Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 52(1): 167-182.e7, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31883839

RESUMEN

Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. While work has focused on myelin and axon loss in MS, less is known about mechanisms underlying synaptic changes. Using postmortem human MS tissue, a preclinical nonhuman primate model of MS, and two rodent models of demyelinating disease, we investigated synapse changes in the visual system. Similar to other neurodegenerative diseases, microglial synaptic engulfment and profound synapse loss were observed. In mice, synapse loss occurred independently of local demyelination and neuronal degeneration but coincided with gliosis and increased complement component C3, but not C1q, at synapses. Viral overexpression of the complement inhibitor Crry at C3-bound synapses decreased microglial engulfment of synapses and protected visual function. These results indicate that microglia eliminate synapses through the alternative complement cascade in demyelinating disease and identify a strategy to prevent synapse loss that may be broadly applicable to other neurodegenerative diseases. VIDEO ABSTRACT.


Asunto(s)
Complemento C3/inmunología , Encefalomielitis Autoinmune Experimental/patología , Microglía/patología , Esclerosis Múltiple/patología , Sinapsis/patología , Tálamo/patología , Anciano , Anciano de 80 o más Años , Animales , Callithrix , Línea Celular Tumoral , Complemento C3/antagonistas & inhibidores , Modelos Animales de Enfermedad , Femenino , Gliosis/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptores de Complemento 3b/metabolismo
2.
Semin Immunol ; 59: 101600, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35227567

RESUMEN

Myocardial infarction is associated with increased risk for vascular dementia. In both myocardial infarction and vascular dementia, there is evidence that elevated inflammatory biomarkers are associated with worsened clinical outcomes. Myocardial infarction leads to a systemic inflammatory response, which may contribute to recruitment or activation of myeloid cells, including monocytes, microglia, and perivascular macrophages, within the central nervous system. However, our understanding of the causative roles for these cells linking cardiac injury to the development and progression of dementia is incomplete. Herein, we provide an overview of inflammatory cellular and molecular links between myocardial infarction and vascular dementia and discuss strategies to resolve inflammation after myocardial infarction to limit neurovascular injury.


Asunto(s)
Demencia Vascular , Infarto del Miocardio , Humanos , Demencia Vascular/etiología , Monocitos , Macrófagos , Inflamación
3.
Brain ; 147(4): 1344-1361, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37931066

RESUMEN

Neuromyelitis optica spectrum disorder (NMOSD) is a CNS autoimmune inflammatory disease mediated by T helper 17 (Th17) and antibody responses to the water channel protein, aquaporin 4 (AQP4), and associated with astrocytopathy, demyelination and axonal loss. Knowledge about disease pathogenesis is limited and the search for new therapies impeded by the absence of a reliable animal model. In our work, we determined that NMOSD is characterized by decreased IFN-γ receptor signalling and that IFN-γ depletion in AQP4201-220-immunized C57BL/6 mice results in severe clinical disease resembling human NMOSD. Pathologically, the disease causes autoimmune astrocytic and CNS injury secondary to cellular and humoral inflammation. Immunologically, the absence of IFN-γ allows for increased expression of IL-6 in B cells and activation of Th17 cells, and generation of a robust autoimmune inflammatory response. Consistent with NMOSD, the experimental disease is exacerbated by administration of IFN-ß, whereas repletion of IFN-γ, as well as therapeutic targeting of IL-17A, IL-6R and B cells, ameliorates it. We also demonstrate that immune tolerization with AQP4201-220-coupled poly(lactic-co-glycolic acid) nanoparticles could both prevent and effectively treat the disease. Our findings enhance the understanding of NMOSD pathogenesis and provide a platform for the development of immune tolerance-based therapies, avoiding the limitations of the current immunosuppressive therapies.


Asunto(s)
Neuromielitis Óptica , Humanos , Animales , Ratones , Neuromielitis Óptica/patología , Acuaporina 4 , Interferón gamma/metabolismo , Ratones Endogámicos C57BL , Linfocitos B , Autoanticuerpos/metabolismo
4.
Brain Behav Immun ; 119: 818-835, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735403

RESUMEN

Survivors of myocardial infarction are at increased risk for vascular dementia. Neuroinflammation has been implicated in the pathogenesis of vascular dementia, yet little is known about the cellular and molecular mediators of neuroinflammation after myocardial infarction. Using a mouse model of myocardial infarction coupled with flow cytometric analyses and immunohistochemistry, we discovered increased monocyte abundance in the brain after myocardial infarction, which was associated with increases in brain-resident perivascular macrophages and microglia. Myeloid cell recruitment and activation was also observed in post-mortem brains of humans that died after myocardial infarction. Spatial and single cell transcriptomic profiling of brain-resident myeloid cells after experimental myocardial infarction revealed increased expression of monocyte chemoattractant proteins. In parallel, myocardial infarction increased crosstalk between brain-resident myeloid cells and oligodendrocytes, leading to neuroinflammation, white matter injury, and cognitive dysfunction. Inhibition of monocyte recruitment preserved white matter integrity and cognitive function, linking monocytes to neurodegeneration after myocardial infarction. Together, these preclinical and clinical results demonstrate that monocyte infiltration into the brain after myocardial infarction initiate neuropathological events that lead to vascular dementia.


Asunto(s)
Encéfalo , Disfunción Cognitiva , Monocitos , Infarto del Miocardio , Sustancia Blanca , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/complicaciones , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Monocitos/metabolismo , Ratones , Masculino , Humanos , Encéfalo/metabolismo , Encéfalo/patología , Receptores CCR2/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Microglía/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Demencia Vascular/metabolismo , Demencia Vascular/patología , Oligodendroglía/metabolismo
5.
Glia ; 71(9): 2180-2195, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37203250

RESUMEN

central nervous system (CNS) inflammation triggers activation of the integrated stress response (ISR). We previously reported that prolonging the ISR protects remyelinating oligodendrocytes and promotes remyelination in the presence of inflammation. However, the exact mechanisms through which this occurs remain unknown. Here, we investigated whether the ISR modulator Sephin1 in combination with the oligodendrocyte differentiation enhancing reagent bazedoxifene (BZA) is able to accelerate remyelination under inflammation, and the underlying mechanisms mediating this pathway. We find that the combined treatment of Sephin1 and BZA is sufficient to accelerate early-stage remyelination in mice with ectopic IFN-γ expression in the CNS. IFN-γ, which is a critical inflammatory cytokine in multiple sclerosis (MS), inhibits oligodendrocyte precursor cell (OPC) differentiation in culture and triggers a mild ISR. Mechanistically, we further show that BZA promotes OPC differentiation in the presence of IFN-γ, while Sephin1 enhances the IFN-γ-induced ISR by reducing protein synthesis and increasing RNA stress granule formation in differentiating oligodendrocytes. Finally, pharmacological suppression of the ISR blocks stress granule formation in vitro and partially lessens the beneficial effect of Sephin1 on disease progression in a mouse model of MS, experimental autoimmune encephalitis (EAE). Overall, our findings uncover distinct mechanisms of action of BZA and Sephin1 on oligodendrocyte lineage cells under inflammatory stress, suggesting that a combination therapy may effectively promote restoring neuronal function in MS patients.


Asunto(s)
Esclerosis Múltiple , Remielinización , Ratones , Animales , Remielinización/fisiología , Oligodendroglía/fisiología , Diferenciación Celular , Inflamación , Ratones Endogámicos C57BL
6.
Glia ; 70(10): 1950-1970, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35809238

RESUMEN

Multiple sclerosis (MS) is a central nervous system (CNS) autoimmune disease characterized by inflammation, demyelination, and neurodegeneration. The ideal MS therapy would both specifically inhibit the underlying autoimmune response and promote repair/regeneration of myelin as well as maintenance of axonal integrity. Currently approved MS therapies consist of non-specific immunosuppressive molecules/antibodies which block activation or CNS homing of autoreactive T cells, but there are no approved therapies for stimulation of remyelination nor maintenance of axonal integrity. In an effort to repurpose an FDA-approved medication for myelin repair, we chose to examine the effectiveness of digoxin, a cardiac glycoside (Na+ /K+ ATPase inhibitor), originally identified as pro-myelinating in an in vitro screen. We found that digoxin regulated multiple genes in oligodendrocyte progenitor cells (OPCs) essential for oligodendrocyte (OL) differentiation in vitro, promoted OL differentiation both in vitro and in vivo in female naïve C57BL/6J (B6) mice, and stimulated recovery of myelinated axons in B6 mice following demyelination in the corpus callosum induced by cuprizone and spinal cord demyelination induced by lysophosphatidylcholine (LPC), respectively. More relevant to treatment of MS, we show that digoxin treatment of mice with established MOG35-55 -induced Th1/Th17-mediated chronic EAE combined with tolerance induced by the i.v. infusion of biodegradable poly(lactide-co-glycolide) nanoparticles coupled with MOG35-55 (PLG-MOG35-55 ) completely ameliorated clinical disease symptoms and stimulated recovery of OL lineage cell numbers. These findings provide critical pre-clinical evidence supporting future clinical trials of myelin-specific tolerance with myelin repair/regeneration drugs, such as digoxin, in MS patients.


Asunto(s)
Glicósidos Cardíacos , Enfermedades Desmielinizantes , Esclerosis Múltiple , Animales , Glicósidos Cardíacos/efectos adversos , Diferenciación Celular , Cuprizona , Enfermedades Desmielinizantes/inducido químicamente , Digoxina/efectos adversos , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Femenino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina/fisiología , Oligodendroglía/fisiología
7.
Brain ; 142(2): 344-361, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657878

RESUMEN

Multiple sclerosis is a chronic autoimmune demyelinating disorder of the CNS. Immune-mediated oligodendrocyte cell loss contributes to multiple sclerosis pathogenesis, such that oligodendrocyte-protective strategies represent a promising therapeutic approach. The integrated stress response, which is an innate cellular protective signalling pathway, reduces the cytotoxic impact of inflammation on oligodendrocytes. This response is initiated by phosphorylation of eIF2α to diminish global protein translation and selectively allow for the synthesis of protective proteins. The integrated stress response is terminated by dephosphorylation of eIF2α. The small molecule Sephin1 inhibits eIF2α dephosphorylation, thereby prolonging the protective response. Herein, we tested the effectiveness of Sephin1 in shielding oligodendrocytes against inflammatory stress. We confirmed that Sephin1 prolonged eIF2α phosphorylation in stressed primary oligodendrocyte cultures. Moreover, by using a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis, we demonstrated that Sephin1 delayed the onset of clinical symptoms, which correlated with a prolonged integrated stress response, reduced oligodendrocyte and axon loss, as well as diminished T cell presence in the CNS. Sephin1 is reportedly a selective inhibitor of GADD34 (PPP1R15A), which is a stress-induced regulatory subunit of protein phosphatase 1 complex that dephosphorylates eIF2α. Consistent with this possibility, GADD34 mutant mice presented with a similar ameliorated experimental autoimmune encephalomyelitis phenotype as Sephin1-treated mice, and Sephin1 did not provide additional therapeutic benefit to the GADD34 mutant animals. Results presented from the adoptive transfer of encephalitogenic T cells between wild-type and GADD34 mutant mice further indicate that the beneficial effects of Sephin1 are mediated through a direct protective effect on the CNS. Of particular therapeutic relevance, Sephin1 provided additive therapeutic benefit when combined with the first line multiple sclerosis drug, interferon ß. Together, our results suggest that a neuroprotective treatment based on the enhancement of the integrated stress response would likely have significant therapeutic value for multiple sclerosis patients.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Guanabenzo/análogos & derivados , Inmunidad Innata/fisiología , Oligodendroglía/inmunología , Animales , Células Cultivadas , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Guanabenzo/farmacología , Guanabenzo/uso terapéutico , Humanos , Inmunidad Innata/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Ratas
8.
Neurobiol Dis ; 127: 527-544, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30923003

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease, characterized by motor neuron death in the brain and spinal cord. Mutations in the Cu/Zn superoxide dismutase (SOD1) gene account for ~20% of all familial ALS forms, corresponding to 1%-2% of all ALS cases. One of the suggested mechanisms by which mutant SOD1 (mtSOD1) exerts its toxic effects involves intracellular accumulation of abnormal mtSOD1 aggregates, which trigger endoplasmic reticulum (ER) stress and activate its adaptive signal transduction pathways, including the unfolded protein response (UPR). PERK, an eIF2α kinase, is central to the UPR and is the most rapidly activated pathway in response to ER stress. Previous reports using mtSOD1 transgenic mice indicated that genetic or pharmacological enhancement of the UPR-PERK pathway may be effective in treating ALS. We investigated the response to PERK haploinsufficiency, and the response to deficiency of its downstream effectors GADD34 and CHOP, in five distinct lines of mtSOD1 mice. We demonstrate that, in contrast to a previously published study, PERK haploinsufficiency has no effect on disease in all mtSOD1 lines examined. We also show that deficiency of GADD34, which enhances the UPR by prolonging the phosphorylation of eIF2α, does not ameliorate disease in these mtSOD1 mouse lines. Finally, we demonstrate that genetic ablation of CHOP transcription factor, which is known to be pro-apoptotic, does not ameliorate disease in mtSOD1 mice. Cumulatively, our studies reveal that neither genetic inhibition of the UPR via ablation of PERK, nor genetic UPR enhancement via ablation of GADD34, is beneficial for mtSOD1-induced motor neuron disease. Therefore, the PERK pathway is not a likely target for therapeutic intervention in mtSOD1-induced ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Transducción de Señal/fisiología , Superóxido Dismutasa-1/metabolismo , Respuesta de Proteína Desplegada/fisiología , eIF-2 Quinasa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Superóxido Dismutasa-1/genética , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/genética
9.
Development ; 143(13): 2356-66, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226321

RESUMEN

The tumor suppressor protein adenomatous polyposis coli (APC) is multifunctional - it participates in the canonical Wnt/ß-catenin signal transduction pathway as well as modulating cytoskeleton function. Although APC is expressed by Schwann cells, the role that it plays in these cells and in the myelination of the peripheral nervous system (PNS) is unknown. Therefore, we used the Cre-lox approach to generate a mouse model in which APC expression is specifically eliminated from Schwann cells. These mice display hindlimb weakness and impaired axonal conduction in sciatic nerves. Detailed morphological analyses revealed that APC loss delays radial axonal sorting and PNS myelination. Furthermore, APC loss delays Schwann cell differentiation in vivo, which correlates with persistent activation of the Wnt signaling pathway and results in perturbed extension of Schwann cell processes and disrupted lamellipodia formation. In addition, APC-deficient Schwann cells display a transient diminution of proliferative capacity. Our data indicate that APC is required by Schwann cells for their timely differentiation to mature, myelinating cells and plays a crucial role in radial axonal sorting and PNS myelination.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Axones/metabolismo , Vaina de Mielina/metabolismo , Sistema Nervioso Periférico/metabolismo , Animales , Diferenciación Celular/genética , Miembro Posterior/patología , Integrasas/metabolismo , Ratones , Seudópodos/metabolismo , Células de Schwann/citología , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Vía de Señalización Wnt/genética
10.
J Neurosci ; 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720571

RESUMEN

Currently no treatments exist for preterm infants with diffuse white matter injury (DWMI) caused by hypoxia. Due to improved care of preterm neonates and increased recognition by advanced imaging techniques, the prevalence of DWMI is increasing. A better understanding of the pathophysiology of DWMI is therefore of critical importance. The integrated stress response (ISR), a conserved eukaryotic response to myriad stressors including hypoxia, may play a role in hypoxia-induced DWMI and may represent a novel target for much needed therapies. In this study we utilize in vitro and in vivo hypoxic models of DWMI to investigate whether the ISR is involved in DWMI. We demonstrate that hypoxia activates the ISR in primary mouse oligodendrocyte precursor cells (OPCs) in vitro and that genetically inhibiting the ISR in differentiating OPCs increases their susceptibility to in vitro hypoxia. We also show that a well-established in vivo mild chronic hypoxia (MCH) mouse model and a new severe acute hypoxia (SAH) mouse model of DWMI activates the initial step of the ISR. Nonetheless, genetic inhibition of the ISR has no detectable effect on either MCH or SAH-induced DWMI. In addition, we demonstrate that genetic enhancement of the ISR does not ameliorate MCH or SAH-induced DWMI. These studies suggest that while the ISR protects OPCs from hypoxia in vitro, it does not appear to play a major role in either MCH or SAH-induced DWMI and is therefore not a likely target for therapies aimed at improving neurological outcome in preterm neonates with hypoxia-induced DWMI.SIGNIFICANCE STATEMENTDiffuse white matter injury (DWMI) caused by hypoxia is a leading cause of neurological deficits following premature birth. An increased understanding of the pathogenesis of this disease is critical. The integrated stress response (ISR) is activated by hypoxia and protects oligodendrocyte lineage cells in other disease models. This has led to an interest in the potential role of the ISR in DWMI. Here we examine the ISR in hypoxia-induced DWMI and show that while the ISR protects oligodendrocyte lineage cells from hypoxia in vitro, genetic inhibition or enhancement of the ISR has no effect on hypoxia-induced DWMI in vivo suggesting that the ISR does not play a major role in, and is not a likely therapeutic target for, DWMI.

11.
Mol Imaging ; 17: 1536012118785471, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30039728

RESUMEN

Noninvasive imaging of demyelination and remyelination is critical for diagnosis and clinical management of demyelinating diseases. Positron emission tomography (PET) has the potential to complement magnetic resonance imaging (MRI) by providing a quantitative measure specific to demyelination. In Brugarolas et al's study 1 , we describe the development of the first PET tracer for voltage-gated K+ channels based on a clinically approved drug for multiple sclerosis that can be used for imaging demyelination in animal models.


Asunto(s)
Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/diagnóstico , Tomografía de Emisión de Positrones/métodos , Animales , Axones/metabolismo , Humanos , Imagen por Resonancia Magnética , Canales de Potasio/metabolismo
12.
Am J Pathol ; 187(2): 245-251, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28062081

RESUMEN

Although the adverse effects of neonatal hypoxia associated with premature birth on the central nervous system are well known, the contribution of hypoxic damage to the peripheral nervous system (PNS) has not been addressed. We demonstrate that neonatal hypoxia results in hypomyelination and delayed axonal sorting in mice leading to electrophysiological and motor deficits that persist into adulthood. These findings support a potential role for PNS hypoxic damage in the motor impairment that results from premature birth and suggest that therapies designed to protect the PNS may provide clinical benefit.


Asunto(s)
Axones/patología , Hipoxia/patología , Vaina de Mielina/patología , Nervio Ciático/patología , Animales , Animales Recién Nacidos , Axones/ultraestructura , Modelos Animales de Enfermedad , Electrofisiología , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Vaina de Mielina/ultraestructura , Reacción en Cadena en Tiempo Real de la Polimerasa , Nervio Ciático/fisiopatología , Nervio Ciático/ultraestructura
13.
Genes Dev ; 24(3): 301-11, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20080941

RESUMEN

The controlling factors that prompt mature oligodendrocytes to myelinate axons are largely undetermined. In this study, we used a forward genetics approach to identify a mutant mouse strain characterized by the absence of CNS myelin despite the presence of abundant numbers of late-stage, process-extending oligodendrocytes. Through linkage mapping and complementation testing, we identified the mutation as a single nucleotide insertion in the gene encoding zinc finger protein 191 (Zfp191), which is a widely expressed, nuclear-localized protein that belongs to a family whose members contain both DNA-binding zinc finger domains and protein-protein-interacting SCAN domains. Zfp191 mutants express an array of myelin-related genes at significantly reduced levels, and our in vitro and in vivo data indicate that mutant ZFP191 acts in a cell-autonomous fashion to disrupt oligodendrocyte function. Therefore, this study demonstrates that ZFP191 is required for the myelinating function of differentiated oligodendrocytes.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Alelos , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Cultivadas , Sistema Nervioso Central/embriología , Embrión de Mamíferos/metabolismo , Ratones , Ratones Transgénicos , Mutación
14.
Am J Respir Cell Mol Biol ; 57(4): 477-486, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28594573

RESUMEN

Intermittent hypoxia (IH) induces activation of the integrated stress response (ISR), but its role in IH-induced visceral white adipose tissue (vWAT) insulin resistance is unknown. CHOP is activated by chronic ISR, whereas GADD34 dephosphorylates the subunit of translation initiation factor 2 (eIF2α), leading to termination of the ISR. We hypothesized that CHOP/Gadd34 null mice would not manifest evidence of insulin resistance after IH exposures. Eight-week-old CHOP/GADD34-/- (double mutant [DM]) and wild-type (WT) littermates were randomly assigned to IH or room air (RA) exposures for 6 weeks. Glucose and insulin tolerance tests were performed, and regulatory T cells (Tregs) and macrophages in vWAT were assessed. Phosphorylated eIF2α:total eIF2α, ATF4, XBP1 expression, and insulin-induced pAKT/AKT expression changes were examined in vWATs. Single GADD34-/- and PERK+/- mice were also evaluated. Body weight and vWAT mass were reduced in DM and WT mice after IH. M1/M2 macrophages and inflammatory macrophages (Ly-6chigh) were significantly increased in WT vWAT but remained unchanged in DM mice. Tregs were significantly decreased in WT vWAT but not in DM mice. Systemic insulin and glucose tolerance tests revealed insulin resistance in IH-WT but not in IH-DM mice. Similarly, decreased pAKT/AKT responses to exogenous insulin emerged in IH-WT compared with RA-WT mice, whereas no significant differences emerged in IH-DM compared with DM-RA. Chronic ISR activation appears to contribute to the insulin resistance and vWAT inflammation that characteristically emerge after long-term IH exposures in a murine model of obstructive sleep apnea.


Asunto(s)
Resistencia a la Insulina/genética , Grasa Intraabdominal , Macrófagos , Transducción de Señal/genética , Síndromes de la Apnea del Sueño , Linfocitos T Reguladores , Animales , Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/fisiopatología , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Grasa Intraabdominal/fisiopatología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Noqueados , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Síndromes de la Apnea del Sueño/genética , Síndromes de la Apnea del Sueño/metabolismo , Síndromes de la Apnea del Sueño/patología , Síndromes de la Apnea del Sueño/fisiopatología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
15.
J Neurosci ; 35(48): 15921-33, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26631473

RESUMEN

Myelinating cells synthesize large amounts of membrane protein through the secretory pathway, which makes these cells particularly sensitive to perturbations of the endoplasmic reticulum (ER). Ig binding protein (BiP), also known as glucose-regulated protein 78 (GRP78), is a critical ER chaperone that also plays a pivotal role in controlling the cellular response to ER stress. To examine the potential importance of BiP to myelinating cells, we used a conditional knock-out approach to BiP gene inactivation in oligodendrocytes during development, in adulthood, and in response to experimental autoimmune encephalomyelitis (EAE), an animal model of the inflammatory demyelinating disorder multiple sclerosis (MS). During development, mice lacking functional BiP gene expression in oligodendrocytes developed tremors and ataxia and died before reaching maturity. When BiP gene inactivation in oligodendrocytes was initiated in adulthood, the mice displayed severe neurological symptoms including tremors and hind-limb paralysis. The inactivation of BiP in oligodendrocytes during development or in adulthood resulted in oligodendrocyte loss and corresponding severe myelin abnormalities. Mice heterozygous for the oligodendrocyte-specific inactivation of BiP, which were phenotypically normal without evidence of neuropathology, displayed an exacerbated response to EAE that correlated with an increased loss of oligodendrocytes. Furthermore, mice in which the BiP gene was specifically inactivated in developing Schwann cells displayed tremor that progressed to hindlimb paralysis, which correlated with diminished numbers of myelinating Schwann cells and severe PNS hypomyelination. These studies demonstrate that BiP is critical for myelinating cell survival and contributes to the protective response of oligodendrocyte against inflammatory demyelination.


Asunto(s)
Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/prevención & control , Vaina de Mielina/metabolismo , Oligodendroglía/patología , Oligopéptidos/metabolismo , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Animales , Animales Recién Nacidos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/fisiopatología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Retículo Endoplásmico/ultraestructura , Chaperón BiP del Retículo Endoplásmico , Femenino , Adyuvante de Freund/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Proteínas de la Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/inmunología , Oligodendroglía/ultraestructura , Oligopéptidos/genética , Fragmentos de Péptidos/inmunología , Nervios Periféricos/patología , Factor de Transcripción CHOP/metabolismo
16.
Hum Mol Genet ; 23(10): 2629-38, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24368417

RESUMEN

Varied stresses to cells can lead to a repression in translation by triggering phosphorylation of eukaryotic translation initiator factor 2α (eIF2α), which is central to a process known as the integrated stress response (ISR). PKR-like ER-localized eIF2 kinase (PERK), one of the kinases that phosphorylates eIF2α and coordinates the ISR, is activated by stress occurring from the accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER). Mutant Cu/Zn superoxide dismutase (mtSOD1) is thought to cause familial amyotrophic lateral sclerosis (FALS) because it misfolds and aggregates. Published studies have suggested that ER stress is involved in FALS pathogenesis since mtSOD1 accumulates inside the ER and activates PERK leading to phosphorylated eIF2α (p-eIF2α). We previously used a genetic approach to show that haploinsufficiency of PERK significantly accelerates disease onset and shortens survival of G85R mtSOD1 FALS transgenic mice. We now show that G85R mice that express reduced levels of active GADD34, which normally dephosphorylates p-eIF2α and allows recovery from the global suppression of protein synthesis, markedly ameliorates disease. These studies emphasize the importance of the ISR, and specifically the PERK pathway, in the pathogenesis of mtSOD1-induced FALS and as a target for treatment. Furthermore, the ISR may be an appropriate therapeutic target for sporadic ALS and other neurodegenerative diseases since misfolded proteins have been implicated in these disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Superóxido Dismutasa/genética , Animales , Biomarcadores/metabolismo , Células Cultivadas , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Missense , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Procesamiento Proteico-Postraduccional , Superóxido Dismutasa-1
17.
Exp Eye Res ; 146: 283-288, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27038752

RESUMEN

While connexin46 (Cx46) and connexin50 (Cx50) are crucial for maintaining lens transparency and growth, the contributions of a more recently identified lens fiber connexin, Cx23, are poorly understood. Therefore, we studied the consequences of absence of Cx23 in mouse lenses. Cx23-null mice were generated by homologous Cre recombination. Cx23 mRNA was abundantly expressed in wild type lenses, but not in Cx23-null lenses. The transparency and refractive properties of Cx23-null lenses were similar to wild type lenses when examined by darkfield microscopy. Neither the focusing ability nor the light scattering was altered in the Cx23-null lenses. While both Cx46 and Cx50 localized to appositional fiber cell membranes (as in wild type lenses), their levels were consistently (but not significantly) decreased in homozygous Cx23-null lenses. These results suggest that although Cx23 expression can influence the abundance of the co-expressed lens fiber connexins, heterozygous or homozygous expression of a Cx23-null allele does not alter lens transparency.


Asunto(s)
Conexinas/fisiología , Cristalino/patología , Animales , Catarata/metabolismo , Conexinas/deficiencia , Modelos Animales de Enfermedad , Uniones Comunicantes/metabolismo , Inmunohistoquímica , Cristalino/metabolismo , Ratones , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Dispersión de Radiación , Eliminación de Secuencia
18.
J Neurosci ; 33(16): 6834-44, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23595742

RESUMEN

The gene encoding the WD repeat-containing protein 81 (WDR81) has recently been described as the disease locus in a consanguineous family that suffers from cerebellar ataxia, mental retardation, and quadrupedal locomotion syndrome (CAMRQ2). Adult mice from the N-ethyl-N-nitrosourea-induced mutant mouse line nur5 display tremor and an abnormal gait, as well as Purkinje cell degeneration and photoreceptor cell loss. We have used polymorphic marker mapping to demonstrate that affected nur5 mice carry a missense mutation, L1349P, in the Wdr81 gene. Moreover, homozygous nur5 mice that carry a wild-type Wdr81 transgene are rescued from the abnormal phenotype, indicating that Wdr81 is the causative gene in nur5. WDR81 is expressed in Purkinje cells and photoreceptor cells, among other CNS neurons, and like the human mutation, the nur5 modification lies in the predicted major facilitator superfamily domain of the WDR81 protein. Electron microscopy analysis revealed that a subset of mitochondria in Purkinje cell dendrites of the mutant animals displayed an aberrant, large spheroid-like structure. Moreover, immunoelectron microscopy and analysis of mitochondrial-enriched cerebellum fractions indicate that WDR81 is localized in mitochondria of Purkinje cell neurons. Because the nur5 mouse mutant demonstrates phenotypic similarities to the human disease, it provides a valuable genetic model for elucidating the pathogenic mechanism of the WDR81 mutation in CAMRQ2.


Asunto(s)
Apraxia de la Marcha/genética , Apraxia de la Marcha/patología , Proteínas Nucleares/metabolismo , Células Fotorreceptoras/metabolismo , Células de Purkinje/metabolismo , Actinas/metabolismo , Alquilantes/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Calbindinas , Línea Celular Transformada , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cerebelo/patología , Mapeo Cromosómico , Modelos Animales de Enfermedad , Etilnitrosourea/farmacología , Lateralidad Funcional , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura , Mutagénesis/efectos de los fármacos , Mutación Missense/efectos de los fármacos , Mutación Missense/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras/ultraestructura , Prostaglandina-Endoperóxido Sintasas/metabolismo , Células de Purkinje/efectos de los fármacos , Células de Purkinje/ultraestructura , ARN Mensajero/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Análisis de Secuencia de ADN , Transfección
19.
J Neurosci ; 33(14): 5980-91, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23554479

RESUMEN

There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/terapia , Oligodendroglía/fisiología , Transducción de Señal/fisiología , eIF-2 Quinasa/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/patología , Bromodesoxiuridina/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Inmunosupresores/farmacología , Etiquetado Corte-Fin in Situ , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Proteína Básica de Mielina/metabolismo , Proteína Proteolipídica de la Mielina/genética , Infiltración Neutrófila/efectos de los fármacos , Infiltración Neutrófila/genética , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/ultraestructura , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , ARN Mensajero/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/fisiología , Linfocitos T/efectos de los fármacos , Linfocitos T/fisiología , Tacrolimus/análogos & derivados , Tacrolimus/farmacología , Factores de Tiempo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/genética
20.
Glia ; 62(5): 680-91, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24481666

RESUMEN

The immune-mediated central nervous system (CNS) demyelinating disorder multiple sclerosis (MS) is the most common neurological disease in young adults. One important goal of MS research is to identify strategies that will preserve oligodendrocytes (OLs) in MS lesions. During active myelination and remyelination, OLs synthesize large quantities of membrane proteins in the endoplasmic reticulum (ER), which may result in ER stress. During ER stress, pancreatic ER kinase (PERK) phosphorylates eukaryotic translation initiation factor 2α (elF2α), which activates the integrated stress response (ISR), resulting in a stress-resistant state. Previous studies have shown that PERK activity is increased in OLs within the demyelinating lesions of experimental autoimmune encephalomyelitis (EAE), a model of MS. Moreover, our laboratory has shown that PERK protects OLs from the adverse effects of interferon-γ, a key mediator of the CNS inflammatory response. Here, we have examined the role of PERK signaling in OLs during development and in response to EAE. We generated OL-specific PERK knockout (OL-PERK(ko/ko) ) mice that exhibited a lower level of phosphorylated elF2α in the CNS, indicating that the ISR is impaired in the OLs of these mice. Unexpectedly, OL-PERK(ko/ko) mice develop normally and show no myelination defects. Nevertheless, EAE is exacerbated in these mice, which is correlated with increased OL loss, demyelination, and axonal degeneration. These data indicate that although not needed for developmental myelination, PERK signaling provides protection to OLs against inflammatory demyelination and suggest that the ISR in OLs could be a valuable target for future MS therapeutics.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Eliminación de Gen , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , eIF-2 Quinasa/deficiencia , Animales , Enfermedades Desmielinizantes/genética , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/genética , Transducción de Señal/fisiología , eIF-2 Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA