RESUMEN
On its way to the surface, the Siberian Traps magma created a complex sub-volcanic plumbing system. This resulted in a large-scale sill emplacement within the Tunguska Basin and subsequent release of sediment-derived volatiles during contact metamorphism. The distribution of sills and the released sediment-stored gas volume is, however, poorly constrained. In this paper, results from a study of nearly 300 deep boreholes intersecting sills are presented. The results show that sills with thicknesses above 100 m are abundant throughout the upper part of the sedimentary succession. A high proportion of the sills was emplaced within the Cambrian evaporites with average thicknesses in the 115-130 m range and a maximum thickness of 428 m. Thermal modelling of the cooling of the sills shows that the contact metamorphic aureoles are capable of generating 52-80 tonnes of CO2 m-2 with contributions from both marine and terrestrial carbon. When up-scaling these borehole results, an area of 12-19 000 km2 is required to generate 1000 Gt CO2 This represents only 0.7-1.2% of the total area in the Tunguska Basin affected by sills, emphasizing the importance of metamorphic gas generation in the Siberian Traps. These results strengthen the hypothesis of a sub-volcanic trigger and driver for the environmental perturbations during the End-Permian crisis.This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'.
RESUMEN
Bariatric surgery (BS) improves outcomes in patients with myocardial infarction (MI). Here we tested the hypothesis that BS-mediated reduction in fatal MI could be attributed to its infarct-limiting effect. Wistar rats were randomized into five groups: control (CON), sham (SHAM), Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG), and ileotransposition (IT). Ten weeks later, animals were subjected to 30-min myocardial ischemia plus 120-min reperfusion. Infarct size (IS) and no-reflow area were determined histochemically. Fasting plasma levels of glucagon-like peptide-1 (GLP-1), leptin, ghrelin, and insulin were measured using ELISA. Compared with SHAM, RYGB and SG reduced IS by 22% (p = 0.011) and 10% (p = 0.027), and no-reflow by 38% (p = 0.01) and 32% (p = 0.004), respectively. IT failed to reduce IS and no-reflow. GLP-1 level was increased in the SG and RYGB groups compared with CON. In both the SG and RYGB, leptin level was decreased compared with CON and SHAM. In the SG group, ghrelin level was lower than that in the CON and SHAM. Insulin levels were not different between groups. In conclusion, RYGB and SG increased myocardial tolerance to ischemia-reperfusion injury of non-obese, non-diabetic rats, and their infarct-limiting effect is associated with decreased leptin and ghrelin levels and increased GLP-1 level.
Asunto(s)
Gastrectomía/métodos , Derivación Gástrica/métodos , Derivación Yeyunoileal/métodos , Daño por Reperfusión Miocárdica/prevención & control , Procedimientos Quirúrgicos Profilácticos/métodos , Animales , Íleon/cirugía , Masculino , Ratas , Ratas WistarRESUMEN
AIMS: The effects of three types of bariatric interventions on myocardial infarct size were tested in the rat model of type 2 diabetes mellitus (T2DM). We also evaluated the effects of bariatric surgery on no-reflow phenomenon and vascular dysfunction caused by T2DM. MAIN METHODS: Rats with T2DM were assigned into groups: without surgery, sham-operated, ileal transposition, Roux-en-Y gastric bypass, and sleeve gastrectomy. Oral glucose tolerance, glucagon-like peptide-1, and insulin levels were measured. Six weeks after surgery, the animals were subjected to myocardial ischemia-reperfusion followed by histochemical determination of infarct size (IS), no-reflow zone, and blood stasis area size. Vascular dysfunction was characterized using wire myography. KEY FINDINGS: All bariatric surgery types caused significant reductions in animal body weight and resulted in T2DM compensation. All bariatric interventions partially normalized glucagon-like peptide-1 responses attenuated by T2DM. IS was significantly smaller in animals with T2DM. Bariatric surgery provided no additional IS limitation compared with T2DM alone. Bariatric surgeries reversed T2DM-induced enhanced contractile responses of the mesenteric artery to 5-hydroxytryptamine. Sleeve gastrectomy normalized decreased nitric oxide synthase contribution to the endothelium-dependent vasodilatation in T2DM. SIGNIFICANCE: T2DM resulted in a reduction of infarct size and no-reflow zone size. Bariatric surgery provided no additional infarct-limiting effect, but it normalized T2DM-induced augmented vascular contractility and reversed decreased contribution of nitric oxide to endothelium-dependent vasodilatation typical of T2DM. All taken together, we suggest that this type of surgery may have a beneficial effect on T2DM-induced cardiovascular diseases.