprehensiveness of the output of these methods resulting in safer dietary supplements.

20.
Biomolecules ; 13(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36979410

RESUMEN

Triacylglycerol estolides (TG-EST) are biologically active lipids extensively studied for their anti-inflammatory and anti-diabetic properties. In this work, eight standards of TG-EST were synthesized and systematically investigated by nanoelectrospray tandem mass spectrometry. Mass spectra of synthetic TG-EST were studied with the purpose of enabling the unambiguous identification of these lipids in biological samples. TG-EST glycerol sn-regioisomers and isomers with the fatty acid ester of hydroxy fatty acid (FAHFA) subunit branched in the ω-, α-, or 10-position were used. Ammonium, lithium, and sodium adducts of TG-EST formed by nanoelectrospray ionization were subjected to collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD). Product ion spectra allowed for identification of fatty acid (FA) and FAHFA subunits originally linked to the glycerol backbone and distinguished the α-branching site of the FAHFA from other estolide-branching isomers. The ω- and 10-branching sites were determined by combining CID with ozone-induced dissociation (OzID). Lithium adducts provided the most informative product ions, enabling characterization of FA, hydroxy fatty acid (HFA), and FAHFA subunits. Glycerol sn-regioisomers were distinguished based on the relative abundance of product ions and unambiguously identified using CID/OzID of lithium and sodium adducts.


Asunto(s)
Ozono , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Triglicéridos/química , Glicerol , Litio/química , Ácidos Grasos/química , Ozono/química , Sodio , Iones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA