Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Biochem ; 122(11): 1701-1714, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34346095

RESUMEN

Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is the key regulatory enzyme of the purine salvage pathway present in the members of trypanosomatids. The parasite solely depends on this pathway for the synthesis of nucleotides due to the absence of the de novo pathway. This study intends to identify putative inhibitors towards Trypanosoma cruzi HGPRT (TcHGPRT). Initial virtual screening was performed with substructures of phosphoribosyl pyrophosphate (PRPP), an original substrate of HGPRT. Twenty compounds that had greater binding energy than the substrate was treated as hits and was further screened and narrowed down through induced fit docking which resulted in top five compounds which was distinguished into two groups based on the ligand occupancy within the PRPP binding site of TcHGPRT. Group-I compounds (PubChem CID 130316561 and 134978234) are analogous to PRPP structure with greater occupancy, were preferred over Group-II compounds which had lesser occupancy than the substrate. However, one compound (22404820) among Group II was chosen for further analysis considering its significant electrostatic interactions. Molecular docking studies revealed the requirement of an electronegative moiety like phosphate group to be present in the ligand due to the presence of metal ions in the substrate binding site. The three chosen compounds along with PRPP were subjected to molecular dynamics analysis, which indicated a strong presence of electrostatic interaction. Considering the dynamic stability of interactions as well as pharmacological properties of ligands based on absorption, distribution, metabolism, excretion prediction, Group-I compounds were selected as lead compounds and were subjected to molecular electrostatic potential analysis to determine the charge distribution of the compound. The overall analysis thus suggests both 130316561 and 134978234 can be used as TcHGPRT inhibitors. Furthermore, these computational results emphasize the requirement of phosphorylated ligands which are essential in mediating electrostatic interactions and to compete with the binding affinity of the original substrate.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Hipoxantina Fosforribosiltransferasa/antagonistas & inhibidores , Hipoxantina Fosforribosiltransferasa/química , Proteínas Protozoarias/antagonistas & inhibidores , Trypanosoma cruzi/enzimología , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Humanos , Hipoxantina Fosforribosiltransferasa/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Electricidad Estática
2.
Biochem Biophys Res Commun ; 547: 96-101, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33610046

RESUMEN

Carbonic anhydrases (CA) are the most ubiquitous ancient zinc metalloenzymes known. Here we report the structural and functional analysis of a hypothetical protein GK2848 from Geobacillus kaustophilus. The analysis revealed that it belongs to the γ-class of CA (termed as Cag). Only a limited number of γ-class CA's have been characterized till date. Interestingly Cag contains magnesium at its active site instead of a traditional zinc ion. Based on the structural and sequence comparison with similar γ-CA's the putative active site residues of Cag were identified. This analysis revealed that an important catalytic residue and a proton shuttle residue (Glu62 and Glu84 respectively) of Cam (previously characterized γ-CA from Methanosarcina thermophila) are absent in Cag, however certain other active site residues are conserved both in Cag and Cam. This suggests that Cag uses a different set of residues for the reversible hydration of CO2 to HCO3- when compared with Cam. Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES) and 25Mg and 67Zn NMR studies on Cag and its mutants revealed that either Mg or Zn can occupy the active site which suggests the cambialistic nature of the enzyme.


Asunto(s)
Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Geobacillus/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Magnesio/química , Protones , Alineación de Secuencia , Relación Estructura-Actividad , Zinc/química
3.
Microb Pathog ; 146: 104239, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32376360

RESUMEN

Staphylococcus aureus expresses many Microbial Surface Recognizing Adhesive Matrix Molecules (MSCRAMM's) to recognize host extracellular matrix (ECM) molecules to initiate colonization. The MSCRAMM, fibronectin binding protein A (FnBPA), is an important adhesin for S. aureus infection. FnBPA also binds with fibrinogen (Fg) by using a unique ligand binding mechanism called dock, lock and latch. Nanoparticles, especially nanosilver particles have been widely used in a variety of biomedical applications which includes disease diagnosis and treatment, drug delivery and implanted medical device coating. In a biological system, when protein molecules encounter nanoparticle, they can be absorbed onto its surface which results in the formation of protein corona. In the present study, we have analysed the fibrinogen binding ability of rFnBPA(189-512) in the presence of silver nanoparticles by employing techniques like gel shift assay, Western blot, size exclusion chromatography, enzyme-linked immunosorbent assay, bio-layer interferometry and circular dichroism spectroscopy. The results indicate that rFnBPA(189-512) is unable to bind to Fg in the presence of a nanoparticle. This could be due to the inaccessibility of the Fg binding site and conformational change in rFnBPA(189-512). With nanoparticles, rFnBPA(189-512) undergoes significant structural changes as the ß-sheet content has drastically reduced to 10% from the initial 60% at higher concentration of the nanoparticle. Pathogenic bacteria interact with its surrounding environment through their surface molecules which includes MSCRAMMs. Therefore MSCRAMMs play an important role when bacteria encounter nanoparticles. The results of the present study suggest that the orientation of the protein during the absorption on the surface of a nanoparticle as well as the concentration of the nanoparticle, will dictate the function of the absorbed protein and in this case the Fg binding property of rFnBPA(189-512).


Asunto(s)
Adhesinas Bacterianas , Adhesión Bacteriana/efectos de los fármacos , Nanopartículas del Metal , Staphylococcus aureus/metabolismo , Adhesinas Bacterianas/biosíntesis , Adhesinas Bacterianas/efectos de los fármacos , Adhesinas Bacterianas/aislamiento & purificación , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Fibrinógeno/efectos de los fármacos , Fibrinógeno/metabolismo , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Unión Proteica , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico
4.
J Mol Recognit ; 32(4): e2768, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30397967

RESUMEN

The location of certain amino acid sequences like repeats along the polypeptide chain is very important in the context of forming the overall shape of the protein molecule which in fact determines its function. In gram-positive bacteria, fibronectin-binding protein (FnBP) is one such repeat containing protein, and it is a cell wall-attached protein responsible for various acute infections in human. Several studies on sequence, structure, and function of fibronectin-binding regions of FnBPs were reported; however, no detailed study was carried out on the full-length protein sequence. In the present study, we have made a thorough sequence and structure analysis on FnBP_A of Staphylococcus aureus and explored the presence of dual ligand-binding ability of fibrinogen (fg)-binding region and its molecular recognition processes. Multiple sequence alignment and protein-protein docking analysis reveal the regions which are likely involved in dual ligand binding. Further analysis of docking of FnBP_A fg-binding region and fn N-terminal modules suggests that if the latter binds to the fg-binding region of FnBP_A, it would inhibit the subsequent binding of fg because of steric hindrance. The sequence analysis further suggests that the abundance of disorder promoting residue glutamic acid and dual personality (both order/disorder promoting) residue threonine in tandem repeats of FnBP_A and B proteins possibly would help the molecule to undergo a conformational change while binding with fn by ß-zipper mechanism. The segment-based power spectral analysis was carried out which helps to understand the distribution of hydrophobic residues along the sequence particularly in intrinsic disordered tandem repeats. The results presented here will help to understand the role of internal repeats and intrinsic disorder in the molecular recognition process of a pathogenic cell surface protein.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Fibronectinas/química , Fibronectinas/metabolismo , Adhesinas Bacterianas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Unión Proteica , Staphylococcus aureus/metabolismo
5.
BMC Microbiol ; 19(1): 255, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31726993

RESUMEN

BACKGROUND: High temperature requirement A (HtrA) is a widely expressed chaperone and serine protease in bacteria. HtrA proteases assemble and hydrolyze misfolded proteins to enhance bacterial survival under stress conditions. Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that induces listeriosis in humans. In previous studies, it was shown that deletion of htrA in the genome of L. monocytogenes increased the susceptibility to cellular stress and attenuated virulence. However, expression and protease activity of listerial HtrA (LmHtrA) were never analyzed in detail. RESULTS: In this study, we cloned LmHtrA wildtype (LmHtrAwt) and generated a proteolytic inactive LmHtrASA mutant. Recombinant LmHtrAwt and LmHtrASA were purified and the proteolytic activity was analyzed in casein zymography and in vitro cleavage assays. LmHtrA activity could be efficiently blocked by a small molecule inhibitor targeting bacterial HtrA proteases. The expression of LmHtrA was enhanced in the stationary growth phase of L. monocytogenes and significantly contributed to bacterial survival at high temperatures. CONCLUSIONS: Our data show that LmHtrA is a highly active caseinolytic protease and provide a deeper insight into the function and mechanism, which could lead to medical and biotechnological applications in the future.


Asunto(s)
Caseínas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Listeria monocytogenes/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microbiología de Alimentos , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/química , Respuesta al Choque Térmico , Listeria monocytogenes/patogenicidad , Viabilidad Microbiana , Pliegue de Proteína , Multimerización de Proteína , Proteolisis , Regulación hacia Arriba
6.
Microb Pathog ; 127: 359-367, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30553015

RESUMEN

GAPDH being a key enzyme in the glycolytic pathway is one of the surface adhesins of many Gram-positive bacteria including Streptococcus agalactiae. This anchorless adhesin is known to bind to host plasminogen (PLG) and fibrinogen (Fg), which enhances the virulence and modulates the host immune system. The crystal structure of the recombinant GAPDH from S. agalactiae (SagGAPDH) was determined at 2.6 Šresolution by molecular replacement. The structure was found to be highly conserved with a typical NAD binding domain and a catalytic domain. In this paper, using biolayer interferometry studies, we report that the multifunctional SagGAPDH enzyme binds to a variety of host molecules such as PLG, Fg, laminin, transferrin and mucin with a KD value of 4.4 × 10-7 M, 9.8 × 10-7 M, 1 × 10-5 M, 9.7 × 10-12 M and 1.4 × 10-7 M respectively. The ligand affinity blots reveal that SagGAPDH binds specifically to α and ß subunits of Fg and the competitive binding ELISA assay reveals that the Fg and PLG binding sites on GAPDH does not overlap each other. The PLG binding motif of GAPDH varies with organisms, however positively charged residues in the hydrophobic surroundings is essential for PLG binding. The lysine analogue competitive binding assay and lysine succinylation experiments deciphered the role of SagGAPDH lysines in PLG binding. On structural comparison with S. pneumoniae GAPDH, K171 of SagGAPDH is being predicted to be involved in PLG binding. Further SagGAPDH exhibited enzymatic activity in the presence of Fg, PLG and transferrin. This suggests that these host molecules does not mask the active site and bind at some other region of GAPDH.


Asunto(s)
Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Streptococcus agalactiae/enzimología
7.
Biochem Biophys Res Commun ; 465(2): 174-9, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26210451

RESUMEN

The enzymatic biosynthesis of L-arginine involves complex, sequential action of many enzymes and ornithine transcarbamylase (OTCase) is one of the essential enzymes in the pathway. In mammals OTCase is part of the urea cycle. Arginine is used in a variety of pharmaceutical and industrial applications and therefore engineering arginine biosynthesis pathway for overproduction of arginine has gained importance. On the other hand, it was found that detrimental mutations in the human OTCase gene resulted clinical hyperammonemia, with subsequent neurological damage. Therefore a better understanding of the structure-function relationship of this enzyme from various sources could be useful for modifying its enzymatic action. Here we report the structure of ornithine transcarbamylase of Thermus thermophilus HB8 (aTtOTCase) at 2.0 Å resolution. On comparison with its homologs, aTtOTCase showed maximum variation at the substrate binding loops namely 80s and SMG/240s loops. The active site geometry of aTtOTCase is unique among its homologs where the side chain of certain residues (Leu57, Arg58 and Arg288) is oriented differently. To study the structural insights of substrate binding in aTtOTCase, docking of carbamoyl phosphate (CP) and ornithine (Orn) was carried out sequentially. Both substrates were unable to bind in a proper orientation in the active site pocket and this could be due to the differently oriented side chains. This suggests that the active site geometry should also undergo fine tuning besides the large structural changes as the enzyme switches from completely open to a substrate bound closed state.


Asunto(s)
Apoproteínas/química , Proteínas Bacterianas/química , Carbamoil Fosfato/química , Ornitina Carbamoiltransferasa/química , Ornitina/química , Thermus thermophilus/química , Apoproteínas/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ornitina Carbamoiltransferasa/genética , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología Estructural de Proteína , Especificidad por Sustrato , Thermus thermophilus/enzimología
8.
Extremophiles ; 18(6): 973-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24996798

RESUMEN

Dihydrodipicolinate synthase (DHDPS, E.C.4.2.1.52) catalyzes the first committed step in the lysine biosynthetic pathway: the condensation of (S)-aspartate semialdehyde and pyruvate to form (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, we report the crystal structure of DHDPS from a hyperthermophilic bacterium Aquifex aeolicus (AqDHDPS). L-Lysine is used as an important animal feed additive where the production is at the level of 1.5 million tons per year. The biotechnological manufacture of lysine has been going for more than 50 years which includes over synthesis and reverse engineering of DHDPS. AqDHDPS revealed a unique disulfide linkage which is not conserved in the homologues of AqDHDPS. In silico mutation of C139A and intermolecular ion-pair residues and the subsequent molecular dynamics simulation of the mutants showed that these residues are critical for the stability of AqDHDPS tetramer. MD simulations of AqDHDPS at three different temperatures (303, 363 and 393 K) revealed that the molecule is stable at 363 K. Thus, this structural and in silico study of AqDHDPS likely provides additional details towards the rational and structure-based design of hyper-L-lysine producing bacterial strains.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Hidroliasas/química , Simulación de Dinámica Molecular , Sitio Alostérico , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Hidroliasas/genética , Hidroliasas/metabolismo , Datos de Secuencia Molecular , Mutación , Estabilidad Proteica
9.
Biophys Chem ; 307: 107193, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38320409

RESUMEN

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a moonlighting enzyme. Apart from its primary role in the glycolytic pathway, in many bacterial species it is found in the extracellular milieu and also on the bacterial surface. Positioning on the bacterial surface allows the GAPDH molecule to interact with many host molecules such as plasminogen, fibrinogen, fibronectin, laminin and mucin etc. This facilitates the bacterial colonization of the host. Helicobacter pylori is a major human pathogen that causes a number of gastrointestinal infections and is the main cause of gastric cancer. The binding analysis of H. pylori GAPDH (HpGAPDH) with host molecules has not been carried out. Hence, we studied the interaction of HpGAPDH with holo-transferrin, lactoferrin, haemoglobin, fibrinogen, fibronectin, catalase, plasminogen and mucin using biolayer interferometry. Highest and lowest binding affinity was observed with lactoferrin (4.83 ± 0.70 × 10-9 M) and holo-transferrin (4.27 ± 2.39 × 10-5 M). Previous studies established GAPDH as a heme chaperone involved in intracellular heme trafficking and delivery to downstream target proteins. Therefore, to get insights into heme binding, the interaction between HpGAPDH and hemin was analyzed. Hemin binds to HpGAPDH with an affinity of 2.10 µM while the hemin bound HpGAPDH does not exhibit activity. This suggests that hemin most likely binds at the active site of HpGAPDH, prohibiting substrate binding. Blind docking of hemin with HpGAPDH also supports positioning of hemin at the active site. Metal ions were found to inhibit the activity of HpGAPDH, suggesting that it also possibly occupies the substrate binding site. Furthermore, with metal-bound HpGAPDH, hemin binding was not observed, suggesting metal ions act as an inhibitor of hemin binding. Since GAPDH has been identified as a heme chaperone, it will be interesting to analyse the biological consequences of inhibition of heme binding to GAPDH by metal ions.


Asunto(s)
Helicobacter pylori , Hemina , Humanos , Hemina/metabolismo , Helicobacter pylori/metabolismo , Fibronectinas/metabolismo , Lactoferrina/metabolismo , Unión Proteica , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Hemo/metabolismo , Fibrinógeno , Plasminógeno/metabolismo , Iones/metabolismo , Mucinas/metabolismo
10.
J Biomol Struct Dyn ; : 1-12, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38230438

RESUMEN

Type 3 secretory system (T3SS), a complex protein machinery has a unique virulence mechanism that involves injecting effector proteins directly into host cells. The T3SS effector proteins are transported through an extracellular long hollow needle made up of multiple copies of a small protein. In T3SS of the plant pathogen Ralstonia solanacearum, the 8.6 kDa HrpY protein assembles into a large needle like apparatus (pilus) for transporting effector proteins. To study structural details of HrpY, we recombinantly expressed and purified HrpY in E. coli. The dynamic light scattering (DLS) analysis showed that rHrpY has spontaneously formed oligomers of large order (>100 nm). Transmission electron microscopy of rHrpY samples revealed that the large structures are tube like assembly having dimensions 86.3-166.6 nm and 5.8-6.8 nm in length and width respectively. Different molecular sizes of the purified rHrpY hindered the crystallization of the protein. The stability of oligomer assembly was studied with denaturants and surfactants. Denaturants like urea and guanidine HCl could not break them apart; however, detergents like SDS, sarkosyl, Octyl-ß-Glucoside, CHAPS, Tween 20, Tween 80 and Triton X-100 showed disassembly of the oligomer. rHrpY assembly was found to withstand up to 50 °C and the circular dichroism analysis revealed that there is no significant change in the secondary structural composition with increase in temperature. However, change in the secondary structure was observed with the addition of SDS.Communicated by Ramaswamy H. Sarma.

11.
Biochim Biophys Acta ; 1820(7): 819-28, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22538248

RESUMEN

BACKGROUND: Pathogenic bacteria specifically recognize extracellular matrix (ECM) molecules of the host (e.g. collagen, fibrinogen and fibronectin) through their surface proteins known as MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) and initiate colonization. On implantation, biomaterials easily get coated with these ECM molecules and the MSCRAMMs mediate bacterial adherence to biomaterials. With the rapid rise in antibiotic resistance, designing alternative strategies to reduce/eliminate bacterial colonization is absolutely essential. METHODS: The Rhusiopathiae surface protein B (RspB) is a collagen-binding MSCRAMM of Erysipelothrix rhusiopathiae. It also binds to abiotic surfaces. The crystal structure of the collagen-binding region of RspB (rRspB31-348) reported here revealed that RspB also binds collagen by a unique ligand binding mechanism called "Collagen Hug" which is a common theme for collagen-binding MSCRAMMs of many Gram-positive bacteria. Here, we report the interaction studies between rRspB31-348 and silver nanoparticles using methods like gel shift assay, gel permeation chromatography and circular dichroism spectroscopy. RESULTS: The "Collagen Hug" mechanism was inhibited in the presence of silver nanoparticles as rRspB31-348 was unable to bind to collagen. The total loss of binding was likely because of rRspB31-348 and silver nanoparticle protein corona formation and not due to the loss of the structural integrity of rRspB31-348 on binding with nanoparticles as observed from circular dichroism experiments. GENERAL SIGNIFICANCE: Interaction of rRspB31-348 with silver nanoparticle impaired its ligand binding mechanism. Details of this inhibition mechanism may be useful for the development of antimicrobial materials and antiadhesion drugs.


Asunto(s)
Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Colágeno/metabolismo , Erysipelothrix/metabolismo , Nanopartículas/química , Adhesinas Bacterianas/genética , Proteínas Bacterianas , Cristalización , Cristalografía por Rayos X , Mutagénesis Sitio-Dirigida , Mutación/genética , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Biochem Biophys Res Commun ; 432(2): 350-4, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23396056

RESUMEN

Structural analyses of enzymes involved in biosynthetic pathways that are present in micro-organisms, but absent from mammals (for example Shikimate pathway) are important in developing anti-microbial drugs. Crystal structure of the Shikimate pathway enzyme, type I 3-dehydroquinate dehydratase (3-DHQase) from the hyperthermophilic bacterium Aquifex aeolicus was solved both as an apo form and in complex with a ligand. The complex structure revealed an interesting structural difference when compared to other ligand-bound type I 3-DHQases suggesting that closure of the active site loop is not essential for catalysis. This provides new insights into the catalytic mechanism of type I 3-DHQases.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Hidroliasas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Hidroliasas/genética , Estructura Secundaria de Proteína
13.
Artículo en Inglés | MEDLINE | ID: mdl-23545655

RESUMEN

Serine glutamate repeat A (SgrA) protein is an LPxTG surface adhesin of Enterococcus faecium and is the first bacterial nidogen-binding protein identified to date. It has been suggested that it binds to human nidogen, the extracellular matrix molecule of basal lamina, and plays a key role in the invasion and colonization of eukaryotic host cells. SgrA(28-288), having both a putative ligand-binding A domain and repetitive B domain, was expressed in Escherichia coli and purified using Ni-affinity and hydrophobic interaction chromatography. Further, the putative ligand-binding region, rSgrA(28-153), was subcloned, overexpressed and purified in both native and selenomethionine-derivative forms. The native rSgrA(28-153) protein crystallized in the monoclinic space group P2(1) and diffracted to 3.3 Å resolution using an in-house X-ray source, with unit-cell parameters a = 35.84, b = 56.35, c = 60.20 Å, ß = 106.5°.


Asunto(s)
Proteínas Bacterianas/química , Enterococcus faecium/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Expresión Génica
14.
Artículo en Inglés | MEDLINE | ID: mdl-23385759

RESUMEN

GK2848, a hypothetical protein from the thermophilic organism Geobacillus kaustophilus, was cloned and overexpressed in Escherichia coli. The protein was purified to homogeneity using Ni-NTA affinity-column and gel-filtration chromatography. The purified protein was crystallized using the sitting-drop vapour-diffusion method. The crystals diffracted to a resolution of 2.70 Å and belonged to the orthorhombic space group P2(1)2(1)2. GK2848 bears sequence homology to carbonic anhydrases of various bacterial species, indicating that it belongs to the carbonic anhydrase family of proteins. A subsequent carbonic anhydrase activity assay of GK2848 using the Wilbur-Anderson method confirmed its function as a carbonic anhydrase. A preliminary structure solution was obtained by molecular replacement using MOLREP. Mutation and biochemical characterization of the protein are in progress. The structure and functional analysis of GK2848 might provide valuable information on a novel class of carbonic anhydrases, as none of its homologous structures have been characterized.


Asunto(s)
Proteínas Bacterianas/química , Anhidrasas Carbónicas/química , Geobacillus/enzimología , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Datos de Secuencia Molecular , Alineación de Secuencia
15.
J Biomol Struct Dyn ; : 1-11, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723879

RESUMEN

Helicobacter pylori is a gram negative spiral shaped bacteria that causes peptic ulcer and gastric cancer. It Is the sixth most prevalent cancer in the world and the third leading cause of cancer death. The increase in reported cases of H. pylori resistance to the drugs and antibiotics shows the need for the development of new and efficient drugs against the pathogen. In the present study, D-glycero-D-manno-heptose-1,7-bisphosphate 7-phosphatase (GmhB), an enzyme involved in the biosynthesis of lipopolysaccharides that encourages bacterial adherence, self-aggregation and identifying the host cells was modelled and the active sites were predicted through POCASA which is an automated ligand binding site prediction server. Natural product activity and species source (NPASS) is a database of 96,481 natural compounds that were subjected to virtual screening workflow that includes Qikprop, Lipinski rule, filtering out reactive functional groups followed by high throughput virtual screening and the top 10 compounds were selected for further induced fit docking along with the substrate D-glycero-ß-D-manno-heptose 1,7-bisphosphate. The compound NPC170742 (Alpha, Beta, 3,4,5,2',4',6'-Octahydroxy dihydrochalcone) showed higher affinity than the substrate, and both the substrate D-glycero-ß-D-manno-heptose 1,7-bisphosphate and the compound NPC170742 were subjected to molecular dynamics simulation. The results exposed the compound NPC170742 could be a potential lead compound against the enzyme D-glycero-D-manno-heptose-1,7-bisphosphate 7-phosphatase of H. pylori.Communicated by Ramaswamy H. Sarma.

16.
Protein J ; 42(4): 343-354, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37093417

RESUMEN

In many bacteria, the High Temperature requirement A (HtrA) protein functions as a chaperone and protease. HtrA is an important factor in stress tolerance and plays a significant role in the virulence of several pathogenic bacteria. Camostat, gabexate and nafamostat mesylates are serine protease inhibitors and have recently shown a great impact in the inhibition studies of SARS-CoV2. In this study, the inhibition of Listeria monocytogenes HtrA (LmHtrA) protease activity was analysed using these three inhibitors. The cleavage assay, using human fibrinogen and casein as substrates, revealed that the three inhibitors effectively inhibit the protease activity of LmHtrA. The agar plate assay and spectrophotometric analysis concluded that the inhibition of nafamostat (IC50 value of 6.6 ± 0.4 µM) is more effective compared to the other two inhibitors. Previous studies revealed that at the active site of the protease, these inhibitors are hydrolysed and one of the hydrolysates is covalently bound to the active site serine. To understand the mode of binding of these inhibitors at the active site of LmHtrA, docking of the inhibitors followed by molecular dynamics simulations were carried out. Analysis of the LmHtrA-inhibitor complex structures revealed that the covalently bound inhibitor is unable to occupy the S1 pocket of the LmHtrA which is in contrast to the previously determined camostat and nafamostat complex structures. This observation provides the first glimpse of the substrate specificity of LmHtrA which is not known. The obtained results also suggest that the development of novel inhibitors of LmHtrA and its homologs with active site architecture similar to LmHtrA can be pursued with suitable modification of these inhibitors. To date, only a very few studies have been carried out on identifying the inhibitors of HtrA proteolytic activity.


Asunto(s)
COVID-19 , Gabexato , Listeria monocytogenes , Humanos , Gabexato/farmacología , Péptido Hidrolasas , ARN Viral , SARS-CoV-2 , Mesilatos , Inhibidores de Proteasas/farmacología
17.
Biophys Chem ; 293: 106946, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563626

RESUMEN

Pyrrolidone carboxyl peptidase (PCP) hydrolytically removes the L-pyroglutamic acid from the amino terminal region of pyroglutamyl proteins or peptides. So far, only a limited number of structures of PCP have been solved. Here we report the crystal structure of pyrrolidone carboxyl peptidase from Thermus thermophilus (TtPCP) which has been solved using the molecular replacement method and refined at 1.9 Å resolution. TtPCP follows the α/ß/α architecture in which the central ß-sheets are surrounded by α-helices on both sides. The inter subunit contact between two monomers consists of two short antiparallel ß-strands and part of a long protrusion loop. By comparing the TtPCP with its structural homologs, we identified the putative catalytic triad residues as Glu76, Cys139 and His160. A unique disulfide link found in some homologs of TtPCP, formed between two monomers that provide thermal stability to the protein, is not observed in TtPCP. Hence, being a thermophilic protein, the putative thermal stability of TtPCP could be due to more intra and inter-molecular hydrogen bonds, hydrophobic and ion pair interactions when compared with its mesophilic counterpart. The structural details of TtPCP will be helpful to understand the basis of the intrinsic stability of thermophilic proteins. Also, it could be useful for protein engineering.


Asunto(s)
Péptido Hidrolasas , Thermus thermophilus , Secuencia de Aminoácidos , Thermus thermophilus/metabolismo , Péptido Hidrolasas/metabolismo , Piroglutamil-Peptidasa I/química , Piroglutamil-Peptidasa I/metabolismo , Proteínas , Pirrolidinonas , Cristalografía por Rayos X , Conformación Proteica
18.
J Biomol Struct Dyn ; 41(14): 6811-6821, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35994323

RESUMEN

Arginase is a manganese-dependent metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The product L-ornithine is an important component which has wide applications in the healthcare and pharmaceutical industry. Enzymatic biosynthesis of L-ornithine is one of the effective methods in which arginase is used as a bio-catalyst. Here, we report the crystal structure of arginase from Thermus thermophilus (TtArginase) in three different crystal forms. All structures were solved by molecular replacement and refined at 2.0 Å, 2.3 Å and 2.91 Å resolution respectively. TtArginase is compared with other structural homologs and the putative catalytic site residues were identified. To understand the thermophilic nature of TtArginase, the sequence and structural factors of TtArginase was compared with its mesophilic counterpart Bacillus subtilis arginase (BsArginase). To get insights on structural stability, molecular dynamics (MD) simulations were carried for TtArginase and BsArginase at three different temperatures (300 K, 333 K and 353 K). The results indicate that TtArginase is comparatively more stable than BsArginase. MD simulations were carried out in the absence of the metal ions at the active site which revealed high plasticity of the active site. The results suggest that metal ions are critical not only for the catalytic function, but also required for the maintenance of the proper active site geometry. Since arginase can be employed for large-scale industrial production of L-ornithine, the structural details of thermophilic arginases such as TtArginase will be helpful to engineer the protein to optimize its enzymatic action in a variety of conditions.Communicated by Ramaswamy H. Sarma.

19.
Biochem Biophys Res Commun ; 420(3): 692-7, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22452987

RESUMEN

The de novo biosynthesis of arginine in microorganisms and plants is accomplished via several enzymatic steps. The enzyme N-acetyl glutamate kinase (NAGK) catalyzes the phosphorylation of the γ-COO(-) group of N-acetyl-L-glutamate (NAG) by adenosine triphosphate (ATP) which is the second rate limiting step in arginine biosynthesis pathway. Here we report the crystal structure of putative N-acetyl glutamate kinase (NAGK) from Thermus thermophilus HB8 (TtNAGK) determined at 1.92Šresolution. The structural analysis of TtNAGK suggests that the dimeric quaternary state of the enzyme and arginine insensitive nature are similar to mesophilic Escherichia coli NAGK. These features are significantly different from its thermophilic homolog Thermatoga maritima NAGK which is hexameric and arginine-sensitive. TtNAGK is devoid of its substrates but contains two sulfates at the active site. Very interestingly the active site of the enzyme adopts a conformation which is not completely open or closed and likely represents an intermediate stage in the catalytic cycle unlike its structural homologs, which all exist either in the open or closed conformation. Engineering arginine biosynthesis pathway enzymes for the production of l-arginine is an important industrial application. The structural comparison of TtNAGK with EcNAGK revealed the structural basis of thermostability of TtNAGK and this information could be very useful to generate mutants of NAGK with increased overall stability.


Asunto(s)
Fosfotransferasas (aceptor de Grupo Carboxilo)/química , Thermus thermophilus/enzimología , Arginina/química , Arginina/farmacología , Dominio Catalítico , Estabilidad de Enzimas , Retroalimentación Fisiológica , Calor , Fosfotransferasas (aceptor de Grupo Carboxilo)/antagonistas & inhibidores , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
20.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1582-5, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139172

RESUMEN

Serine-rich repeat protein 1 (Srr-1) is a surface protein from Streptococcus agalactiae. A 17 kDa region of this protein has been identified to bind to human keratin 4 (K4) and is termed the Srr-1 K4-binding domain (Srr-1-K4BD). Recombinant Srr-1-K4BD was overexpressed in Escherichia coli BL21 (DE3) cells. Native and selenomethionine-substituted proteins were prepared using Luria-Bertani (LB) and M9 minimal media, respectively. A two-step purification protocol was carried out to obtain a final homogenous sample of Srr-1-K4BD. Crystals of native Srr-1-K4BD were obtained using PEG 3350 as a precipitant. The crystals diffracted to 3.8 Å resolution using synchrotron radiation and belonged to space group P2(1), with unit-cell parameters a = 47.56, b = 59.48, c = 94.71 Å, ß = 93.95°.


Asunto(s)
Adhesinas Bacterianas/química , Streptococcus agalactiae/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/aislamiento & purificación , Cristalización , Cristalografía por Rayos X , Expresión Génica , Dominios y Motivos de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA