Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Phys Chem A ; 128(12): 2445-2456, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38485448

RESUMEN

Molecules with an inverted energy gap between their first singlet and triplet excited states have promising applications in the next generation of organic light-emitting diode (OLED) materials. Unfortunately, such molecules are rare, and only a handful of examples are currently known. High-throughput virtual screening could assist in finding novel classes of these molecules, but current efforts are hampered by the high computational cost of the required quantum chemical methods. We present a method based on the semiempirical Pariser-Parr-Pople theory augmented by perturbation theory and show that it reproduces inverted gaps at a fraction of the cost of currently employed excited-state calculations. Our study paves the way for ultrahigh-throughput virtual screening and inverse design to accelerate the discovery and development of this new generation of OLED materials.

2.
J Phys Chem A ; 128(23): 4663-4673, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38832568

RESUMEN

Organometallic species, such as organoferrate ions, are prototypical nucleophiles prone to reacting with a wide range of electrophiles, including proton donors. In solution, the operation of dynamic equilibria and the simultaneous presence of several organometallic species severely complicate the analysis of these fundamentally important reactions. This can be overcome by gas-phase experiments on mass-selected ions, which allow for the determination of the microscopic reactivity of the target species. In this contribution, we focus on the reactivity of a series of trisarylferrate complexes toward 2,2,2-trifluoroethanol and 2,2-difluoroethanol. By means of mass-spectrometric measurements, we determined the experimental bimolecular rate constants kexp of the gas-phase protolysis reactions of the trisarylferrate anions FePh3- and FeMes3- with the aforementioned acids. Based on these experiments, we carried out a dual blind challenge, inviting theoretical groups to submit their best predictions for the activation barriers and/or theoretical rate constants ktheo. This provides a unique opportunity to evaluate different computational protocols under minimal bias and sets the stage for further benchmarking of quantum chemical methods and data-driven approaches in the future.

3.
Acc Chem Res ; 55(17): 2454-2466, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35948428

RESUMEN

We must accelerate the pace at which we make technological advancements to address climate change and disease risks worldwide. This swifter pace of discovery requires faster research and development cycles enabled by better integration between hypothesis generation, design, experimentation, and data analysis. Typical research cycles take months to years. However, data-driven automated laboratories, or self-driving laboratories, can significantly accelerate molecular and materials discovery. Recently, substantial advancements have been made in the areas of machine learning and optimization algorithms that have allowed researchers to extract valuable knowledge from multidimensional data sets. Machine learning models can be trained on large data sets from the literature or databases, but their performance can often be hampered by a lack of negative results or metadata. In contrast, data generated by self-driving laboratories can be information-rich, containing precise details of the experimental conditions and metadata. Consequently, much larger amounts of high-quality data are gathered in self-driving laboratories. When placed in open repositories, this data can be used by the research community to reproduce experiments, for more in-depth analysis, or as the basis for further investigation. Accordingly, high-quality open data sets will increase the accessibility and reproducibility of science, which is sorely needed.In this Account, we describe our efforts to build a self-driving lab for the development of a new class of materials: organic semiconductor lasers (OSLs). Since they have only recently been demonstrated, little is known about the molecular and material design rules for thin-film, electrically-pumped OSL devices as compared to other technologies such as organic light-emitting diodes or organic photovoltaics. To realize high-performing OSL materials, we are developing a flexible system for automated synthesis via iterative Suzuki-Miyaura cross-coupling reactions. This automated synthesis platform is directly coupled to the analysis and purification capabilities. Subsequently, the molecules of interest can be transferred to an optical characterization setup. We are currently limited to optical measurements of the OSL molecules in solution. However, material properties are ultimately most important in the solid state (e.g., as a thin-film device). To that end and for a different scientific goal, we are developing a self-driving lab for inorganic thin-film materials focused on the oxygen evolution reaction.While the future of self-driving laboratories is very promising, numerous challenges still need to be overcome. These challenges can be split into cognition and motor function. Generally, the cognitive challenges are related to optimization with constraints or unexpected outcomes for which general algorithmic solutions have yet to be developed. A more practical challenge that could be resolved in the near future is that of software control and integration because few instrument manufacturers design their products with self-driving laboratories in mind. Challenges in motor function are largely related to handling heterogeneous systems, such as dispensing solids or performing extractions. As a result, it is critical to understand that adapting experimental procedures that were designed for human experimenters is not as simple as transferring those same actions to an automated system, and there may be more efficient ways to achieve the same goal in an automated fashion. Accordingly, for self-driving laboratories, we need to carefully rethink the translation of manual experimental protocols.


Asunto(s)
Algoritmos , Laboratorios , Humanos , Reproducibilidad de los Resultados
4.
J Chem Phys ; 158(10): 104801, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36922116

RESUMEN

Semiempirical quantum chemistry has recently seen a renaissance with applications in high-throughput virtual screening and machine learning. The simplest semiempirical model still in widespread use in chemistry is Hückel's π-electron molecular orbital theory. In this work, we implemented a Hückel program using differentiable programming with the JAX framework based on limited modifications of a pre-existing NumPy version. The auto-differentiable Hückel code enabled efficient gradient-based optimization of model parameters tuned for excitation energies and molecular polarizabilities, respectively, based on as few as 100 data points from density functional theory simulations. In particular, the facile computation of the polarizability, a second-order derivative, via auto-differentiation shows the potential of differentiable programming to bypass the need for numeric differentiation or derivation of analytical expressions. Finally, we employ gradient-based optimization of atom identity for inverse design of organic electronic materials with targeted orbital energy gaps and polarizabilities. Optimized structures are obtained after as little as 15 iterations using standard gradient-based optimization algorithms.

5.
J Am Chem Soc ; 144(3): 1205-1217, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35020383

RESUMEN

The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure-property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce kraken, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis can be used to accelerate ligand selection during reaction optimization.

6.
Acc Chem Res ; 54(4): 849-860, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33528245

RESUMEN

The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency.In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.

7.
J Am Chem Soc ; 141(8): 3489-3506, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30694056

RESUMEN

Perfluoroalkanes are considered generally to have weak inter- and intramolecular forces compared to alkanes, explaining their relatively low boiling points, low surface tensions, and poor solvent properties. However, currently accepted models do not satisfactorily explain several trends in their properties-for instance, boiling point trends as size increases. Herein, we report a comprehensive computational study of the intermolecular interactions of alkanes and perfluoroalkanes, demonstrating that perfluoroalkanes have a higher intrinsic ability for dispersive interactions than their alkane counterparts and that dispersion in perfluoroalkane dimers mainly stems from fluorine-fluorine interactions. In addition, the reasons for relatively weak intermolecular forces in perfluoroalkanes compared to alkanes are their ground-state geometries, which are increasingly unsuitable for intermolecular interactions as the carbon chain length increases, and their rigidity, which makes deformation from the ground-state geometries unfavorable. Overall, these trends are reflected in a dependence of the bulk properties of perfluoroalkanes on the carbon chain length as the fluorine content decreases and the interaction geometries become increasingly unsuitable.

8.
Org Biomol Chem ; 17(16): 4024-4030, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30949657

RESUMEN

C-H alkylation reactions using short chain olefins as alkylating agents could be operationally simplified on the lab scale by using quaternary ammonium salts as precursors for these gaseous reagents: Hofmann elimination delivers in situ the desired alkenes with the advantage that the alkene concentration in the liquid phase is high. In case a catalytic system did not tolerate the conditions for Hofmann elimination, a very simple spatial separation of both reactions, Hofmann elimination and direct alkylation, was achieved to circumvent possible side reactions or catalyst deactivation. Additionally, the truly catalytically active species of a rhodium(i) mediated alkylation reaction could be identified by using this approach.

9.
Angew Chem Int Ed Engl ; 58(29): 9758-9769, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31106508

RESUMEN

London dispersion, universally attractive forces originating from fluctuating dipoles, is omnipresent in molecules. While its understanding has recently made tremendous progress, its general appreciation is still lagging behind electrostatics. This can be explained by the simple tools available to study electrostatic interactions, such as electrostatic potential (ESP) maps and partial charges, and a lack thereof for dispersion. We herein report a universal quantitative descriptor of dispersion interaction potentials, which allows assessing dispersion visually by London dispersion potential (LDP) maps, and quantitatively using the average LDP on the van der Waals surface. We demonstrate the utility of these new tools by constructing a quantitative dispersion energy scale of the elements and common substituents, studying non-covalent interactions (NCIs), and developing modern linear free energy relationships in catalysis.

10.
Angew Chem Int Ed Engl ; 58(40): 14281-14288, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31334902

RESUMEN

The importance of London dispersion for structure and stability of molecules with less than about 200 atoms has been established in recent years but the quantitative understanding is still largely based on computations because of a persistent lack of suitable experimental data. We herein report a comprehensive computational and experimental study of the compensation of London dispersion in proton-bound dimer dissociations showing that total compensation is largely invariant in both polar and nonpolar aprotic solvents spanning a wide range of bulk polarizabilities. Additionally, we find that compensation by solvent (which is about 40-80 %) largely dominates over compensation in the gas phase (which is about 0-40 %) for typical experimental temperatures.

11.
J Am Chem Soc ; 139(37): 13126-13140, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28823152

RESUMEN

London dispersion constitutes one of the fundamental interaction forces between atoms and between molecules. While modern computational methods have been developed to describe the strength of dispersive interactions in the gas phase properly, the importance of inter- and intramolecular dispersion in solution remains yet to be fully understood because experimental data are still sparse in that regard. We herein report a detailed experimental and computational study of the contribution of London dispersion to the bond dissociation of proton-bound dimers, both in the gas phase and in dichloromethane solution, showing that attenuation of inter- and intramolecular dispersive interaction by solvent is large (about 70% in dichloromethane), but not complete, and that current state-of-the-art implicit solvent models employed in quantum-mechanical computational studies treat London dispersion poorly, at least for this model system.

12.
Chemistry ; 22(16): 5637-42, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26934666

RESUMEN

The observation and investigation of nonlinear effects in catalytic reactions provides valuable mechanistic insight. However, the applicability of this method was, until now, limited to molecules possessing chirality and therefore to asymmetric synthesis. The concept of nonlinear effects is expanded to catalytic reactions beyond asymmetric catalysis by using derivatives instead of enantiomers and by considering rates instead of enantiomeric excess. Additionally, its systematic application to investigate the mechanism of catalytic reactions is presented. By exceeding the limitation to asymmetric reactions, the study of nonlinear effects can become a general tool to elucidate reaction mechanisms.

13.
J Org Chem ; 80(16): 8268-74, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26218324

RESUMEN

Investigations into the kinetics of a Rh(I)-catalyzed direct C-H alkylation of benzylic amines with alkenes revealed that K2CO3, which is effectively insoluble in the reaction mixture, is only needed in the beginning of the reaction. During the concomitant induction period, K2CO3 is proposed to dissolve to a vanishingly small extent and the Rh-precatalyst irreversibly reacts with dissolved K2CO3 to form the active catalyst. The duration of this induction period is dependent on the molar loading, the specific surface, the H2O content of K2CO3, and agitation, and these dependences can be rationalized based on a detailed kinetic model.

14.
Chem Sci ; 15(7): 2618-2639, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38362419

RESUMEN

The design of molecules requires multi-objective optimizations in high-dimensional chemical space with often conflicting target properties. To navigate this space, classical workflows rely on the domain knowledge and creativity of human experts, which can be the bottleneck in high-throughput approaches. Herein, we present an artificial molecular design workflow relying on a genetic algorithm and a deep neural network to find a new family of organic emitters with inverted singlet-triplet gaps and appreciable fluorescence rates. We combine high-throughput virtual screening and inverse design infused with domain knowledge and artificial intelligence to accelerate molecular generation significantly. This enabled us to explore more than 800 000 potential emitter molecules and find more than 10 000 candidates estimated to have inverted singlet-triplet gaps (INVEST) and appreciable fluorescence rates, many of which likely emit blue light. This class of molecules has the potential to realize a new generation of organic light-emitting diodes.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38728616

RESUMEN

Inverted singlet-triplet gap (INVEST) materials have promising photophysical properties for optoelectronic applications due to an inversion of their lowest singlet (S1) and triplet (T1) excited states. This results in an exothermic reverse intersystem crossing (rISC) process that potentially enhances triplet harvesting, compared to thermally activated delayed fluorescence (TADF) emitters with endothermic rISCs. However, the processes and phenomena that facilitate conversion between excited states for INVEST materials are underexplored. We investigate the complex potential energy surfaces (PESs) of the excited states of three heavily studied azaphenalene INVEST compounds, namely, cyclazine, pentazine, and heptazine using two state-of-the-art computational methodologies, namely, RMS-CASPT2 and SCS-ADC(2) methods. Our findings suggest that ISC and rISC processes take place directly between the S1 and T1 electronic states in all three compounds through a minimum-energy crossing point (MECP) with an activation energy barrier between 0.11 to 0.58 eV above the S1 state for ISC and between 0.06 and 0.36 eV above the T1 state for rISC. We predict that higher-lying triplet states are not populated, since the crossing point structures to these states are not energetically accessible. Furthermore, the conical intersection (CI) between the ground and S1 states is high in energy for all compounds (between 0.4 to 2.0 eV) which makes nonradiative decay back to the ground state a relatively slow process. We demonstrate that the spin-orbit coupling (SOC) driving the S1-T1 conversion is enhanced by vibronic coupling with higher-lying singlet and triplet states possessing vibrational modes of proper symmetry. We also rationalize that the experimentally observed anti-Kasha emission of cyclazine is due to the energetically inaccessible CI between the bright S2 and the dark S1 states, hindering internal conversion. Finally, we show that SCS-ADC(2) is able to qualitatively reproduce excited state features, but consistently overpredict relative energies of excited state structural minima compared to RMS-CASPT2. The identification of these excited state features elaborates design rules for new INVEST emitters with improved emission quantum yields.

16.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873443

RESUMEN

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.

17.
Science ; 384(6697): eadk9227, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38753786

RESUMEN

Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing-and democratizing-scientific discovery.

18.
Digit Discov ; 2(4): 897-908, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38013816

RESUMEN

String-based molecular representations play a crucial role in cheminformatics applications, and with the growing success of deep learning in chemistry, have been readily adopted into machine learning pipelines. However, traditional string-based representations such as SMILES are often prone to syntactic and semantic errors when produced by generative models. To address these problems, a novel representation, SELF-referencing embedded strings (SELFIES), was proposed that is inherently 100% robust, alongside an accompanying open-source implementation called selfies. Since then, we have generalized SELFIES to support a wider range of molecules and semantic constraints, and streamlined its underlying grammar. We have implemented this updated representation in subsequent versions of selfies, where we have also made major advances with respect to design, efficiency, and supported features. Hence, we present the current status of selfies (version 2.1.1) in this manuscript. Our library, selfies, is available at GitHub (https://github.com/aspuru-guzik-group/selfies).

19.
Adv Mater ; 35(6): e2207070, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36373553

RESUMEN

Conventional materials discovery is a laborious and time-consuming process that can take decades from initial conception of the material to commercialization. Recent developments in materials acceleration platforms promise to accelerate materials discovery using automation of experiments coupled with machine learning. However, most of the automation efforts in chemistry focus on synthesis and compound identification, with integrated target property characterization receiving less attention. In this work, an automated platform is introduced for the discovery of molecules as gain mediums for organic semiconductor lasers, a problem that has been challenging for conventional approaches. This platform encompasses automated lego-like synthesis, product identification, and optical characterization that can be executed in a fully integrated end-to-end fashion. Using this workflow to screen organic laser candidates, discovered eight potential candidates for organic lasers is discovered. The lasing threshold of four molecules in thin-film devices and find two molecules with state-of-the-art performance is tested. These promising results show the potential of automated synthesis and screening for accelerated materials development.

20.
Chem Sci ; 13(46): 13857-13871, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36544742

RESUMEN

Computational power and quantum chemical methods have improved immensely since computers were first applied to the study of reactivity, but the de novo prediction of chemical reactions has remained challenging. We show that complex reaction pathways can be efficiently predicted in a guided manner using chemical activation imposed by geometrical constraints of specific reactive modes, which we term imposed activation (IACTA). Our approach is demonstrated on realistic and challenging chemistry, such as a triple cyclization cascade involved in the total synthesis of a natural product, a water-mediated Michael addition, and several oxidative addition reactions of complex drug-like molecules. Notably and in contrast with traditional hand-guided computational chemistry calculations, our method requires minimal human involvement and no prior knowledge of the products or the associated mechanisms. We believe that IACTA will be a transformational tool to screen for chemical reactivity and to study both by-product formation and decomposition pathways in a guided way.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA