Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nano Lett ; 24(32): 9808-9815, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39089683

RESUMEN

Static electric fields play a considerable role in a variety of molecular nanosystems as diverse as single-molecule junctions, molecules supporting electrostatic catalysis, and biological cell membranes incorporating proteins. External electric fields can be applied to nanoscale samples with a conductive atomic force microscopy (AFM) probe in contact mode, but typically, no structural information is retrieved. Here we combine photothermal expansion infrared (IR) nanospectroscopy with electrostatic AFM probes to measure nanometric volumes where the IR field enhancement and the static electric field overlap spatially. We leverage the vibrational Stark effect in the polymer poly(methyl methacrylate) for calibrating the local electric field strength. In the relevant case of membrane protein bacteriorhodopsin, we observe electric-field-induced changes of the protein backbone conformation and residue protonation state. The proposed technique also has the potential to measure DC currents and IR spectra simultaneously, insofar enabling the monitoring of the possible interplay between charge transport and other effects.

2.
J Nanobiotechnology ; 20(1): 530, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36514065

RESUMEN

BACKGROUND: Extracellular Vesicles (EVs) are sub-micrometer lipid-bound particles released by most cell types. They are considered a promising source of cancer biomarkers for liquid biopsy and personalized medicine due to their specific molecular cargo, which provides biochemical information on the state of parent cells. Despite this potential, EVs translation process in the diagnostic practice is still at its birth, and the development of novel medical devices for their detection and characterization is highly required. RESULTS: In this study, we demonstrate mid-infrared plasmonic nanoantenna arrays designed to detect, in the liquid and dry phase, the specific vibrational absorption signal of EVs simultaneously with the unspecific refractive index sensing signal. For this purpose, EVs are immobilized on the gold nanoantenna surface by immunocapture, allowing us to select specific EV sub-populations and get rid of contaminants. A wet sample-handling technique relying on hydrophobicity contrast enables effortless reflectance measurements with a Fourier-transform infrared (FTIR) spectro-microscope in the wavelength range between 10 and 3 µm. In a proof-of-principle experiment carried out on EVs released from human colorectal adenocarcinoma (CRC) cells, the protein absorption bands (amide-I and amide-II between 5.9 and 6.4 µm) increase sharply within minutes when the EV solution is introduced in the fluidic chamber, indicating sensitivity to the EV proteins. A refractive index sensing curve is simultaneously provided by our sensor in the form of the redshift of a sharp spectral edge at wavelengths around 5 µm, where no vibrational absorption of organic molecules takes place: this permits to extract of the dynamics of EV capture by antibodies from the overall molecular layer deposition dynamics, which is typically measured by commercial surface plasmon resonance sensors. Additionally, the described metasurface is exploited to compare the spectral response of EVs derived from cancer cells with increasing invasiveness and metastatic potential, suggesting that the average secondary structure content in EVs can be correlated with cell malignancy. CONCLUSIONS: Thanks to the high protein sensitivity and the possibility to work with small sample volumes-two key features for ultrasensitive detection of extracellular vesicles- our lab-on-chip can positively impact the development of novel laboratory medicine methods for the molecular characterization of EVs.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Biopsia Líquida , Neoplasias/metabolismo , Técnicas de Cultivo de Célula , Proteínas/análisis , Amidas/análisis , Amidas/metabolismo
3.
Molecules ; 26(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567597

RESUMEN

Extracellular vesicles are membrane-delimited structures, involved in several inter-cellular communication processes, both physiological and pathological, since they deliver complex biological cargo. Extracellular vesicles have been identified as possible biomarkers of several pathological diseases; thus, their characterization is fundamental in order to gain a deep understanding of their function and of the related processes. Traditional approaches for the characterization of the molecular content of the vesicles require a large quantity of sample, thereby providing an average molecular profile, while their heterogeneity is typically probed by non-optical microscopies that, however, lack the chemical sensitivity to provide information of the molecular cargo. Here, we perform a study of individual microvesicles, a subclass of extracellular vesicles generated by the outward budding of the plasma membrane, released by two cultures of glial cells under different stimuli, by applying a state-of-the-art infrared nanospectroscopy technique based on the coupling of an atomic force microscope and a pulsed laser, which combines the label-free chemical sensitivity of infrared spectroscopy with the nanometric resolution of atomic force microscopy. By correlating topographic, mechanical and spectroscopic information of individual microvesicles, we identified two main populations in both families of vesicles released by the two cell cultures. Subtle differences in terms of nucleic acid content among the two families of vesicles have been found by performing a fitting procedure of the main nucleic acid vibrational peaks in the 1000-1250 cm-1 frequency range.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Nanotecnología , Espectrofotometría Infrarroja , Animales , Corteza Cerebral/citología , Neuroglía/citología , Ratas
4.
Nano Lett ; 19(5): 3104-3114, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30950626

RESUMEN

Photosensitive proteins embedded in the cell membrane (about 5 nm thickness) act as photoactivated proton pumps, ion gates, enzymes, or more generally, as initiators of stimuli for the cell activity. They are composed of a protein backbone and a covalently bound cofactor (e.g. the retinal chromophore in bacteriorhodopsin (BR), channelrhodopsin, and other opsins). The light-induced conformational changes of both the cofactor and the protein are at the basis of the physiological functions of photosensitive proteins. Despite the dramatic development of microscopy techniques, investigating conformational changes of proteins at the membrane monolayer level is still a big challenge. Techniques based on atomic force microscopy (AFM) can detect electric currents through protein monolayers and even molecular binding forces in single-protein molecules but not the conformational changes. For the latter, Fourier-transform infrared spectroscopy (FTIR) using difference-spectroscopy mode is typically employed, but it is performed on macroscopic liquid suspensions or thick films containing large amounts of purified photosensitive proteins. In this work, we develop AFM-assisted, tip-enhanced infrared difference-nanospectroscopy to investigate light-induced conformational changes of the bacteriorhodopsin mutant D96N in single submicrometric native purple membrane patches. We obtain a significant improvement compared with the signal-to-noise ratio of standard IR nanospectroscopy techniques by exploiting the field enhancement in the plasmonic nanogap that forms between a gold-coated AFM probe tip and an ultraflat gold surface, as further supported by electromagnetic and thermal simulations. IR difference-spectra in the 1450-1800 cm-1 range are recorded from individual patches as thin as 10 nm, with a diameter of less than 500 nm, well beyond the diffraction limit for FTIR microspectroscopy. We find clear spectroscopic evidence of a branching of the photocycle for BR molecules in direct contact with the gold surfaces, with equal amounts of proteins either following the standard proton-pump photocycle or being trapped in an intermediate state not directly contributing to light-induced proton transport. Our results are particularly relevant for BR-based optoelectronic and energy-harvesting devices, where BR molecular monolayers are put in contact with metal surfaces, and, more generally, for AFM-based IR spectroscopy studies of conformational changes of proteins embedded in intrinsically heterogeneous native cell membranes.


Asunto(s)
Bacteriorodopsinas/ultraestructura , Proteínas de la Membrana/ultraestructura , Proteínas Mutantes/ultraestructura , Bombas de Protones/ultraestructura , Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Campos Electromagnéticos , Transporte Iónico/genética , Proteínas de la Membrana/química , Microscopía de Fuerza Atómica , Proteínas Mutantes/química , Proteínas Mutantes/genética , Nanotecnología/métodos , Conformación Proteica , Bombas de Protones/química , Membrana Púrpura/química , Membrana Púrpura/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier
5.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862502

RESUMEN

We have developed a confocal laser microscope operating in the mid-infrared range for the study of light-sensitive proteins, such as rhodopsins. The microscope features a co-aligned infrared and visible illumination path for the selective excitation and probing of proteins located in the IR focus only. An external-cavity tunable quantum cascade laser provides a wavelength tuning range (5.80-6.35 µm or 1570-1724 cm-1) suitable for studying protein conformational changes as a function of time delay after visible light excitation with a pulsed LED. Using cryogen-free detectors, the relative changes in the infrared absorption of rhodopsin thin films around 10-4 have been observed with a time resolution down to 30 ms. The measured full-width at half maximum of the Airy disk at λ = 6.08 µm in transmission mode with a confocal arrangement of apertures is 6.6 µm or 1.1λ. Dark-adapted sample replacement at the beginning of each photocycle is then enabled by exchanging the illuminated thin-film location with the microscope mapping stage synchronized to data acquisition and LED excitation and by averaging hundreds of time traces acquired in different nearby locations within a homogeneous film area. We demonstrate that this instrument provides crucial advantages for time-resolved IR studies of rhodopsin thin films with a slow photocycle. Time-resolved studies of inhomogeneous samples may also be possible with the presented instrument.


Asunto(s)
Láseres de Semiconductores , Rodopsina , Rodopsina/metabolismo , Luz
6.
ACS Appl Mater Interfaces ; 14(38): 43853-43860, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36106792

RESUMEN

The growing need for new and reliable surface sensing methods is arousing interest in the electromagnetic excitations of ultrathin films, i.e., to generate electromagnetic field distributions that resonantly interact with the most significant quasi-particles of condensed matter. In such a context, Bloch surface waves turned out to be a valid alternative to surface plasmon polaritons to implement high-sensitivity sensors in the visible spectral range. Only in the last few years, however, has their use been extended to infrared wavelengths, which represent a powerful tool for detecting and recognizing molecular species and crystalline structures. In this work, we demonstrate, by means of high-resolution reflectivity measurements, that a one-dimensional photonic crystal can sustain Bloch surface waves in the infrared spectral range from room temperature down to 10 K. To the best of our knowledge, this is the first demonstration of infrared Bloch surface waves at cryogenic temperatures. Furthermore, by exploiting the enhancement of the surface state and the high brilliance of infrared synchrotron radiation, we demonstrate that the proposed BSW-based sensor has a sensitivity on the order of 2.9 cm-1 for each nanometer-thick ice layer grown on its surface below 150 K. In conclusion, we believe that Bloch surface wave-based sensors are a valid new class of surface mode-based sensors for applications in materials science.

7.
ACS Photonics ; 8(1): 350-359, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33585665

RESUMEN

The many fundamental roto-vibrational resonances of chemical compounds result in strong absorption lines in the mid-infrared region (λ ∼ 2-20 µm). For this reason, mid-infrared spectroscopy plays a key role in label-free sensing, in particular, for chemical recognition, but often lacks the required sensitivity to probe small numbers of molecules. In this work, we propose a vibrational sensing scheme based on Bloch surface waves (BSWs) on 1D photonic crystals to increase the sensitivity of mid-infrared sensors. We report on the design and deposition of CaF2/ZnS 1D photonic crystals. Moreover, we theoretically and experimentally demonstrate the possibility to sustain narrow σ-polarized BSW modes together with broader π-polarized modes in the range of 3-8 µm by means of a customized Fourier transform infrared spectroscopy setup. The multilayer stacks are deposited directly on CaF2 prisms, reducing the number of unnecessary interfaces when exciting in the Kretschmann-Raether configuration. Finally, we compare the performance of mid-IR sensors based on surface plasmon polaritons with the BSW-based sensor. The figures of merit found for BSWs in terms of confinement of the electromagnetic field and propagation length puts them as forefrontrunners for label-free and polarization-dependent sensing devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA