Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 230(4): 1665-1679, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33521943

RESUMEN

Demand for cannabidiol (CBD), the predominant cannabinoid in hemp (Cannabis sativa), has favored cultivars producing unprecedented quantities of CBD. We investigated the ancestry of a new cultivar and cannabinoid synthase genes in relation to cannabinoid inheritance. A nanopore-based assembly anchored to a high-resolution linkage map provided a chromosome-resolved genome for CBDRx, a potent CBD-type cultivar. We measured cannabinoid synthase expression by cDNA sequencing and conducted a population genetic analysis of diverse Cannabis accessions. Quantitative trait locus mapping of cannabinoids in a hemp × marijuana segregating population was also performed. Cannabinoid synthase paralogs are arranged in tandem arrays embedded in long terminal repeat retrotransposons on chromosome 7. Although CBDRx is predominantly of marijuana ancestry, the genome has cannabidiolic acid synthase (CBDAS) introgressed from hemp and lacks a complete sequence for tetrahydrocannabinolic acid synthase (THCAS). Three additional genomes, including one with complete THCAS, confirmed this genomic structure. Only cannabidiolic acid synthase (CBDAS) was expressed in CBD-type Cannabis, while both CBDAS and THCAS were expressed in a cultivar with an intermediate tetrahydrocannabinol (THC) : CBD ratio. Although variation among cannabinoid synthase loci might affect the THC : CBD ratio, variability among cultivars in overall cannabinoid content (potency) was also associated with other chromosomes.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Cannabis/genética , Mapeo Cromosómico , Dronabinol
2.
BMC Biol ; 18(1): 155, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33121486

RESUMEN

BACKGROUND: CREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors potentially affecting expression of thousands of genes. Identifying specific domain functions for multi-domain proteins is essential to understand processes such as cognitive function and circadian clocks. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBPKIX/KIX mice with mutations that prevent phospho-CREB (Ser133) binding. RESULTS: We found that CBPKIX/KIX mice were impaired in long-term memory, but not learning acquisition or short-term memory for the Morris water maze. Using an unbiased analysis of gene expression in the dorsal hippocampus after training in the Morris water maze or contextual fear conditioning, we discovered dysregulation of CREB, CLOCK, and BMAL1 target genes and downregulation of circadian genes in CBPKIX/KIX mice. Given our finding that the CBP KIX domain was important for transcription of circadian genes, we profiled circadian activity and phase resetting in CBPKIX/KIX mice. CBPKIX/KIX mice exhibited delayed activity peaks after light offset and longer free-running periods in constant dark. Interestingly, CBPKIX/KIX mice displayed phase delays and advances in response to photic stimulation comparable to wildtype littermates. Thus, this work delineates site-specific regulation of the circadian clock by a multi-domain protein. CONCLUSIONS: These studies provide insight into the significance of the CBP KIX domain by defining targets of CBP transcriptional co-activation in memory and the role of the CBP KIX domain in vivo on circadian rhythms.


Asunto(s)
Proteína de Unión a CREB/genética , Ritmo Circadiano/genética , Memoria a Largo Plazo , Dominios Proteicos , Animales , Proteína de Unión a CREB/química , Proteína de Unión a CREB/metabolismo , Femenino , Masculino , Ratones
3.
Angew Chem Int Ed Engl ; 58(25): 8454-8457, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-30995339

RESUMEN

Kainic acid, the flagship member of the kainoid family of natural neurochemicals, is a widely used neuropharmacological agent that helped unravel the key role of ionotropic glutamate receptors, including the kainate receptor, in the central nervous system. Worldwide shortages of this seaweed natural product in the year 2000 prompted numerous chemical syntheses, including scalable preparations with as few as six-steps. Herein we report the discovery and characterization of the concise two-enzyme biosynthetic pathway to kainic acid from l-glutamic acid and dimethylallyl pyrophosphate in red macroalgae and show that the biosynthetic genes are co-clustered in genomes of Digenea simplex and Palmaria palmata. Moreover, we applied a key biosynthetic α-ketoglutarate-dependent dioxygenase enzyme in a biotransformation methodology to efficiently construct kainic acid on the gram scale. This study establishes both the feasibility of mining seaweed genomes for their biotechnological prowess.


Asunto(s)
Ácido Kaínico/metabolismo , Rhodophyta/química , Ácido Kaínico/química , Estructura Molecular , Rhodophyta/metabolismo
4.
Nucleic Acids Res ; 43(16): 7664-74, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26202970

RESUMEN

The sequencing of the full transcriptome (RNA-seq) has become the preferred choice for the measurement of genome-wide gene expression. Despite its widespread use, challenges remain in RNA-seq data analysis. One often-overlooked aspect is normalization. Despite the fact that a variety of factors or 'batch effects' can contribute unwanted variation to the data, commonly used RNA-seq normalization methods only correct for sequencing depth. The study of gene expression is particularly problematic when it is influenced simultaneously by a variety of biological factors in addition to the one of interest. Using examples from experimental neuroscience, we show that batch effects can dominate the signal of interest; and that the choice of normalization method affects the power and reproducibility of the results. While commonly used global normalization methods are not able to adequately normalize the data, more recently developed RNA-seq normalization can. We focus on one particular method, RUVSeq and show that it is able to increase power and biological insight of the results. Finally, we provide a tutorial outlining the implementation of RUVSeq normalization that is applicable to a broad range of studies as well as meta-analysis of publicly available data.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Animales , Variación Genética , Masculino , Ratones Endogámicos C57BL , Neurociencias/métodos , Reproducibilidad de los Resultados
5.
Neurobiol Learn Mem ; 134 Pt B: 221-35, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27451143

RESUMEN

The process of memory consolidation requires transcription and translation to form long-term memories. Significant effort has been dedicated to understanding changes in hippocampal gene expression after contextual fear conditioning. However, alternative splicing by differential transcript regulation during this time period has received less attention. Here, we use RNA-seq to determine exon-level changes in expression after contextual fear conditioning and retrieval. Our work reveals that a short variant of Homer1, Ania-3, is regulated by contextual fear conditioning. The ribosome biogenesis regulator Las1l, small nucleolar RNA Snord14e, and the RNA-binding protein Rbm3 also change specific transcript usage after fear conditioning. The changes in Ania-3 and Las1l are specific to either the new context or the context-shock association, while the changes in Rbm3 occur after context or shock only. Our analysis revealed novel transcript regulation of previously undetected changes after learning, revealing the importance of high throughput sequencing approaches in the study of gene expression changes after learning.


Asunto(s)
Empalme Alternativo/genética , Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Expresión Génica/genética , Hipocampo/metabolismo , Proteínas de Andamiaje Homer/genética , Animales , Miedo , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas , Análisis de Secuencia de ARN
6.
BMC Genomics ; 16 Suppl 5: S5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26040834

RESUMEN

BACKGROUND: A fundamental question in neuroscience is how memories are stored and retrieved in the brain. Long-term memory formation requires transcription, translation and epigenetic processes that control gene expression. Thus, characterizing genome-wide the transcriptional changes that occur after memory acquisition and retrieval is of broad interest and importance. Genome-wide technologies are commonly used to interrogate transcriptional changes in discovery-based approaches. Their ability to increase scientific insight beyond traditional candidate gene approaches, however, is usually hindered by batch effects and other sources of unwanted variation, which are particularly hard to control in the study of brain and behavior. RESULTS: We examined genome-wide gene expression after contextual conditioning in the mouse hippocampus, a brain region essential for learning and memory, at all the time-points in which inhibiting transcription has been shown to impair memory formation. We show that most of the variance in gene expression is not due to conditioning and that by removing unwanted variance through additional normalization we are able provide novel biological insights. In particular, we show that genes downregulated by memory acquisition and retrieval impact different functions: chromatin assembly and RNA processing, respectively. Levels of histone 2A variant H2AB are reduced only following acquisition, a finding we confirmed using quantitative proteomics. On the other hand, splicing factor Rbfox1 and NMDA receptor-dependent microRNA miR-219 are only downregulated after retrieval, accompanied by an increase in protein levels of miR-219 target CAMKIIγ. CONCLUSIONS: We provide a thorough characterization of coding and non-coding gene expression during long-term memory formation. We demonstrate that unwanted variance dominates the signal in transcriptional studies of learning and memory and introduce the removal of unwanted variance through normalization as a necessary step for the analysis of genome-wide transcriptional studies in the context of brain and behavior. We show for the first time that histone variants are downregulated after memory acquisition, and splicing factors and microRNAs after memory retrieval. Our results provide mechanistic insights into the molecular basis of cognition by highlighting the differential involvement of epigenetic mechanisms, such as histone variants and post-transcriptional RNA regulation, after acquisition and retrieval of memory.


Asunto(s)
Epigénesis Genética/fisiología , Hipocampo/fisiología , Histonas/genética , Memoria a Largo Plazo/fisiología , MicroARNs/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Condicionamiento Psicológico/fisiología , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , MicroARNs/biosíntesis , Factores de Empalme de ARN , Proteínas de Unión al ARN/genética , Transcripción Genética/genética
7.
Neurobiol Learn Mem ; 116: 90-95, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25242102

RESUMEN

Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning.


Asunto(s)
Condicionamiento Clásico/fisiología , Miedo/fisiología , Hipocampo/metabolismo , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Transcripción Genética , Animales , Regulación de la Expresión Génica , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo
8.
Learn Mem ; 19(8): 319-24, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22802593

RESUMEN

Growth arrest and DNA damage-inducible ß (Gadd45b) has been shown to be involved in DNA demethylation and may be important for cognitive processes. Gadd45b is abnormally expressed in subjects with autism and psychosis, two disorders associated with cognitive deficits. Furthermore, several high-throughput screens have identified Gadd45b as a candidate plasticity-related gene. However, a direct demonstration of a link between Gadd45b and memory has not been established. The current studies first determined whether expression of the Gadd45 family of genes was affected by contextual fear conditioning. Gadd45b, and to a lesser extent Gadd45g, were up-regulated in the hippocampus following contextual fear conditioning, whereas Gadd45a was not. Next, Gadd45b knockout mice were tested for contextual and cued fear conditioning. Gadd45b knockout mice exhibited a significant deficit in long-term contextual fear conditioning; however, they displayed normal levels of short-term contextual fear conditioning. No differences between Gadd45b knockout and wild-type mice were observed in cued fear conditioning. Because cued fear conditioning is hippocampus independent, while contextual fear conditioning is hippocampus dependent, the current studies suggest that Gadd45b may be important for long-term hippocampus-dependent memory storage. Therefore, Gadd45b may be a novel therapeutic target for the cognitive deficits associated with many neurodevelopmental, neurological, and psychiatric disorders.


Asunto(s)
Antígenos de Diferenciación/genética , Hipocampo/fisiología , Trastornos de la Memoria , Memoria a Largo Plazo/fisiología , Análisis de Varianza , Animales , Antígenos de Diferenciación/metabolismo , Condicionamiento Psicológico/fisiología , Electrochoque/efectos adversos , Miedo/fisiología , Regulación de la Expresión Génica/genética , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , ARN Mensajero/metabolismo
9.
mBio ; 13(1): e0257421, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35089059

RESUMEN

Histoplasma capsulatum, a dimorphic fungal pathogen, is the most common cause of fungal respiratory infections in immunocompetent hosts. Histoplasma is endemic in the Ohio and Mississippi River Valleys in the United States and is also distributed worldwide. Previous studies have revealed at least eight clades, each specific to a geographic location: North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B), Eurasian, Netherlands, Australian and African, and an additional distinct lineage (H81) comprised of Panamanian isolates. Previously assembled Histoplasma genomes are highly fragmented, with the highly repetitive G217B (NAm 2) strain, which has been used for most whole-genome-scale transcriptome studies, assembled into over 250 contigs. In this study, we set out to fully assemble the repeat regions and characterize the large-scale genome architecture of Histoplasma species. We resequenced five Histoplasma strains (WU24 [NAm 1], G217B [NAm 2], H88 [African], G186AR [Panama], and G184AR [Panama]) using Oxford Nanopore Technologies long-read sequencing technology. Here, we report chromosomal-level assemblies for all five strains, which exhibit extensive synteny among the geographically distant Histoplasma isolates. The new assemblies revealed that RYP2, a major regulator of morphology and virulence, is duplicated in G186AR. In addition, we mapped previously generated transcriptome data sets onto the newly assembled chromosomes. Our analyses revealed that the expression of transposons and transposon-embedded genes are upregulated in yeast phase compared to mycelial phase in the G217B and H88 strains. This study provides an important resource for fungal researchers and further highlights the importance of chromosomal-level assemblies in analyzing high-throughput data sets. IMPORTANCE Histoplasma species are dimorphic fungi causing significant morbidity and mortality worldwide. These fungi grow as mold in the soil and as budding yeast within the human host. Histoplasma can be isolated from soil in diverse regions, including North America, South America, Africa, and Europe. Phylogenetically distinct species of Histoplasma have been isolated and sequenced. However, for the commonly used strains, genome assemblies have been fragmented, leading to underutilization of genome-scale data. This study provides chromosome-level assemblies of the commonly used Histoplasma strains using long-read sequencing technology. Comparative analysis of these genomes shows largely conserved gene order within the chromosomes. Mapping existing transcriptome data on these new assemblies reveals clustering of transcriptionally coregulated genes. The results of this study highlight the importance of obtaining chromosome-level assemblies in understanding the biology of human fungal pathogens.


Asunto(s)
Histoplasma , Micosis , Humanos , Sintenía , Australia , Histoplasma/genética , Saccharomyces cerevisiae/genética , Cromosomas , Genoma Fúngico
10.
JCI Insight ; 5(5)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32069266

RESUMEN

Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of 2 classes of regulatory complexes: permissive coactivators and silencing corepressors. Much work has focused on coactivator complexes, but little is known about the corepressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the corepressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the postsynaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the metabotropic glutamate receptor 1α (mGluR1α) and mGluR5 dependence of long-term potentiation, and increases activation of ERK in the hippocampus after learning. Our studies define a critical role for corepressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.


Asunto(s)
Hipocampo/fisiología , Proteínas de Andamiaje Homer/metabolismo , Plasticidad Neuronal/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Transducción de Señal/fisiología , Complejo Correpresor Histona Desacetilasa y Sin3/fisiología , Animales , Hipocampo/metabolismo , Ratones , Ratones Mutantes , Neuronas/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética
11.
Mol Ther Nucleic Acids ; 19: 1399-1412, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32160709

RESUMEN

Knockout of the memory suppressor gene histone deacetylase 2 (Hdac2) in mice elicits cognitive enhancement, and drugs that block HDAC2 have potential as therapeutics for disorders affecting memory. Currently available HDAC2 catalytic activity inhibitors are not fully isoform specific and have short half-lives. Antisense oligonucleotides (ASOs) are drugs that elicit extremely long-lasting, specific inhibition through base pairing with RNA targets. We utilized an ASO to reduce Hdac2 messenger RNA (mRNA) in mice and determined its longevity, specificity, and mechanism of repression. A single injection of the Hdac2-targeted ASO in the central nervous system produced persistent reduction in HDAC2 protein and Hdac2 mRNA levels for 16 weeks. It enhanced object location memory for 8 weeks. RNA sequencing (RNA-seq) analysis of brain tissues revealed that the repression was specific to Hdac2 relative to related Hdac isoforms, and Hdac2 reduction caused alterations in the expression of genes involved in extracellular signal-regulated kinase (ERK) and memory-associated immune signaling pathways. Hdac2-targeted ASOs also suppress a nonpolyadenylated Hdac2 regulatory RNA and elicit direct transcriptional suppression of the Hdac2 gene through stalling RNA polymerase II. These findings identify transcriptional suppression of the target gene as a novel mechanism of action of ASOs.

12.
J Am Chem Soc ; 130(33): 11185-94, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18652457

RESUMEN

Herein is described the identification of RNA internal loops that bind to derivatives of neomycin B, neamine, tobramycin, and kanamycin A. RNA loop-ligand partners were identified by a two-dimensional combinatorial screening (2DCS) platform that probes RNA and chemical spaces simultaneously. In 2DCS, an aminoglycoside library immobilized onto an agarose microarray was probed for binding to a 3 x 3 nucleotide RNA internal loop library (81,920 interactions probed in duplicate in a single experiment). RNAs that bound aminoglycosides were harvested from the array via gel excision. RNA internal loop preferences for three aminoglycosides were identified from statistical analysis of selected structures. This provides consensus RNA internal loops that bind these structures and include: loops with potential GA pairs for the neomycin derivative, loops with potential GG pairs for the tobramycin derivative, and pyrimidine-rich loops for the kanamycin A derivative. Results with the neamine derivative show that it binds a variety of loops, including loops that contain potential GA pairs that also recognize the neomycin B derivative. All studied selected internal loops are specific for the aminoglycoside that they were selected to bind. Specificity was quantified for 16 selected internal loops by studying their binding to each of the arrayed aminoglycosides. Specificities ranged from 2- to 80-fold with an average specificity of 20-fold. These studies show that 2DCS is a unique platform to probe RNA and chemical space simultaneously to identify specific RNA motif-ligand interactions.


Asunto(s)
Aminoglicósidos/química , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN/química , Bibliotecas de Moléculas Pequeñas , Alquinos/química , Aminoglicósidos/síntesis química , Azidas/química , Emparejamiento Base , Conformación de Carbohidratos , Técnicas Químicas Combinatorias , Framicetina/química , Kanamicina/química , Ligandos , Conformación de Ácido Nucleico , Oligonucleótidos/química , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tobramicina/química , Transcripción Genética
13.
Sci Signal ; 11(513)2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339533

RESUMEN

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder that is associated with genetic risk factors. Most human disease-associated single-nucleotide polymorphisms (SNPs) are not located in genes but rather are in regulatory regions that control gene expression. The function of regulatory regions is determined through epigenetic mechanisms. Parallels between the cellular basis of development and the formation of long-term memory have long been recognized, particularly the role of epigenetic mechanisms in both processes. We analyzed how learning alters chromatin accessibility in the mouse hippocampus using a new high-throughput sequencing bioinformatics strategy we call DEScan (differential enrichment scan). DEScan, which enabled the analysis of data from epigenomic experiments containing multiple replicates, revealed changes in chromatin accessibility at 2365 regulatory regions-most of which were promoters. Learning-regulated promoters were active during forebrain development in mice and were enriched in epigenetic modifications indicative of bivalent promoters. These promoters were disproportionally intronic, showed a complex relationship with gene expression and alternative splicing during memory consolidation and retrieval, and were enriched in the data set relative to known ASD risk genes. Genotyping in a clinical cohort within one of these promoters (SHANK3 promoter 6) revealed that the SNP rs6010065 was associated with ASD. Our data support the idea that learning recapitulates development at the epigenetic level and demonstrate that behaviorally induced epigenetic changes in mice can highlight regulatory regions relevant to brain disorders in patients.


Asunto(s)
Trastorno Autístico/genética , Ensamble y Desensamble de Cromatina , Hipocampo/metabolismo , Aprendizaje , ARN no Traducido/genética , Secuencias Reguladoras de Ácidos Nucleicos , Adolescente , Empalme Alternativo , Animales , Trastorno Autístico/patología , Estudios de Casos y Controles , Niño , Preescolar , Estudios de Cohortes , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas
14.
Elife ; 62017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28927503

RESUMEN

Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-ß receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Aprendizaje , Memoria , Proteínas de Unión al ARN/metabolismo , Ribonucleasas/metabolismo , Animales , Hipocampo/fisiología , Ratones , Plasticidad Neuronal
15.
Front Mol Neurosci ; 9: 11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26903803

RESUMEN

The consolidation of short-term labile memories for long-term storage requires transcription and there is growing interest in defining the epigenetic mechanisms regulating these transcriptional events. In particular, it has been hypothesized that combinations of histone post-translational modifications (PTMs) have the potential to store memory by dynamically defining the transcriptional status of any given gene loci. Studying epigenetic phenomena during long-term memory consolidation, however, is complicated by the complex cellular heterogeneity of the brain, in which epigenetic signal from memory-relevant cells can be obscured or diluted by the surrounding milieu. To address this issue, we have developed a transgenic mouse line expressing a tetO-regulated, hemagglutinin (HA)-tagged histone H3.3 exclusively in excitatory neurons of the forebrain. Unlike canonical histones, histone H3.3 is incorporated at promoter regions of transcriptionally active genes in a DNA replication-independent manner, stably "barcoding" active regions of the genome in post-mitotic cells. Immunoprecipitating H3.3-HA containing nucleosomes from the hippocampus will therefore enrich for memory-relevant chromatin by isolating actively transcribed regions of the excitatory neuron genome. To evaluate the validity of using H3.3 "barcoding" to sort chromatin, we performed a molecular and behavioral characterization of the H3.3-HA transgenic mouse line. Expectedly, we find that H3.3-HA is incorporated preferentially at promoter regions of actively-transcribed neuronal genes and that expression can be effectively regulated by doxycycline. Additionally, H3.3-HA overexpression does not adversely affect exploratory or anxiety-related behaviors, nor does it affect spatial memory. Transgenic animals do, however, exhibit deficits in contextual memory and motor learning, revealing the importance of this histone isoform in the brain. Future studies in the H3.3-HA transgenic mouse line will define the combinatorial histone PTM landscape during spatial memory consolidation and will investigate the important contributions of histone H3.3 to the normal functioning of the brain.

16.
Sci Signal ; 9(425): ra41, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27117251

RESUMEN

Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Trastornos de la Memoria/metabolismo , Biosíntesis de Proteínas , Privación de Sueño/metabolismo , Animales , Western Blotting , Cognición , Proteínas del Citoesqueleto/metabolismo , Chaperón BiP del Retículo Endoplásmico , Ensayo de Inmunoadsorción Enzimática , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Proteínas de Choque Térmico/metabolismo , Hipocampo/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fosforilación , Puromicina/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Estadísticas no Paramétricas
17.
Elife ; 52016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27549340

RESUMEN

Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density.


Asunto(s)
Región CA1 Hipocampal/fisiología , Trastornos de la Memoria , Neuronas/fisiología , Privación de Sueño/complicaciones , Factores Despolimerizantes de la Actina/metabolismo , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Espinas Dendríticas/fisiología , Ratones , Neuronas/citología
18.
Dialogues Clin Neurosci ; 16(3): 273-5, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25364279

RESUMEN

Epigenetics, broadly defined as the regulation of gene expression without alteration of the genome, has become a field of tremendous interest in neuroscience, neurology, and psychiatry. This research has rapidly changed the way researchers think about brain function. Exciting epigenetic discoveries have been found in addiction, early life stress, neurodegeneration, post-traumatic stress disorder, and depression. As researchers more precisely define the epigenetic landscape that regulates disease progression in each of these cases, therapeutics can be designed to specifically target the molecules that mediate these epigenetic processes. Further, epigenetics may lead, to the identification of novel biomarkers for diagnosis and for the monitoring of treatment. Epigenetic profiling is likely to become a routine tool for the diagnosis of neurological and psychiatric disorders in the near future.


Asunto(s)
Medicina Clínica , Epigenómica , Regulación de la Expresión Génica/fisiología , Neurociencias , Humanos
19.
Neurobiol Aging ; 33(7): 1273-83, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21257234

RESUMEN

Neuropathological features of Alzheimer's disease (AD) are recapitulated in transgenic mice expressing familial AD-causing mutations, but ectopic transgene overexpression makes it difficult to relate these abnormalities to disease pathogenesis. Alternatively, the APP/PS-1 double knock-in (DKI) mouse produces mutant amyloid precursor protein (APP) and presenilin-1 (PS-1) with normal levels and regulatory controls. Here, we investigated effects of amyloid on brain structure and neuroplasticity by vaccinating DKI mice with amyloid-ß starting at 8 months of age. At 14 months, vaccination blocked cerebral amyloid deposition and its attendant microglial activation. Neuropil abnormalities were pronounced only within plaques, and included circumscribed loss and dysmorphology of axons, dendrites, terminals and spines. Blockade of amyloid deposition restored neuropil integrity. Amyloid removal did not rescue reductions in the hippocampal neural progenitor and neuroblast populations, but adding 1 month of voluntary exercise to amyloid-ß vaccination markedly stimulated hippocampal neurogenesis. These results identify amyloid-dependent and -independent structural changes in the DKI mouse model of AD. Combining exercise with amyloid-directed immunotherapy produces greater restoration of brain structure and neuroplasticity than is achieved with either maneuver alone.


Asunto(s)
Péptidos beta-Amiloides/uso terapéutico , Encéfalo/patología , Condicionamiento Físico Animal/tendencias , Placa Amiloide/patología , Placa Amiloide/prevención & control , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/efectos de los fármacos , Terapia Combinada , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal/métodos , Placa Amiloide/genética , Presenilina-1/genética
20.
J Clin Invest ; 122(10): 3593-602, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22996661

RESUMEN

The formation of a long-lasting memory requires a transcription-dependent consolidation period that converts a short-term memory into a long-term memory. Nuclear receptors compose a class of transcription factors that regulate diverse biological processes, and several nuclear receptors have been implicated in memory formation. Here, we examined the potential contribution of nuclear receptors to memory consolidation by measuring the expression of all 49 murine nuclear receptors after learning. We identified 13 nuclear receptors with increased expression after learning, including all 3 members of the Nr4a subfamily. These CREB-regulated Nr4a genes encode ligand-independent "orphan" nuclear receptors. We found that blocking NR4A activity in memory-supporting brain regions impaired long-term memory but did not impact short-term memory in mice. Further, expression of Nr4a genes increased following the memory-enhancing effects of histone deacetylase (HDAC) inhibitors. Blocking NR4A signaling interfered with the ability of HDAC inhibitors to enhance memory. These results demonstrate that the Nr4a gene family contributes to memory formation and is a promising target for improving cognitive function.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/fisiología , Nootrópicos/farmacología , Receptores Nucleares Huérfanos/fisiología , Factores de Transcripción/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Electrochoque , Miedo/fisiología , Reacción Cataléptica de Congelación/efectos de los fármacos , Reacción Cataléptica de Congelación/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Genes Dominantes , Hipocampo/metabolismo , Inhibidores de Histona Desacetilasas/uso terapéutico , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/genética , Trastornos de la Memoria/prevención & control , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Nootrópicos/uso terapéutico , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/deficiencia , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/fisiología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/fisiología , Receptores Nucleares Huérfanos/biosíntesis , Receptores Nucleares Huérfanos/genética , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Factores de Transcripción/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA