Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Cancer ; 148(12): 3032-3040, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33521927

RESUMEN

Proteasome inhibitor (PI) therapy has improved the survival of multiple myeloma (MM) patients. However, inevitably, primary or acquired resistance to PIs leads to disease progression; resistance mechanisms are unclear. Obesity is a risk factor for MM mortality. Oxidized LDL (OxLDL), a central mediator of atherosclerosis that is elevated in metabolic syndrome (co-occurrence of obesity, insulin resistance, dyslipidemia and hypertension), has been linked to an increased risk of solid cancers and shown to stimulate pro-oncogenic/survival signaling. We hypothesized that OxLDL is a mediator of chemoresistance and evaluated its effects on MM cell killing by PIs. OxLDL potently suppressed the ability of the boronic acid-based PIs bortezomib (BTZ) and ixazomib, but not the epoxyketone-based PI carfilzomib, to kill human MM cell lines and primary cells. OxLDL suppressed BTZ-induced inhibition of proteasome activity and induction of pro-apoptotic signaling. These cytoprotective effects were abrogated when lipid hydroperoxides (LOOHs) associated with OxLDL were enzymatically reduced. We also demonstrated the presence of OxLDL in the MM bone marrow microenvironment as well as numerous granulocytes and monocytes capable of cell-mediated LDL oxidation through myeloperoxidase. Our findings suggest that OxLDL may be a potent mediator of boronic acid-based PI resistance, particularly for MM patients with metabolic syndrome, given their elevated systemic levels of OxLDL. LDL cholesterol-lowering therapy to reduce circulating OxLDL, and pharmacologic targeting of LOOH levels or resistance pathways induced by the modified lipoprotein, could deepen the response to these important agents and offer clinical benefit to MM patients with metabolic syndrome.


Asunto(s)
Resistencia a Antineoplásicos , Lipoproteínas LDL/metabolismo , Mieloma Múltiple/metabolismo , Inhibidores de Proteasoma/farmacología , Compuestos de Boro/farmacología , Bortezomib/farmacología , Línea Celular Tumoral , Glicina/análogos & derivados , Glicina/farmacología , Granulocitos/metabolismo , Humanos , Peróxidos Lipídicos/metabolismo , Monocitos/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Oligopéptidos/farmacología , Inhibidores de Proteasoma/uso terapéutico
2.
Bioorg Med Chem ; 27(1): 208-215, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30528162

RESUMEN

We previously demonstrated that capsazepine (CPZ), a synthetic transient receptor potential Vanilloid subtype 1 (TRPV1) antagonist, has significant anti-cancer effects in vivo. The purpose of this study was to develop more potent analogs based upon CPZ pharmacophore and structure-activity relationships (SAR) across analogs. We generated 30 novel compounds and screened for their anti-proliferative effects in cultured HeLa cervical cancer cells. Cell viability assays identified multiple compounds with IC50s < 15 µM and one compound, 29 with an IC50 < 5 µM; six fold more potent than CPZ. We validated the anti-proliferative efficacy of two lead compounds, 17 and 29, in vivo using HeLa-derived xenografts in athymic nude mice. Both analogs significantly reduced tumor volumes by day 8 compared to control treated animals (p < 0.001) with no observable adverse effects. Calcium imaging determined that compound 17 activates TRPV1 whereas 29 neither activates nor inhibits TRPV1; indicating a unique mechanism-of-action that does not involve TRPV1 signaling. Cell viability assays using a panel of additional tumor types including oral squamous cell carcinoma, non-small cell lung cancer (NSCLC), breast cancer, and prostate cancer cell lines (HSC-3, H460, MDA-231, and PC-3 respectively) demonstrated that both lead compounds were efficacious against every cancer type tested. Compounds 29 displayed IC50s of 1-2.5 µM in HSC-3and PC-3cells. Thus, we propose that these novel CPZ analogs may serve as efficacious therapeutic agents against multiple tumor types that warrant further development for clinical application.


Asunto(s)
Antineoplásicos/uso terapéutico , Capsaicina/análogos & derivados , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Capsaicina/síntesis química , Capsaicina/farmacología , Capsaicina/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Ratones Desnudos , Estructura Molecular , Relación Estructura-Actividad , Canales Catiónicos TRPV/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Oral Pathol Med ; 48(5): 389-399, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30825343

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a deadly disease with a mere 40% five-year survival rate for patients with advanced disease. Previously, we discovered that capsazepine (CPZ), a transient receptor potential channel, Vanilloid subtype 1 (TRPV1) antagonist, has significant anti-tumor effects against OSCC via a unique mechanism-of-action that is independent of TRPV1. Thus, we developed novel CPZ analogs with more potent anti-proliferative effects (CIDD-24, CIDD-99, and CIDD-111). METHODS: Using OSCC xenograft models, we determined the efficacy of these analogs in vivo. TRPV1 interactions were evaluated using calcium imaging and a rat model of orofacial pain. Anti-cancer mechanism(s)-of-action were assessed by cell cycle analysis and mitochondrial depolarization assays. RESULTS: CIDD-99 was the most potent analog demonstrating significant anti-tumor effects in vivo (P < 0.001). CIDD-24 was equipotent to the parent compound CPZ, but less potent than CIDD-99. CIDD-111 was the least efficacious analog. Calcium imaging studies confirmed that CIDD-99 neither activates nor inhibits TRPV1 confirming that TRPV1 activity is not involved in its anti-cancer effects. All analogs induced an S-phase block, dose-dependent mitochondrial depolarization, and apoptosis. Histological analyses revealed increased apoptosis and reduced cell proliferation in tumors treated with these analogs. Importantly, CIDD-99 had the most dramatic anti-tumor effects with 85% of tumors resolving leaving only minute traces of viable tissue. Additionally, CIDD-99 was non-noxious and demonstrated no observable adverse reactions CONCLUSION: This study describes a novel, highly efficacious, CPZ analog, CIDD-99, with dramatic anti-tumor effects against OSCC that may be efficacious as a lone therapy or in combination with standard therapies.


Asunto(s)
Apoptosis , Capsaicina/análogos & derivados , Carcinoma de Células Escamosas/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Isoquinolinas/farmacología , Mitocondrias/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Canales Catiónicos TRPV/antagonistas & inhibidores , Animales , Capsaicina/farmacología , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Mitocondrias/patología , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Cell Sci ; 129(23): 4399-4410, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27777264

RESUMEN

Gap junction proteins (connexins) have crucial effects on cell motility in many systems, from migration of neural crest cells to promotion of metastatic invasiveness. Here, we show that expression of Cx26 (also known as GJB2) in HeLa cells specifically enhances cell motility in scrape wounding and sparse culture models. This effect is dependent on gap junction channels and is isotype specific [Cx26 enhances motility, whereas Cx43 (also known as GJA1) does not and Cx32 (also known as GJB1) has an intermediate effect]. The increased motility is associated with reduced cell adhesiveness, caused by loss of N-cadherin protein and RNA at the wound edge. This in turn causes a redistribution of N-cadherin-binding proteins (p120 catenin and ß-catenin) to the cytosol and nucleus, respectively. The former activates Rac-1, which mediates cytoskeletal rearrangements needed for filopod extension. The latter is associated with increased expression of urokinase plasminogen activating receptor (an activator of extracellular proteases) and secretion of extracellular matrix components like collagen. Although these effects were dependent on Cx26-mediated coupling of the cells, they are not mediated by the same signal (i.e. cAMP) through which Cx26 has been shown to suppress proliferation in the same system.


Asunto(s)
Movimiento Celular , Conexina 26/metabolismo , Cadherinas/metabolismo , Adhesión Celular , Técnicas de Cocultivo , AMP Cíclico/metabolismo , Uniones Comunicantes/metabolismo , Células HeLa , Humanos , Mitosis , Modelos Biológicos , Unión Proteica , Transfección , Cicatrización de Heridas
6.
Arch Biochem Biophys ; 533(1-2): 88-94, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23507581

RESUMEN

Nitric oxide synthases (NOSs) synthesize nitric oxide (NO), a signaling molecule, from l-arginine, utilizing electrons from NADPH. NOSs are flavo-hemo proteins, with two flavin molecules (FAD and FMN) and one heme per monomer, which require the binding of calcium/calmodulin (Ca(2+)/CaM) to produce NO. It is therefore important to understand the molecular factors influencing CaM binding from a structure/function perspective. A crystal structure of the CaM-bound iNOS FMN-binding domain predicted a salt bridge between R536 of human iNOS and E47 of CaM. To characterize the interaction between the homologous Arg of rat nNOS (R753) and murine iNOS (R530) with CaM, the Arg was mutated to Ala and, in iNOS, to Glu. The mutation weakens the interaction between nNOS and CaM, decreasing affinity by ~3-fold. The rate of electron transfer from FMN is greatly attenuated; however, little effect on electron transfer from FAD is observed. The mutated proteins showed reduced FMN binding, from 20% to 60%, suggesting an influence of this residue on FMN incorporation. The weakened FMN binding may be due to conformational changes caused by the arginine mutation. Our data show that this Arg residue plays an important role in CaM binding and influences FMN binding.


Asunto(s)
Arginina , Calmodulina/metabolismo , Mononucleótido de Flavina/metabolismo , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Línea Celular , Secuencia Conservada , Transporte de Electrón , Cinética , Ratones , Mutación , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/aislamiento & purificación , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/aislamiento & purificación , Unión Proteica , Ratas , Relación Estructura-Actividad , Ultracentrifugación
7.
Biochem Biophys Res Commun ; 411(3): 490-5, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21726529

RESUMEN

Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b(5) and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.


Asunto(s)
Conexina 43/genética , Uniones Comunicantes/fisiología , Regulación del Desarrollo de la Expresión Génica , NADPH-Ferrihemoproteína Reductasa/fisiología , Osteogénesis/genética , Animales , Línea Celular Tumoral , Uniones Comunicantes/genética , Uniones Comunicantes/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Noqueados , NADPH-Ferrihemoproteína Reductasa/genética
8.
Cancer Res ; 79(1): 196-208, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30389702

RESUMEN

Emerging evidence indicates that adipose stromal cells (ASC) are recruited to enhance cancer development. In this study, we examined the role these adipocyte progenitors play relating to intercellular communication in obesity-associated endometrial cancer. This is particularly relevant given that gap junctions have been implicated in tumor suppression. Examining the effects of ASCs on the transcriptome of endometrial epithelial cells (EEC) in an in vitro coculture system revealed transcriptional repression of GJA1 (encoding the gap junction protein Cx43) and other genes related to intercellular communication. This repression was recapitulated in an obesity mouse model of endometrial cancer. Furthermore, inhibition of plasminogen activator inhibitor 1 (PAI-1), which was the most abundant ASC adipokine, led to reversal of cellular distribution associated with the GJA1 repression profile, suggesting that PAI-1 may mediate actions of ASC on transcriptional regulation in EEC. In an endometrial cancer cohort (n = 141), DNA hypermethylation of GJA1 and related loci TJP2 and PRKCA was observed in primary endometrial endometrioid tumors and was associated with obesity. Pharmacologic reversal of DNA methylation enhanced gap-junction intercellular communication and cell-cell interactions in vitro. Restoring Cx43 expression in endometrial cancer cells reduced cellular migration; conversely, depletion of Cx43 increased cell migration in immortalized normal EEC. Our data suggest that persistent repression by ASC adipokines leads to promoter hypermethylation of GJA1 and related genes in the endometrium, triggering long-term silencing of these loci in endometrial tumors of obese patients. SIGNIFICANCE: Studies reveal that adipose-derived stem cells in endometrial cancer pathogenesis influence epigenetic repression of gap junction loci, which suggests targeting of gap junction activity as a preventive strategy for obesity-associated endometrial cancer.


Asunto(s)
Adipoquinas/farmacología , Tejido Adiposo/patología , Comunicación Celular , Conexina 43/genética , Neoplasias Endometriales/patología , Represión Epigenética , Obesidad/complicaciones , Tejido Adiposo/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Conexina 43/metabolismo , Dieta Alta en Grasa/efectos adversos , Neoplasias Endometriales/etiología , Neoplasias Endometriales/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Uniones Comunicantes , Humanos , Masculino , Ratones , Ratones Noqueados , Obesidad/fisiopatología , Células del Estroma/metabolismo , Células del Estroma/patología
9.
PLoS One ; 8(9): e75638, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086598

RESUMEN

NADPH-cytochrome P450 oxidoreductase (POR) is the primary electron donor for cytochromes P450, dehydrocholesterol reductase, heme oxygenase, and squalene monooxygenase. Human patients with specific mutations in POR exhibit severe developmental malformations including disordered steroidogenesis, sexual ambiguities and various bone defects, similar to those seen in patients with Antley-Bixler syndrome (ABS). To probe the role of POR during bone development, we generated a conditional knockout mouse (CKO) by cross breeding Por (lox/lox) and Dermo1 Cre mice. CKO mice were smaller than their littermate controls and exhibited significant craniofacial and long bone abnormalities. Differential staining of the CKO mice skull bases shows premature fusion of the sphenooccipital and basioccipital-exoccipital synchondroses. Class III malocclusion was noted in adult knockout mice with an unusual overgrowth of the lower incisors. Shorter long bones were observed along with a reduction in the bone volume fraction, measured by microCT, in the Por-deleted mice compared to age- and sex-matched littermate controls. Concerted up- or down-regulation of proteins in the FGF signaling pathway observed by immunohistochemistry in the tibia samples of CKO mice compared to wild type controls shows a decrease in the FGF signaling pathway. To our knowledge, this is the first report of a mouse model that recapitulates both skull and long bone defects upon Por deletion, offering an approach to study the sequelae of POR mutations. This unique model demonstrates that P450 metabolism in bone itself is potentially important for proper bone development, and that an apparent link exists between the POR and FGF signaling pathways, begging the question of how an oxidation-reduction flavoprotein affects developmental and cellular signaling processes.


Asunto(s)
Desarrollo Óseo/genética , Desarrollo Óseo/fisiología , NADPH-Ferrihemoproteína Reductasa/genética , Eliminación de Secuencia/genética , Células Madre/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/fisiopatología , Animales , Fenotipo del Síndrome de Antley-Bixler/genética , Fenotipo del Síndrome de Antley-Bixler/metabolismo , Fenotipo del Síndrome de Antley-Bixler/fisiopatología , Regulación hacia Abajo/genética , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Noqueados , Mutación/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Oxidación-Reducción , Transducción de Señal/genética , Transducción de Señal/fisiología , Cráneo/crecimiento & desarrollo , Cráneo/metabolismo , Células Madre/fisiología , Tibia/crecimiento & desarrollo , Tibia/metabolismo , Regulación hacia Arriba/genética
10.
PLoS One ; 8(12): e82335, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312655

RESUMEN

Connexins (Cx), which constitute gap junction intercellular channels in vertebrates, have been shown to suppress transformed cell growth and tumorigenesis, but the mechanism(s) still remain largely speculative. Here, we define the molecular basis by which Cx26, but less frequently Cx43 or Cx32, selectively confer growth suppression on cancer cells. Functional intercellular coupling is shown to be required, producing partial blocks of the cell cycle due to prolonged activation of several mitogenic kinases. PKA is both necessary and sufficient for the Cx26 induced growth inhibition in low serum and the absence of anchorage. Activation of PKA was not associated with elevated cAMP levels, but appeared to result from a redistribution of cAMP throughout the cell population, eliminating the cell cycle oscillations in cAMP required for efficient cell cycle progression. Cx43 and Cx32 fail to mediate this redistribution as, unlike Cx26, these channels are closed during the G2/M phase of the cell cycle when cAMP levels peak. Comparisons of tumor cell lines indicate that this is a general pattern, with growth suppression by connexins occurring whenever cAMP oscillates with the cell cycle, and the gap junction remain open throughout the cell cycle. Thus, gap junctional coupling, in the absence of any external signals, provides a general means to limit the mitotic rate of cell populations.


Asunto(s)
Conexinas/metabolismo , AMP Cíclico/metabolismo , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Conexina 26 , Conexina 43/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HeLa , Humanos , Proteína beta1 de Unión Comunicante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA