RESUMEN
Activity of FOXO (forkhead box O) transcription factors is inhibited by growth factor-PI3K (phosphoinositide 3-kinase)-PKB (protein kinase B)/Akt signalling to control a variety of cellular processes including cell cycle progression. Through comparative analysis of a number of microarray datasets we identified a set of genes commonly regulated by FOXO proteins and PI3K-PKB/Akt, which includes CTDSP2 (C-terminal domain small phosphatase 2). We validated CTDSP2 as a genuine FOXO target gene and show that ectopic CTDSP2 can induce cell cycle arrest. We analysed transcriptional regulation after CTDSP2 expression and identified extensive regulation of genes involved in cell cycle progression, which depends on the phosphatase activity of CTDSP2. The most notably regulated gene is the CDK (cyclin-dependent kinase) inhibitor p21(Cip1/Waf1) and in the present study we show that p21(Cip1/Waf1) is partially responsible for the cell cycle arrest through decreasing cyclin-CDK activity. Our data suggest that CTDSP2 induces p21(Cip1/Waf1) through increasing the activity of Ras. As has been described previously, Ras induces p21(Cip1/Waf1) through p53-dependent and p53-independent pathways and indeed both p53 and MEK inhibition can mitigate the CTDSP2-induced p21(Cip1/Waf1) mRNA up-regulation. In support of Ras activation by CTDSP2, depletion of endogenous CTDSP2 results in reduced Ras activity and thus CTDSP2 seems to be part of a larger set of genes regulated by FOXO proteins, which increase growth factor signalling upon FOXO activation.
Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas ras/metabolismo , Animales , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Células 3T3 NIH , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transcripción Genética/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/genéticaRESUMEN
FOXO (forkhead box O) transcription factors are tumor suppressors and increase the life spans of model organisms. Cellular stress, in particular oxidative stress caused by an increase in levels of reactive oxygen species (ROS), activates FOXOs through JNK-mediated phosphorylation. Importantly, JNK regulation of FOXO is evolutionarily conserved. Here we identified the pathway that mediates ROS-induced JNK-dependent FOXO regulation. Following increased ROS, RALA is activated by the exchange factor RLF (RalGDS-like factor), which is in complex with JIP1 (C-Jun-amino-terminal-interacting protein 1) and JNK. Active RALA consequently regulates assembly and activation of MLK3, MKK4, and JNK onto the JIP1 scaffold. Furthermore, regulation of FOXO by RALA and JIP1 is conserved in C. elegans, where both ral-1 and jip-1 depletion impairs heat shock-induced nuclear translocation of the FOXO orthologue DAF16.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Activación Enzimática , Factores de Transcripción Forkhead , Células HEK293 , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Proteína Quinasa 8 Activada por Mitógenos/genética , Mutación , Células 3T3 NIH , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Proteínas de Unión al GTP ral/genéticaRESUMEN
Forkhead box O (FOXO) transcription factors are key players in diverse cellular processes affecting tumorigenesis, stem cell maintenance and lifespan. To gain insight into the mechanisms of FOXO-regulated target gene expression, we studied genome-wide effects of FOXO3 activation. Profiling RNA polymerase II changes shows that FOXO3 regulates gene expression through transcription initiation. Correlative analysis of FOXO3 and RNA polymerase II ChIP-seq profiles demonstrates FOXO3 to act as a transcriptional activator. Furthermore, this analysis reveals a significant part of FOXO3 gene regulation proceeds through enhancer regions. FOXO3 binds to pre-existing enhancers and further activates these enhancers as shown by changes in histone acetylation and RNA polymerase II recruitment. In addition, FOXO3-mediated enhancer activation correlates with regulation of adjacent genes and pre-existence of chromatin loops between FOXO3 bound enhancers and target genes. Combined, our data elucidate how FOXOs regulate gene transcription and provide insight into mechanisms by which FOXOs can induce different gene expression programs depending on chromatin architecture.
Asunto(s)
Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , ARN Polimerasa II/genética , Línea Celular , Cromatina/genética , Cromatina/ultraestructura , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Proteína Forkhead Box O3 , Perfilación de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismoRESUMEN
Reactive Oxygen Species (ROS) derived from mitochondrial respiration are frequently cited as a major source of chromosomal DNA mutations that contribute to cancer development and aging. However, experimental evidence showing that ROS released by mitochondria can directly damage nuclear DNA is largely lacking. In this study, we investigated the effects of H2O2 released by mitochondria or produced at the nucleosomes using a titratable chemogenetic approach. This enabled us to precisely investigate to what extent DNA damage occurs downstream of near- and supraphysiological amounts of localized H2O2. Nuclear H2O2 gives rise to DNA damage and mutations and a subsequent p53 dependent cell cycle arrest. Mitochondrial H2O2 release shows none of these effects, even at levels that are orders of magnitude higher than what mitochondria normally produce. We conclude that H2O2 released from mitochondria is unlikely to directly damage nuclear genomic DNA, limiting its contribution to oncogenic transformation and aging.
Asunto(s)
Peróxido de Hidrógeno , Mitocondrias , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , ADN/metabolismo , Daño del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismoRESUMEN
Reactive Oxygen Species (ROS) in the form of H2O2 can act both as physiological signaling molecules as well as damaging agents, depending on their concentration and localization. The downstream biological effects of H2O2 were often studied making use of exogenously added H2O2, generally as a bolus and at supraphysiological levels. But this does not mimic the continuous, low levels of intracellular H2O2 production by for instance mitochondrial respiration. The enzyme d-Amino Acid Oxidase (DAAO) catalyzes H2O2 formation using d-amino acids, which are absent from culture media, as a substrate. Ectopic expression of DAAO has recently been used in several studies to produce inducible and titratable intracellular H2O2. However, a method to directly quantify the amount of H2O2 produced by DAAO has been lacking, making it difficult to assess whether observed phenotypes are the result of physiological or artificially high levels of H2O2. Here we describe a simple assay to directly quantify DAAO activity by measuring the oxygen consumed during H2O2 production. The oxygen consumption rate (OCR) of DAAO can directly be compared to the basal mitochondrial respiration in the same assay, to estimate whether the ensuing level of H2O2 production is within the range of physiological mitochondrial ROS production. In the tested monoclonal RPE1-hTERT cells, addition of 5 mM d-Ala to the culture media amounts to a DAAO-dependent OCR that surpasses â¼5% of the OCR that stems from basal mitochondrial respiration and hence produces supra-physiological levels of H2O2. We show that the assay can also be used to select clones that express differentially localized DAAO with the same absolute level of H2O2 production to be able to discriminate the effects of H2O2 production at different subcellular locations from differences in total oxidative burden. This method therefore greatly improves the interpretation and applicability of DAAO-based models, thereby moving the redox biology field forward.
Asunto(s)
Aminoácidos , Peróxido de Hidrógeno , Humanos , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Aminoácidos/metabolismo , Consumo de Oxígeno , OxígenoRESUMEN
Stabilization and activation of the p53 tumor suppressor are triggered in response to various cellular stresses, including DNA damaging agents and elevated Reactive Oxygen Species (ROS) like H2O2. When cells are exposed to exogenously added H2O2, ATR/CHK1 and ATM/CHK2 dependent DNA damage signaling is switched on, suggesting that H2O2 induces both single and double strand breaks. These collective observations have resulted in the widely accepted model that oxidizing conditions lead to DNA damage that subsequently mediates a p53-dependent response like cell cycle arrest and apoptosis. However, H2O2 also induces signaling through stress-activated kinases (SAPK, e.g., JNK and p38 MAPK) that can activate p53. Here we dissect to what extent these pathways contribute to functional activation of p53 in response to oxidizing conditions. Collectively, our data suggest that p53 can be activated both by SAPK signaling and the DDR independently of each other, and which of these pathways is activated depends on the type of oxidant used. This implies that it could in principle be possible to modulate oxidative signaling to stimulate p53 without inducing collateral DNA damage, thereby limiting mutation accumulation in both healthy and tumor tissues.
Asunto(s)
Proteínas de Ciclo Celular , Proteína p53 Supresora de Tumor , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Humanos , Peróxido de Hidrógeno , Oxidantes/farmacología , Fosforilación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Reversible cysteine oxidation plays an essential role in redox signaling by reversibly altering protein structure and function. Cysteine oxidation may lead to intra- and intermolecular disulfide formation, and the latter can drastically stabilize protein-protein interactions in a more oxidizing milieu. The activity of the tumor suppressor p53 is regulated at multiple levels, including various post-translational modification (PTM) and protein-protein interactions. In the past few decades, p53 has been shown to be a redox-sensitive protein, and undergoes reversible cysteine oxidation both in vitro and in vivo. It is not clear, however, whether p53 also forms intermolecular disulfides with interacting proteins and whether these redox-dependent interactions contribute to the regulation of p53. In the present study, by combining (co-)immunoprecipitation, quantitative mass spectrometry and Western blot we found that p53 forms disulfide-dependent interactions with several proteins under oxidizing conditions. Cysteine 277 is required for most of the disulfide-dependent interactions of p53, including those with 14-3-3θ and 53BP1. These interaction partners may play a role in fine-tuning p53 activity under oxidizing conditions.
RESUMEN
Redox signaling is controlled by the reversible oxidation of cysteine thiols, a post-translational modification triggered by H2O2 acting as a second messenger. However, H2O2 actually reacts poorly with most cysteine thiols and it is not clear how H2O2 discriminates between cysteines to trigger appropriate signaling cascades in the presence of dedicated H2O2 scavengers like peroxiredoxins (PRDXs). It was recently suggested that peroxiredoxins act as peroxidases and facilitate H2O2-dependent oxidation of redox-regulated proteins via disulfide exchange reactions. It is unknown how the peroxiredoxin-based relay model achieves the selective substrate targeting required for adequate cellular signaling. Using a systematic mass-spectrometry-based approach to identify cysteine-dependent interactors of the five human 2-Cys peroxiredoxins, we show that all five human 2-Cys peroxiredoxins can form disulfide-dependent heterodimers with a large set of proteins. Each isoform displays a preference for a subset of disulfide-dependent binding partners, and we explore isoform-specific properties that might underlie this preference. We provide evidence that peroxiredoxin-based redox relays can proceed via two distinct molecular mechanisms. Altogether, our results support the theory that peroxiredoxins could play a role in providing not only reactivity but also selectivity in the transduction of peroxide signals to generate complex cellular signaling responses.
RESUMEN
The tumor suppressor p16INK4A induces cell cycle arrest and senescence in response to oncogenic transformation and is therefore frequently lost in cancer. p16INK4A is also known to accumulate under conditions of oxidative stress. Thus, we hypothesized it could potentially be regulated by reversible oxidation of cysteines (redox signaling). Here we report that oxidation of the single cysteine in p16INK4A in human cells occurs under relatively mild oxidizing conditions and leads to disulfide-dependent dimerization. p16INK4A is an all α-helical protein, but we find that upon cysteine-dependent dimerization, p16INK4A undergoes a dramatic structural rearrangement and forms aggregates that have the typical features of amyloid fibrils, including binding of diagnostic dyes, presence of cross-ß sheet structure, and typical dimensions found in electron microscopy. p16INK4A amyloid formation abolishes its function as a Cyclin Dependent Kinase 4/6 inhibitor. Collectively, these observations mechanistically link the cellular redox state to the inactivation of p16INK4A through the formation of amyloid fibrils.
Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/química , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Cisteína/química , Amiloide/química , Ciclo Celular , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Células HEK293 , Humanos , Modelos Moleculares , Oxidación-Reducción , Multimerización de Proteína , Estructura Secundaria de ProteínaRESUMEN
Oncogene-induced senescence (OIS) is a potent tumor-suppressive mechanism that is thought to come at the cost of aging. The Forkhead box O (FOXO) transcription factors are regulators of life span and tumor suppression. However, whether and how FOXOs function in OIS have been unclear. Here, we show a role for FOXO4 in mediating senescence by the human BRAF(V600E) oncogene, which arises commonly in melanoma. BRAF(V600E) signaling through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase resulted in increased reactive oxygen species levels and c-Jun NH(2) terminal kinase-mediated activation of FOXO4 via its phosphorylation on Thr(223), Ser(226), Thr(447), and Thr(451). BRAF(V600E)-induced FOXO4 phosphorylation resulted in p21(cip1)-mediated cell senescence independent of p16(ink4a) or p27(kip1). Importantly, melanocyte-specific activation of BRAF(V600E) in vivo resulted in the formation of skin nevi expressing Thr(223)/Ser(226)-phosphorylated FOXO4 and elevated p21(cip1). Together, these findings support a model in which FOXOs mediate a trade-off between cancer and aging.
Asunto(s)
Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Melanocitos/metabolismo , Melanoma/patología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Neoplasias Cutáneas/patología , Factores de Transcripción/metabolismo , Animales , Apoptosis , Western Blotting , Proteínas de Ciclo Celular , Proliferación Celular , Ensayo de Unidades Formadoras de Colonias , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Factores de Transcripción Forkhead , Humanos , Etiquetado Corte-Fin in Situ , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Melanocitos/patología , Melanoma/genética , Melanoma/metabolismo , Ratones , Fosforilación , Proteínas Proto-Oncogénicas B-raf/genética , ARN Mensajero/genética , ARN Interferente Pequeño/farmacología , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Wingless (Wnt) signaling regulates many aspects of development and tissue homeostasis, and aberrant Wnt signaling can lead to cancer. Upon a Wnt signal beta-catenin degradation is halted and consequently the level of beta-catenin in the cytoplasm increases. This allows entry of beta-catenin into the nucleus where it can regulate gene transcription by direct binding to members of the lymphoid enhancer factor/T cell factor (TCF) family of transcription factors. Recently, we identified Forkhead box-O (FOXO) transcription factors as novel interaction partners of beta-catenin (Essers, M. A., de Vries-Smits, L. M., Barker, N., Polderman, P. E., Burgering, B. M., and Korswagen, H. C. (2005) Science 308, 1181-1184). Here we show that the beta-catenin binding to FOXO serves a dual effect. beta-catenin, through binding, enhances FOXO transcriptional activity. In addition, FOXO competes with TCF for interaction with beta-catenin, thereby inhibiting TCF transcriptional activity. Reduced binding between TCF and beta-catenin is observed after FOXO overexpression and cellular oxidative stress, which simultaneously increases binding between beta-catenin and FOXO. Furthermore, small interfering RNA-mediated knock down of FOXO reverts loss of beta-catenin binding to TCF after cellular oxidative stress. Taken together, these results provide evidence for a cross-talk mechanism between FOXO and TCF signaling in which beta-catenin plays a central regulatory role.
Asunto(s)
Núcleo Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción TCF/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Línea Celular Tumoral , Núcleo Celular/genética , Citoplasma/genética , Citoplasma/metabolismo , Factores de Transcripción Forkhead/antagonistas & inhibidores , Factores de Transcripción Forkhead/genética , Humanos , Estrés Oxidativo/fisiología , Unión Proteica/fisiología , ARN Interferente Pequeño/genética , Factores de Transcripción TCF/genética , Transcripción Genética/fisiología , Proteínas Wnt/genética , beta Catenina/genéticaRESUMEN
beta-Catenin is a multifunctional protein that mediates Wnt signaling by binding to members of the T cell factor (TCF) family of transcription factors. Here, we report an evolutionarily conserved interaction of beta-catenin with FOXO transcription factors, which are regulated by insulin and oxidative stress signaling. beta-Catenin binds directly to FOXO and enhances FOXO transcriptional activity in mammalian cells. In Caenorhabditis elegans, loss of the beta-catenin BAR-1 reduces the activity of the FOXO ortholog DAF-16 in dauer formation and life span. Association of beta-catenin with FOXO was enhanced in cells exposed to oxidative stress. Furthermore, BAR-1 was required for the oxidative stress-induced expression of the DAF-16 target gene sod-3 and for resistance to oxidative damage. These results demonstrate a role for beta-catenin in regulating FOXO function that is particularly important under conditions of oxidative stress.
Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas del Citoesqueleto/metabolismo , Estrés Oxidativo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Línea Celular , Línea Celular Tumoral , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead , Humanos , Peróxido de Hidrógeno/farmacología , Inmunoprecipitación , Insulina/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cloruro de Litio/farmacología , Longevidad , Ratones , Mutación , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Superóxido Dismutasa/metabolismo , Transactivadores/química , Transactivadores/genética , Transfección , beta CateninaRESUMEN
Reactive oxygen species are required for cell proliferation but can also induce apoptosis. In proliferating cells this paradox is solved by the activation of protein kinase B (PKB; also known as c-Akt), which protects cells from apoptosis. By contrast, it is unknown how quiescent cells that lack PKB activity are protected against cell death induced by reactive oxygen species. Here we show that the PKB-regulated Forkhead transcription factor FOXO3a (also known as FKHR-L1) protects quiescent cells from oxidative stress by directly increasing their quantities of manganese superoxide dismutase (MnSOD) messenger RNA and protein. This increase in protection from reactive oxygen species antagonizes apoptosis caused by glucose deprivation. In quiescent cells that lack the protective mechanism of PKB-mediated signalling, an alternative mechanism is induced as a consequence of PKB inactivity. This mechanism entails the activation of Forkhead transcription factors, the transcriptional activation of MnSOD and the subsequent reduction of reactive oxygen species. Increased resistance to oxidative stress is associated with longevity. The model of Forkhead involvement in regulating longevity stems from genetic analysis in Caenorhabditis elegans, and we conclude that this model also extends to mammalian systems.