Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Allergy ; 79(6): 1419-1439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38263898

RESUMEN

Epidemiological studies have explored the relationship between allergic diseases and cancer risk or prognosis in AllergoOncology. Some studies suggest an inverse association, but uncertainties remain, including in IgE-mediated diseases and glioma. Allergic disease stems from a Th2-biased immune response to allergens in predisposed atopic individuals. Allergic disorders vary in phenotype, genotype and endotype, affecting their pathophysiology. Beyond clinical manifestation and commonly used clinical markers, there is ongoing research to identify novel biomarkers for allergy diagnosis, monitoring, severity assessment and treatment. Gliomas, the most common and diverse brain tumours, have in parallel undergone changes in classification over time, with specific molecular biomarkers defining glioma subtypes. Gliomas exhibit a complex tumour-immune interphase and distinct immune microenvironment features. Immunotherapy and targeted therapy hold promise for primary brain tumour treatment, but require more specific and effective approaches. Animal studies indicate allergic airway inflammation may delay glioma progression. This collaborative European Academy of Allergy and Clinical Immunology (EAACI) and European Association of Neuro-Oncology (EANO) Position Paper summarizes recent advances and emerging biomarkers for refined allergy and adult-type diffuse glioma classification to inform future epidemiological and clinical studies. Future research is needed to enhance our understanding of immune-glioma interactions to ultimately improve patient prognosis and survival.


Asunto(s)
Biomarcadores , Glioma , Hipersensibilidad , Humanos , Glioma/inmunología , Glioma/etiología , Glioma/diagnóstico , Hipersensibilidad/diagnóstico , Hipersensibilidad/inmunología , Hipersensibilidad/etiología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/etiología , Susceptibilidad a Enfermedades , Animales
2.
J Neuroinflammation ; 20(1): 95, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072827

RESUMEN

Microglia are the immune effector cells of the brain playing critical roles in immune surveillance and neuroprotection in healthy conditions, while they can sustain neuroinflammatory and neurotoxic processes in neurodegenerative diseases, including Parkinson's disease (PD). Although the precise triggers of PD remain obscure, causative genetic mutations, which aid in the identification of molecular pathways underlying the pathogenesis of idiopathic forms, represent 10% of the patients. Among the inherited forms, loss of function of PARK7, which encodes the protein DJ-1, results in autosomal recessive early-onset PD. Yet, although protection against oxidative stress is the most prominent task ascribed to DJ-1, the underlying mechanisms linking DJ-1 deficiency to the onset of PD are a current matter of investigation. This review provides an overview of the role of DJ-1 in neuroinflammation, with a special focus on its functions in microglia genetic programs and immunological traits. Furthermore, it discusses the relevance of targeting dysregulated pathways in microglia under DJ-1 deficiency and their importance as therapeutic targets in PD. Lastly, it addresses the prospect to consider DJ-1, detected in its oxidized form in idiopathic PD, as a biomarker and to take into account DJ-1-enhancing compounds as therapeutics dampening oxidative stress and neuroinflammation.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/metabolismo , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Estrés Oxidativo/genética
3.
Allergy ; 78(3): 682-696, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36210648

RESUMEN

BACKGROUND: Numerous patient-based studies have highlighted the protective role of immunoglobulin E-mediated allergic diseases on glioblastoma (GBM) susceptibility and prognosis. However, the mechanisms behind this observation remain elusive. Our objective was to establish a preclinical model able to recapitulate this phenomenon and investigate the role of immunity underlying such protection. METHODS: An immunocompetent mouse model of allergic airway inflammation (AAI) was initiated before intracranial implantation of mouse GBM cells (GL261). RAG1-KO mice served to assess tumor growth in a model deficient for adaptive immunity. Tumor development was monitored by MRI. Microglia were isolated for functional analyses and RNA-sequencing. Peripheral as well as tumor-associated immune cells were characterized by flow cytometry. The impact of allergy-related microglial genes on patient survival was analyzed by Cox regression using publicly available datasets. RESULTS: We found that allergy establishment in mice delayed tumor engraftment in the brain and reduced tumor growth resulting in increased mouse survival. AAI induced a transcriptional reprogramming of microglia towards a pro-inflammatory-like state, uncovering a microglia gene signature, which correlated with limited local immunosuppression in glioma patients. AAI increased effector memory T-cells in the circulation as well as tumor-infiltrating CD4+ T-cells. The survival benefit conferred by AAI was lost in mice devoid of adaptive immunity. CONCLUSION: Our results demonstrate that AAI limits both tumor take and progression in mice, providing a preclinical model to study the impact of allergy on GBM susceptibility and prognosis, respectively. We identify a potentiation of local and adaptive systemic immunity, suggesting a reciprocal crosstalk that orchestrates allergy-induced immune protection against GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Hipersensibilidad , Ratones , Animales , Glioblastoma/genética , Glioblastoma/patología , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/patología , Microglía/patología , Hipersensibilidad/patología , Ratones Endogámicos C57BL
4.
Allergy ; 77(9): 2594-2617, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35152450

RESUMEN

The immune system interacts with many nominal 'danger' signals, endogenous danger-associated (DAMP), exogenous pathogen (PAMP) and allergen (AAMP)-associated molecular patterns. The immune context under which these are received can promote or prevent immune activating or inflammatory mechanisms and may orchestrate diverse immune responses in allergy and cancer. Each can act either by favouring a respective pathology or by supporting the immune response to confer protective effects, depending on acuity or chronicity. In this Position Paper under the collective term danger signals or DAMPs, PAMPs and AAMPs, we consider their diverse roles in allergy and cancer and the connection between these in AllergoOncology. We focus on their interactions with different immune cells of the innate and adaptive immune system and how these promote immune responses with juxtaposing clinical outcomes in allergy and cancer. While danger signals present potential targets to overcome inflammatory responses in allergy, these may be reconsidered in relation to a history of allergy, chronic inflammation and autoimmunity linked to the risk of developing cancer, and with regard to clinical responses to anti-cancer immune and targeted therapies. Cross-disciplinary insights in AllergoOncology derived from dissecting clinical phenotypes of common danger signal pathways may improve allergy and cancer clinical outcomes.


Asunto(s)
Hipersensibilidad , Neoplasias , Humanos , Hipersensibilidad/diagnóstico , Hipersensibilidad/etiología , Hipersensibilidad/terapia , Inmunidad , Inflamación , Neoplasias/etiología , Neoplasias/terapia , Transducción de Señal
5.
Trends Immunol ; 39(6): 460-472, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29496432

RESUMEN

Immune responses are critical for the maintenance of homeostasis but can also upset the equilibrium, depending on the context and magnitude of the response. Natural killer (NK) cells are well known for their important roles in antiviral and antitumor immune responses, and they are currently used, mostly under optimized forms, as immunotherapeutic agents against cancer. Nevertheless, with accumulating examples of deleterious effects of NK cells, it is paramount to consider their negative contributions. Here, we critically review and comment on the literature surrounding undesirable aspects of NK cell activity, focusing on situations where they play a harmful rather than a protective role.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Enfermedades Transmisibles/inmunología , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Animales , Enfermedades Autoinmunes/terapia , Enfermedades Transmisibles/terapia , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Inmunoterapia/métodos , Células Asesinas Naturales/metabolismo , Modelos Inmunológicos , Neoplasias/terapia
6.
Allergy ; 74(6): 1037-1051, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30636005

RESUMEN

The microbiota can play important roles in the development of human immunity and the establishment of immune homeostasis. Lifestyle factors including diet, hygiene, and exposure to viruses or bacteria, and medical interventions with antibiotics or anti-ulcer medications, regulate phylogenetic variability and the quality of cross talk between innate and adaptive immune cells via mucosal and skin epithelia. More recently, microbiota and their composition have been linked to protective effects for health. Imbalance, however, has been linked to immune-related diseases such as allergy and cancer, characterized by impaired, or exaggerated immune tolerance, respectively. In this AllergoOncology position paper, we focus on the increasing evidence defining the microbiota composition as a key determinant of immunity and immune tolerance, linked to the risk for the development of allergic and malignant diseases. We discuss novel insights into the role of microbiota in disease and patient responses to treatments in cancer and in allergy. These may highlight opportunities to improve patient outcomes with medical interventions supported through a restored microbiome.


Asunto(s)
Asma/inmunología , Asma/microbiología , Bacterias/metabolismo , Microbioma Gastrointestinal/inmunología , Interacciones Microbiota-Huesped/inmunología , Neoplasias/inmunología , Neoplasias/microbiología , Animales , Asma/metabolismo , Bacterias/genética , Niño , Preescolar , Dieta , Epitelio/inmunología , Epitelio/microbiología , Femenino , Humanos , Hipótesis de la Higiene , Inmunidad Celular , Lactante , Masculino , Micronutrientes , Membrana Mucosa/inmunología , Membrana Mucosa/microbiología , Neoplasias/metabolismo , Filogenia
7.
J Immunol ; 196(7): 2923-31, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26994304

RESUMEN

Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become cytotoxic upon appropriate activation. These cells were shown to play a role in different disease states, such as cancer, autoimmunity, neuroinflammation, and infection. Although their phenotype and functional properties are well known and have been extensively studied, their lineage relationship with other NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them.


Asunto(s)
Antígeno CD56/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Animales , Diferenciación Celular , Citotoxicidad Inmunológica , Humanos , Inmunidad Innata , Inmunoterapia , Células Asesinas Naturales/citología , Subgrupos Linfocitarios/citología , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Fenotipo
8.
Proc Natl Acad Sci U S A ; 110(43): 17450-5, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24101526

RESUMEN

Recent studies demonstrated that autophagy is an important regulator of innate immune response. However, the mechanism by which autophagy regulates natural killer (NK) cell-mediated antitumor immune responses remains elusive. Here, we demonstrate that hypoxia impairs breast cancer cell susceptibility to NK-mediated lysis in vitro via the activation of autophagy. This impairment was not related to a defect in target cell recognition by NK cells but to the degradation of NK-derived granzyme B in autophagosomes of hypoxic cells. Inhibition of autophagy by targeting beclin1 (BECN1) restored granzyme B levels in hypoxic cells in vitro and induced tumor regression in vivo by facilitating NK-mediated tumor cell killing. Together, our data highlight autophagy as a mechanism underlying the resistance of hypoxic tumor cells to NK-mediated lysis. The work presented here provides a cutting-edge advance in our understanding of the mechanism by which hypoxia-induced autophagy impairs NK-mediated lysis in vitro and paves the way for the formulation of more effective NK cell-based antitumor therapies.


Asunto(s)
Autofagia/inmunología , Citotoxicidad Inmunológica/inmunología , Granzimas/inmunología , Células Asesinas Naturales/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Hipoxia de la Célula/inmunología , Línea Celular Tumoral , Células Cultivadas , Femenino , Citometría de Flujo , Granzimas/metabolismo , Humanos , Immunoblotting , Células Asesinas Naturales/metabolismo , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microscopía Confocal , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Fagosomas/inmunología , Fagosomas/metabolismo , Imagen de Lapso de Tiempo/métodos , Trasplante Heterólogo , Carga Tumoral/inmunología
9.
J Immunol ; 190(11): 5355-62, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23687193

RESUMEN

NK cells are important players in immunity against pathogens and neoplasms. As a component of the innate immune system, they are one of the first effectors on sites of inflammation. Through their cytokine production capacities, NK cells participate in the development of a potent adaptive immune response. Furthermore, NK cells were found to have regulatory functions to limit and prevent autoimmunity via killing of autologous immune cells. These paradoxical functions of NK cells are reflected in CNS disorders. In this review, we discuss the phenotypes and functional features of peripheral and brain NK cells in brain tumors and infections, neurodegenerative diseases, acute vascular and traumatic damage, as well as mental disorders. We also discuss the implication of NK cells in neurotoxicity and neuroprotection following CNS pathology, as well as the crosstalk between NK cells and brain-resident immune cells.


Asunto(s)
Enfermedades del Sistema Nervioso Central/inmunología , Células Asesinas Naturales/inmunología , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades del Sistema Nervioso Central/metabolismo , Humanos , Células Asesinas Naturales/metabolismo , Fenotipo
10.
Redox Biol ; 70: 103054, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309122

RESUMEN

Inflammatory macrophages are key drivers of atherosclerosis that can induce rupture-prone vulnerable plaques. Skewing the plaque macrophage population towards a more protective phenotype and reducing the occurrence of clinical events is thought to be a promising method of treating atherosclerotic patients. In the current study, we investigate the immunomodulatory properties of itaconate, an immunometabolite derived from the TCA cycle intermediate cis-aconitate and synthesised by the enzyme Aconitate Decarboxylase 1 (ACOD1, also known as IRG1), in the context of atherosclerosis. Ldlr-/- atherogenic mice transplanted with Acod1-/- bone marrow displayed a more stable plaque phenotype with smaller necrotic cores and showed increased recruitment of monocytes to the vessel intima. Macrophages from Acod1-/- mice contained more lipids whilst also displaying reduced induction of apoptosis. Using multi-omics approaches, we identify a metabolic shift towards purine metabolism, in addition to an altered glycolytic flux towards production of glycerol for triglyceride synthesis. Overall, our data highlight the potential of therapeutically blocking ACOD1 with the aim of stabilizing atherosclerotic plaques.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Animales , Ratones , Placa Aterosclerótica/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Succinatos/farmacología , Macrófagos/metabolismo
11.
Genome Med ; 16(1): 51, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566128

RESUMEN

BACKGROUND: A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. METHODS: Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry, and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. RESULTS: We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. CONCLUSIONS: Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Ratones , Animales , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Microglía/metabolismo , Ecosistema , Xenoinjertos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Fenotipo , Modelos Animales de Enfermedad , Células Dendríticas/metabolismo , Microambiente Tumoral/genética
12.
J Immunol ; 186(11): 6497-504, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21508262

RESUMEN

Neurotrophins such as nerve growth factor and brain-derived neurotrophic factor have been described to be involved in the pathogenesis of asthma. Neurturin (NTN), another neurotrophin from the glial cell line-derived neurotrophic factor family, was shown to be produced by human immune cells: monocytes, B cells, and T cells. Furthermore, it was previously described that the secretion of inflammatory cytokines was dramatically stimulated in NTN knockout (NTN(-/-)) mice. NTN is structurally similar to TGF-ß, a protective cytokine in airway inflammation. This study investigates the implication of NTN in a model of allergic airway inflammation using NTN(-/-) mice. The bronchial inflammatory response of OVA-sensitized NTN(-/-) mice was compared with wild-type mice. Airway inflammation, Th2 cytokines, and airway hyperresponsiveness (AHR) were examined. NTN(-/-) mice showed an increase of OVA-specific serum IgE and a pronounced worsening of inflammatory features. Eosinophil number and IL-4 and IL-5 concentration in the bronchoalveolar lavage fluid and lung tissue were increased. In parallel, Th2 cytokine secretion of lung draining lymph node cells was also augmented when stimulated by OVA in vitro. Furthermore, AHR was markedly enhanced in NTN(-/-) mice after sensitization and challenge when compared with wild-type mice. Administration of NTN before challenge with OVA partially rescues the phenotype of NTN(-/-) mice. These findings provide evidence for a dampening role of NTN on allergic inflammation and AHR in a murine model of asthma.


Asunto(s)
Asma/inmunología , Hiperreactividad Bronquial/inmunología , Citocinas/inmunología , Neurturina/inmunología , Células Th2/inmunología , Animales , Anticuerpos/sangre , Anticuerpos/inmunología , Asma/metabolismo , Hiperreactividad Bronquial/metabolismo , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/metabolismo , Eosinófilos/inmunología , Eosinófilos/metabolismo , Citometría de Flujo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/inmunología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurturina/deficiencia , Neurturina/genética , Ovalbúmina/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Th2/metabolismo
13.
bioRxiv ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36945572

RESUMEN

Background: A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. Methods: Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA-sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. Results: We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. Conclusions: Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.

15.
Mol Oncol ; 16(17): 3167-3191, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35838338

RESUMEN

In glioblastoma (GBM), tumour-associated microglia/macrophages (TAMs) represent the major cell type of the stromal compartment and contribute to tumour immune escape mechanisms. Thus, targeting TAMs is emerging as a promising strategy for immunotherapy. However, TAM heterogeneity and metabolic adaptation along GBM progression represent critical features for the design of effective TAM-targeted therapies. Here, we comprehensively study the cellular and molecular changes of TAMs in the GL261 GBM mouse model, combining single-cell RNA-sequencing with flow cytometry and immunohistological analyses along GBM progression and in the absence of Acod1 (also known as Irg1), a key gene involved in the metabolic reprogramming of macrophages towards an anti-inflammatory phenotype. Similarly to patients, we identify distinct TAM profiles, mainly based on their ontogeny, that reiterate the idea that microglia- and macrophage-like cells show key transcriptional differences and dynamically adapt along GBM stages. Notably, we uncover decreased antigen-presenting cell features and immune reactivity in TAMs along tumour progression that are instead enhanced in Acod1-deficient mice. Overall, our results provide insight into TAM heterogeneity and highlight a novel role for Acod1 in TAM adaptation during GBM progression.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Inmunoterapia , Macrófagos/metabolismo , Ratones , Microglía/metabolismo , Microglía/patología , Microambiente Tumoral
16.
Acta Neuropathol ; 122(4): 495-510, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21863242

RESUMEN

Glioblastoma (GBM) is a highly aggressive brain tumour, where patients respond poorly to radiotherapy and exhibit dismal survival outcomes. The mechanisms of radioresistance are not completely understood. However, cancer cells with an immature stem-like phenotype are hypothesised to play a role in radioresistance. Since the progenitor marker neuron-glial-2 (NG2) has been shown to regulate several aspects of GBM progression in experimental systems, we hypothesised that its expression would influence the survival of GBM patients. Quantification of NG2 expression in 74 GBM biopsies from newly diagnosed and untreated patients revealed that 50% express high NG2 levels on tumour cells and associated vessels, being associated with significantly shorter survival. This effect was independent of age at diagnosis, treatment received and hypermethylation of the O(6)-methylguanine methyltransferase (MGMT) DNA repair gene promoter. NG2 was frequently co-expressed with nestin and vimentin but rarely with CD133 and the NG2 positive tumour cells harboured genetic aberrations typical for GBM. 2D proteomics of 11 randomly selected biopsies revealed upregulation of an antioxidant, peroxiredoxin-1 (PRDX-1), in the shortest surviving patients. Expression of PRDX-1 was associated with significantly reduced products of oxidative stress. Furthermore, NG2 expressing GBM cells showed resistance to ionising radiation (IR), rapidly recognised DNA damage and effectuated cell cycle checkpoint signalling. PRDX-1 knockdown transiently slowed tumour growth rates and sensitised them to IR in vivo. Our data establish NG2 as an important prognostic factor for GBM patient survival, by mediating resistance to radiotherapy through induction of ROS scavenging enzymes and preferential DNA damage signalling.


Asunto(s)
Antígenos/biosíntesis , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Daño del ADN/genética , Glioblastoma/genética , Glioblastoma/radioterapia , Proteoglicanos/biosíntesis , Células Madre/metabolismo , Anciano , Antígenos/genética , Antígenos/efectos de la radiación , Biomarcadores de Tumor/efectos de la radiación , Neoplasias Encefálicas/patología , Daño del ADN/efectos de la radiación , Femenino , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Proteoglicanos/genética , Proteoglicanos/efectos de la radiación , Tolerancia a Radiación , Radiación Ionizante , Células Madre/patología , Células Madre/efectos de la radiación , Tasa de Supervivencia/tendencias
17.
Front Immunol ; 12: 590054, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708195

RESUMEN

Prevalence and incidence of IgE-mediated allergic diseases have increased over the past years in developed and developing countries. Allergen-specific immunotherapy (AIT) is currently the only curative treatment available for allergic diseases that has long-term efficacy. Although AIT has been proven successful as an immunomodulatory therapy since its beginnings, it still faces several unmet needs and challenges today. For instance, some patients can experience severe side effects, others are non-responders, and prolonged treatment schedules can lead to lack of patient adherence and therapy discontinuation. A common strategy to improve AIT relies on the use of adjuvants and immune modulators to boost its effects and improve its safety. Among the adjuvants tested for their clinical efficacy, CpG oligodeoxynucleotide (CpG-ODN) was investigated with limited success and without reaching phase III trials for clinical allergy treatment. However, recently discovered immune tolerance-promoting properties of CpG-ODN place this adjuvant again in a prominent position as an immune modulator for the treatment of allergic diseases. Indeed, it has been shown that the CpG-ODN dose and concentration are crucial in promoting immune regulation through the recruitment of pDCs. While low doses induce an inflammatory response, high doses of CpG-ODN trigger a tolerogenic response that can reverse a pre-established allergic milieu. Consistently, CpG-ODN has also been found to stimulate IL-10 producing B cells, so-called B regulatory cells (Bregs). Accordingly, CpG-ODN has shown its capacity to prevent and revert allergic reactions in several animal models showing its potential as both preventive and active treatment for IgE-mediated allergy. In this review, we describe how CpG-ODN-based therapies for allergic diseases, despite having shown limited success in the past, can still be exploited further as an adjuvant or immune modulator in the context of AIT and deserves additional attention. Here, we discuss the past and current knowledge, which highlights CpG-ODN as a potential adjuvant to be reevaluated for the enhancement of AIT when used in appropriate conditions and formulations.


Asunto(s)
Adyuvantes Inmunológicos , Alérgenos/inmunología , Desensibilización Inmunológica , Tolerancia Inmunológica , Oligodesoxirribonucleótidos , Alérgenos/administración & dosificación , Animales , Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Biomarcadores , Desensibilización Inmunológica/métodos , Manejo de la Enfermedad , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Hipersensibilidad/terapia , Inmunoglobulina E/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Receptores Toll-Like/metabolismo
18.
Sci Rep ; 11(1): 7893, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846459

RESUMEN

APOBEC3 (A3) enzymes are best known for their role as antiviral restriction factors and as mutagens in cancer. Although four of them, A3A, A3B, A3F and A3G, are induced by type-1-interferon (IFN-I), their role in inflammatory conditions is unknown. We thus investigated the expression of A3, and particularly A3A and A3B because of their ability to edit cellular DNA, in Systemic Lupus Erythematosus (SLE), a chronic inflammatory disease characterized by high IFN-α serum levels. In a cohort of 57 SLE patients, A3A and A3B, but also A3C and A3G, were upregulated ~ 10 to 15-fold (> 1000-fold for A3B) compared to healthy controls, particularly in patients with flares and elevated serum IFN-α levels. Hydroxychloroquine, corticosteroids and immunosuppressive treatment did not reverse A3 levels. The A3AΔ3B polymorphism, which potentiates A3A, was detected in 14.9% of patients and in 10% of controls, and was associated with higher A3A mRNA expression. A3A and A3B mRNA levels, but not A3C or A3G, were correlated positively with dsDNA breaks and negatively with lymphopenia. Exposure of SLE PBMCs to IFN-α in culture induced massive and sustained A3A levels by 4 h and led to massive cell death. Furthermore, the rs2853669 A > G polymorphism in the telomerase reverse transcriptase (TERT) promoter, which disrupts an Ets-TCF-binding site and influences certain cancers, was highly prevalent in SLE patients, possibly contributing to lymphopenia. Taken together, these findings suggest that high baseline A3A and A3B levels may contribute to cell frailty, lymphopenia and to the generation of neoantigens in SLE patients. Targeting A3 expression could be a strategy to reverse cell death and the generation of neoantigens.


Asunto(s)
Desaminasas APOBEC/metabolismo , Lupus Eritematoso Sistémico/enzimología , Desaminasas APOBEC/genética , Adulto , Muerte Celular/efectos de los fármacos , Estudios de Cohortes , Femenino , Regulación Enzimológica de la Expresión Génica , Mutación de Línea Germinal/genética , Humanos , Interferón-alfa/farmacología , Lupus Eritematoso Sistémico/genética , Masculino , Polimorfismo de Nucleótido Simple/genética , Telomerasa/genética , Regulación hacia Arriba
19.
Immunology ; 131(3): 386-94, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20561087

RESUMEN

Natural killer (NK) cells are important effectors of both innate and adaptive immune responses. Although human and mouse NK cells are extensively characterized, much less is known about the rat cells, partly because of the current lack of reliable isolation techniques. We aimed to develop a method for isolating highly pure 'untouched' rat NK cells by negative selection from splenocytes. Thereafter, we characterized them phenotypically and functionally in comparison with those isolated by positive selection targeting the NKR-P1 receptor. Our novel method isolated highly pure untouched NK cells reproducibly with 97 ± 0.7% (n = 7), 96.6 ± 0.8% (n = 3) and 88.3 ± 1.5% (n = 9) in LEWIS, Fischer and athymic nude rats, respectively. The positively selected NK cells were less homogeneous and exhibited undesired method-related activation profiles. Resting negatively selected NK cells were less proliferative and less robust compared with positively selected NK cells. Although resting positively selected NK cells were more cytotoxic, interleukin-2 (IL-2) activation increased the cytotoxicity of negatively selected cells three-fold. The negatively selected NK cells responded to cross-linking of the NKR-P1 receptor by calcium mobilization from intracellular stores. However, combined IL-2 and IL-12 activation resulted in significantly more interferon-γ release from positively selected NK cells. This new NK-cell isolation method will allow a deeper insight into rat NK-cell phenotypes and the roles of their receptors in the biology of these cells.


Asunto(s)
Citocinas/metabolismo , Células Asesinas Naturales/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Señalización del Calcio , Línea Celular Tumoral , Separación Celular/métodos , Citocinas/genética , Citocinas/inmunología , Citotoxicidad Inmunológica , Citometría de Flujo , Inmunofenotipificación , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Activación de Linfocitos , Masculino , Ratas , Ratas Endogámicas F344 , Ratas Endogámicas Lew , Receptores Inmunológicos/inmunología , Reproducibilidad de los Resultados , Bazo/patología
20.
Immunology ; 126(4): 458-65, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19278419

RESUMEN

Human natural killer (NK) cells can be subdivided into different populations based on the relative expression of the surface markers CD16 and CD56. The two major subsets are CD56(bright) CD16(dim/) (-) and CD56(dim) CD16(+), respectively. In this review, we will focus on the CD56(bright) NK cell subset. These cells are numerically in the minority in peripheral blood but constitute the majority of NK cells in secondary lymphoid tissues. They are abundant cytokine producers but are only weakly cytotoxic before activation. Recent data suggest that under certain conditions, they have immunoregulatory properties, and that they are probably immediate precursors of CD56(dim) NK cells. CD56(bright) NK cell percentages are expanded or reduced in a certain number of diseases, but the significance of these variations is not yet clear.


Asunto(s)
Antígeno CD56/sangre , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/inmunología , Citotoxicidad Inmunológica , Femenino , Humanos , Inmunofenotipificación , Tejido Linfoide/inmunología , Útero/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA