RESUMEN
We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
Asunto(s)
COVID-19/inmunología , Biología Computacional/métodos , Bases de Datos Factuales , SARS-CoV-2/inmunología , Programas Informáticos , Antivirales/uso terapéutico , COVID-19/genética , COVID-19/virología , Gráficos por Computador , Citocinas/genética , Citocinas/inmunología , Minería de Datos/estadística & datos numéricos , Regulación de la Expresión Génica , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/virología , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , Células Mieloides/virología , Mapeo de Interacción de Proteínas , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Tratamiento Farmacológico de COVID-19RESUMEN
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Proteínas , Programas Informáticos , Genes , Modelos MolecularesRESUMEN
Reductive genome evolution is a universal phenomenon observed in endosymbiotic bacteria in insects. As the genome reduces its size and irreversibly losses coding genes, the functionalities of the cell system, including the energetics processes, are more restricted. Several energetic pathways can also be lost. How do these reduced metabolic networks sustain the energy needs of the system? Among the bacteria with reduced genomes Candidatus Portiera aleyrodidarum, obligate endosymbiont of whiteflies, represents an extreme case since lacks several key mechanisms for ATP generation. Thus, to analyze the cell energetics in this system, a genome-scale metabolic model of this endosymbiont was constructed, and its energy production capabilities dissected using stoichiometric analysis. Our results suggest that energy generation is coupled to the synthesis of essential amino acids and carotenoids, crucial metabolites in the symbiotic association. A deeper insight showed that ATP production via carotenoid synthesis is also connected with amino acid production. This unusual association of energy production with anabolism suggests that, although minimized, endosymbiont metabolic networks maintain a remarkable biosynthetic potential.
Asunto(s)
Aminoácidos/metabolismo , Metabolismo Energético , Halomonadaceae/metabolismo , Hemípteros/microbiología , Simbiosis , Animales , Genoma Bacteriano , Halomonadaceae/genética , Análisis de Flujos Metabólicos , Redes y Vías Metabólicas , Modelos Biológicos , beta Caroteno/metabolismoRESUMEN
BACKGROUND: Trypanosoma vivax is the earliest branching African trypanosome. This crucial phylogenetic position makes T. vivax a fascinating model to tackle fundamental questions concerning the origin and evolution of several features that characterize African trypanosomes, such as the Variant Surface Glycoproteins (VSGs) upon which antibody clearing and antigenic variation are based. Other features like gene content and trans-splicing patterns are worth analyzing in this species for comparative purposes. RESULTS: We present a RNA-seq analysis of the bloodstream stage of T. vivax from data obtained using two complementary sequencing technologies (454 Titanium and Illumina). Assembly of 454 reads yielded 13385 contigs corresponding to proteins coding genes (7800 of which were identified). These sequences, their annotation and other features are available through an online database presented herein. Among these sequences, about 1000 were found to be species specific and 50 exclusive of the T. vivax strain analyzed here. Expression patterns and levels were determined for VSGs and the remaining genes. Interestingly, VSG expression level, although being high, is considerably lower than in Trypanosoma brucei. Indeed, the comparison of surface protein composition between both African trypanosomes (as inferred from RNA-seq data), shows that they are substantially different, being VSG absolutely predominant in T. brucei, while in T. vivax it represents only about 55%. This raises the question concerning the protective role of VSGs in T. vivax, hence their ancestral role in immune evasion.It was also found that around 600 genes have their unique (or main) trans-splice site very close (sometimes immediately before) the start codon. Gene Ontology analysis shows that this group is enriched in proteins related to the translation machinery (e.g. ribosomal proteins, elongation factors). CONCLUSIONS: This is the first RNA-seq data study in trypanosomes outside the model species T. brucei, hence it provides the possibility to conduct comparisons that allow drawing evolutionary and functional inferences. This analysis also provides several insights on the expression patterns and levels of protein coding sequences (such as VSG gene expression), trans-splicing, codon patterns and regulatory mechanisms. An online T. vivax RNA-seq database described herein could be a useful tool for parasitologists working with trypanosomes.
Asunto(s)
Proteínas Protozoarias/metabolismo , Transcriptoma , Trypanosoma vivax/metabolismo , Regiones no Traducidas 5' , Animales , Secuencia de Bases , Mapeo Contig , Perfilación de la Expresión Génica , Genes Protozoarios , Estadios del Ciclo de Vida , Masculino , Ratones , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Proteínas Protozoarias/genética , Sitios de Empalme de ARN , Análisis de Secuencia de ADN , Ovinos , Trypanosoma vivax/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismoRESUMEN
In systems biology, mathematical models and simulations play a crucial role in understanding complex biological systems. Different modelling frameworks are employed depending on the nature and scales of the system under study. For instance, signalling and regulatory networks can be simulated using Boolean modelling, whereas multicellular systems can be studied using agent-based modelling. Herein, we present PhysiBoSS 2.0, a hybrid agent-based modelling framework that allows simulating signalling and regulatory networks within individual cell agents. PhysiBoSS 2.0 is a redesign and reimplementation of PhysiBoSS 1.0 and was conceived as an add-on that expands the PhysiCell functionalities by enabling the simulation of intracellular cell signalling using MaBoSS while keeping a decoupled, maintainable and model-agnostic design. PhysiBoSS 2.0 also expands the set of functionalities offered to the users, including custom models and cell specifications, mechanistic submodels of substrate internalisation and detailed control over simulation parameters. Together with PhysiBoSS 2.0, we introduce PCTK, a Python package developed for handling and processing simulation outputs, and generating summary plots and 3D renders. PhysiBoSS 2.0 allows studying the interplay between the microenvironment, the signalling pathways that control cellular processes and population dynamics, suitable for modelling cancer. We show different approaches for integrating Boolean networks into multi-scale simulations using strategies to study the drug effects and synergies in models of cancer cell lines and validate them using experimental data. PhysiBoSS 2.0 is open-source and publicly available on GitHub with several repositories of accompanying interoperable tools.
Asunto(s)
Modelos Biológicos , Neoplasias , Humanos , Simulación por Computador , Transducción de Señal , Modelos Teóricos , Análisis de Sistemas , Microambiente TumoralRESUMEN
Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results: Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. Discussion: The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Reposicionamiento de Medicamentos , Biología de Sistemas , Simulación por ComputadorRESUMEN
The world has gone through unprecedented changes since the global pandemic hit. During the early phase of the pandemic, the absence of known drugs or pharmaceutical treatments forced governments to introduce different policies in order to help reduce contagion rates and manage the economic consequences of the pandemic. This paper analyses the causal impact on mobility and COVID19 incidence from policy makers in Cataluña, Spain. We use anonymized phone-based mobility data together with reported incidence and apply a series of causal impact models frequently used in econometrics and policy evaluation in order to measure the policies impact. We analyse the case of Cataluña and the public policy decision of closing all bars and restaurants down for a 5 week period between 2020-16-10 and 2020-23-11. We find that this decision led to a significant reduction in mobility. It not only led to reductions in mobility but from a behavioural economics standpoint, we highlight how people responded to the policy decision. Moreover, the policy of closing bars and restaurants slowed the incidence rate of COVID19 after a time lag has been taken into account. These findings are significant since governments worldwide want to restrict movements of people in order to slow down COVID19 incidence without infringing on their rights directly.
Asunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Incidencia , Pandemias/prevención & control , Política Pública , RestaurantesRESUMEN
The emergence of cell resistance in cancer treatment is a complex phenomenon that emerges from the interplay of processes that occur at different scales. For instance, molecular mechanisms and population-level dynamics such as competition and cell-cell variability have been described as playing a key role in the emergence and evolution of cell resistances. Multi-scale models are a useful tool for studying biology at very different times and spatial scales, as they can integrate different processes occurring at the molecular, cellular, and intercellular levels. In the present work, we use an extended hybrid multi-scale model of 3T3 fibroblast spheroid to perform a deep exploration of the parameter space of effective treatment strategies based on TNF pulses. To explore the parameter space of effective treatments in different scenarios and conditions, we have developed an HPC-optimized model exploration workflow based on EMEWS. We first studied the effect of the cells' spatial distribution in the values of the treatment parameters by optimizing the supply strategies in 2D monolayers and 3D spheroids of different sizes. We later study the robustness of the effective treatments when heterogeneous populations of cells are considered. We found that our model exploration workflow can find effective treatments in all the studied conditions. Our results show that cells' spatial geometry and population variability should be considered when optimizing treatment strategies in order to find robust parameter sets.
RESUMEN
Targeted contact-tracing through mobile phone apps has been proposed as an instrument to help contain the spread of COVID-19 and manage the lifting of nation-wide lock-downs currently in place in USA and Europe. However, there is an ongoing debate on its potential efficacy, especially in light of region-specific demographics. We built an expanded SIR model of COVID-19 epidemics that accounts for region-specific population densities, and we used it to test the impact of a contact-tracing app in a number of scenarios. Using demographic and mobility data from Italy and Spain, we used the model to simulate scenarios that vary in baseline contact rates, population densities, and fraction of app users in the population. Our results show that, in support of efficient isolation of symptomatic cases, app-mediated contact-tracing can successfully mitigate the epidemic even with a relatively small fraction of users, and even suppress altogether with a larger fraction of users. However, when regional differences in population density are taken into consideration, the epidemic can be significantly harder to contain in higher density areas, highlighting potential limitations of this intervention in specific contexts. This work corroborates previous results in favor of app-mediated contact-tracing as mitigation measure for COVID-19, and draws attention on the importance of region-specific demographic and mobility factors to achieve maximum efficacy in containment policies.
RESUMEN
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus, which has spread all over the world leading to a global pandemic. The fast progression of COVID-19 has been mainly related to the high contagion rate of the virus and the worldwide mobility of humans. In the absence of pharmacological therapies, governments from different countries have introduced several non-pharmaceutical interventions to reduce human mobility and social contact. Several studies based on Anonymized Mobile Phone Data have been published analysing the relationship between human mobility and the spread of coronavirus. However, to our knowledge, none of these data-sets integrates cross-referenced geo-localised data on human mobility and COVID-19 cases into one all-inclusive open resource. Herein we present COVID-19 Flow-Maps, a cross-referenced Geographic Information System that integrates regularly updated time-series accounting for population mobility and daily reports of COVID-19 cases in Spain at different scales of time spatial resolution. This integrated and up-to-date data-set can be used to analyse the human dynamics to guide and support the design of more effective non-pharmaceutical interventions.
Asunto(s)
COVID-19/epidemiología , Sistemas de Información Geográfica , Viaje , COVID-19/transmisión , Teléfono Celular , Humanos , Pandemias , España/epidemiologíaRESUMEN
Bacterial endosymbionts and their insect hosts establish an intimate metabolic relationship. Bacteria offer a variety of essential nutrients to their hosts, whereas insect cells provide the necessary sources of matter and energy to their tiny metabolic allies. These nutritional complementations sustain themselves on a diversity of metabolite exchanges between the cell host and the reduced yet highly specialized bacterial metabolism-which, for instance, overproduces a small set of essential amino acids and vitamins. A well-known case of metabolic complementation is provided by the cedar aphid Cinara cedri that harbors two co-primary endosymbionts, Buchnera aphidicola BCc and Ca. Serratia symbiotica SCc, and in which some metabolic pathways are partitioned between different partners. Here we present a genome-scale metabolic network (GEM) for the bacterial consortium from the cedar aphid iBSCc. The analysis of this GEM allows us the confirmation of cases of metabolic complementation previously described by genome analysis (i.e., tryptophan and biotin biosynthesis) and the redefinition of an event of metabolic pathway sharing between the two endosymbionts, namely the biosynthesis of tetrahydrofolate. In silico knock-out experiments with iBSCc showed that the consortium metabolism is a highly integrated yet fragile network. We also have explored the evolutionary pathways leading to the emergence of metabolic complementation between reduced metabolisms starting from individual, complete networks. Our results suggest that, during the establishment of metabolic complementation in endosymbionts, adaptive evolution is significant in the case of tryptophan biosynthesis, whereas vitamin production pathways seem to adopt suboptimal solutions.
RESUMEN
Bacterial communities may display metabolic complementation, in which different members of the association partially contribute to the same biosynthetic pathway. In this way, the end product of the pathway is synthesized by the community as a whole. However, the emergence and the benefits of such complementation are poorly understood. Herein, we present a simple model to analyze the metabolic interactions among bacteria, including the host in the case of endosymbiotic bacteria. The model considers two cell populations, with both cell types encoding for the same linear biosynthetic pathway. We have found that, for metabolic complementation to emerge as an optimal strategy, both product inhibition and large permeabilities are needed. In the light of these results, we then consider the patterns found in the case of tryptophan biosynthesis in the endosymbiont consortium hosted by the aphid Cinara cedri. Using in-silico computed physicochemical properties of metabolites of this and other biosynthetic pathways, we verified that the splitting point of the pathway corresponds to the most permeable intermediate.
RESUMEN
Purine bias, which is usually referred to as an "ancestral codon", is known to result in short-range correlations between nucleotides in coding sequences, and it is common in all species. We demonstrate that RWY is a more appropriate pattern than the classical RNY, and purine bias (Rrr) is the product of a network of nucleotide compensations induced by functional constraints on the physicochemical properties of proteins. Through deductions from universal correlation properties, we also demonstrate that amino acids from Miller's spark discharge experiment are compatible with functional primeval proteins at the dawn of living cell radiation on earth. These amino acids match the hydropathy and secondary structures of modern proteins.
RESUMEN
Genome-scale metabolic models usually contain inconsistencies that manifest as blocked reactions and gap metabolites. With the purpose to detect recurrent inconsistencies in metabolic models, a large-scale analysis was performed using a previously published dataset of 130 genome-scale models. The results showed that a large number of reactions (~22%) are blocked in all the models where they are present. To unravel the nature of such inconsistencies a metamodel was construed by joining the 130 models in a single network. This metamodel was manually curated using the unconnected modules approach, and then, it was used as a reference network to perform a gap-filling on each individual genome-scale model. Finally, a set of 36 models that had not been considered during the construction of the metamodel was used, as a proof of concept, to extend the metamodel with new biochemical information, and to assess its impact on gap-filling results. The analysis performed on the metamodel allowed to conclude: 1) the recurrent inconsistencies found in the models were already present in the metabolic database used during the reconstructions process; 2) the presence of inconsistencies in a metabolic database can be propagated to the reconstructed models; 3) there are reactions not manifested as blocked which are active as a consequence of some classes of artifacts, and; 4) the results of an automatic gap-filling are highly dependent on the consistency and completeness of the metamodel or metabolic database used as the reference network. In conclusion the consistency analysis should be applied to metabolic databases in order to detect and fill gaps as well as to detect and remove artifacts and redundant information.
Asunto(s)
Bacterias/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Redes y Vías Metabólicas , Metagenómica , Modelos Biológicos , Bacterias/clasificación , Bacterias/metabolismoRESUMEN
For this report, we analyzed protein secondary structures in relation to the statistics of three nucleotide codon positions. The purpose of this investigation was to find which properties of the ribosome, tRNA or protein level, could explain the purine bias (Rrr) as it is observed in coding DNA. We found that the Rrr pattern is the consequence of a regularity (the codon structure) resulting from physicochemical constraints on proteins and thermodynamic constraints on ribosomal machinery. The physicochemical constraints on proteins mainly come from the hydropathy and molecular weight (MW) of secondary structures as well as the energy cost of amino acid synthesis. These constraints appear through a network of statistical correlations, such as (i) the cost of amino acid synthesis, which is in favor of a higher level of guanine in the first codon position, (ii) the constructive contribution of hydropathy alternation in proteins, (iii) the spatial organization of secondary structure in proteins according to solvent accessibility, (iv) the spatial organization of secondary structure according to amino acid hydropathy, (v) the statistical correlation of MW with protein secondary structures and their overall hydropathy, (vi) the statistical correlation of thymine in the second codon position with hydropathy and the energy cost of amino acid synthesis, and (vii) the statistical correlation of adenine in the second codon position with amino acid complexity and the MW of secondary protein structures. Amino acid physicochemical properties and functional constraints on proteins constitute a code that is translated into a purine bias within the coding DNA via tRNAs. In that sense, the Rrr pattern within coding DNA is the effect of information transfer on nucleotide composition from protein to DNA by selection according to the codon positions. Thus, coding DNA structure and ribosomal machinery co-evolved to minimize the energy cost of protein coding given the functional constraints on proteins.
RESUMEN
BACKGROUND: Metabolic reconstruction is the computational-based process that aims to elucidate the network of metabolites interconnected through reactions catalyzed by activities assigned to one or more genes. Reconstructed models may contain inconsistencies that appear as gap metabolites and blocked reactions. Although automatic methods for solving this problem have been previously developed, there are many situations where manual curation is still needed. RESULTS: We introduce a general definition of gap metabolite that allows its detection in a straightforward manner. Moreover, a method for the detection of Unconnected Modules, defined as isolated sets of blocked reactions connected through gap metabolites, is proposed. The method has been successfully applied to the curation of iCG238, the genome-scale metabolic model for the bacterium Blattabacterium cuenoti, obligate endosymbiont of cockroaches. CONCLUSION: We found the proposed approach to be a valuable tool for the curation of genome-scale metabolic models. The outcome of its application to the genome-scale model B. cuenoti iCG238 is a more accurate model version named as B. cuenoti iMP240.
Asunto(s)
Bacteroidetes/genética , Bacteroidetes/metabolismo , Genómica , Redes y Vías Metabólicas , Modelos Biológicos , SimbiosisRESUMEN
Bacterial responses to environmental changes rely on a complex network of biochemical reactions. The properties of the metabolic network determining these responses can be divided into two groups: the stoichiometric properties, given by the stoichiometry matrix, and the kinetic/thermodynamic properties, given by the rate equations of the reaction steps. The stoichiometry matrix represents the maximal metabolic capabilities of the organism, and the regulatory mechanisms based on the rate laws could be considered as being responsible for the administration of these capabilities. Post-genomic reconstruction of metabolic networks provides us with the stoichiometry matrix of particular strains of microorganisms, but the kinetic aspects of in vivo rate laws are still largely unknown. Therefore, the validity of predictions of cellular responses requiring detailed knowledge of the rate equations is difficult to assert. In this paper, we show that by applying optimisation criteria to the core stoichiometric network of the metabolism of Escherichia coli, and including information about reversibility/irreversibility only of the reaction steps, it is possible to calculate bacterial responses to growth media with different amounts of glucose and galactose. The target was the minimisation of the number of active reactions (subject to attaining a growth rate higher than a lower limit) and subsequent maximisation of the growth rate (subject to the number of active reactions being equal to the minimum previously calculated). Using this two-level target, we were able to obtain by calculation four fundamental behaviours found experimentally: inhibition of respiration at high glucose concentrations in aerobic conditions, turning on of respiration when glucose decreases, induction of galactose utilisation when the system is depleted of glucose and simultaneous use of glucose and galactose as carbon sources when both sugars are present in low concentrations. Preliminary results of the coarse pattern of sugar utilisation were also obtained with a genome-scale E. coli reconstructed network, yielding similar qualitative results.