Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 112: 1-7, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32563678

RESUMEN

The ability to study the behavior of cells, proteins, and cell-cell or cell-protein interactions under dynamic forces such as shear stress under fluid flow, provides a more accurate understanding of the physiopathology of hemostasis. This review touches upon the traditional methods for studying blood coagulation and platelet aggregation and provides an overview on cellular and protein response to shear stress. We also elaborate on the biological aspects of how cells recognize mechanical forces and convert them into biochemical signals that can drive various signaling pathways. We give a detailed description of the various types of microfluidic devices that are employed to study the complex processes of platelet aggregation and blood coagulation under flow conditions as well as to investigate endothelial shear-response. We also highlight works mimicking artificial vessels as platforms to study the mechanisms of coagulation, and finish our review by describing anticipated clinical uses of microfluidics devices and their standardization.


Asunto(s)
Coagulación Sanguínea/fisiología , Hemostasis/fisiología , Dispositivos Laboratorio en un Chip , Trombosis/genética , Coagulación Sanguínea/genética , Hemostasis/genética , Humanos , Agregación Plaquetaria/genética , Agregación Plaquetaria/fisiología , Transducción de Señal/genética , Trombosis/fisiopatología
2.
Haemophilia ; 29(4): 1024-1031, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37228173

RESUMEN

BACKGROUND: The overall burden of disease in persons with haemophilia continues to be high despite the latest advancements in therapeutics. Clinical trials testing prenatal treatments for several genetic disorders are underway or are recruiting subjects, attesting to the much-needed change in paradigm of how patients with monogenic disorders can be treated. Here we investigate the overall attitude towards prenatal diagnosis, preferences on types of prenatal therapies for haemophilia, the level of 'acceptable' risk tolerated, and which social and moral pressures or disease personal experiences may predict willingness of individuals to consider foetal therapy in a future pregnancy. RESULTS: A multidisciplinary team designed the survey, and the study was carried out using REDCap, and publicized through the National Haemophilia Foundation. Subjects ≥18 years of age were eligible to participate in the study. We assessed participants' attitudes towards prenatal therapy and their level of 'acceptable' risk towards the procedure and therapy. The survey was completed by 67 adults, the majority females. Respondents were willing to undergo prenatal diagnosis, and their main concerns related to the well-being of the pregnant woman and the foetus regarding lasting therapeutic efficacy, side effects of the therapy, and procedural risks, but they were likely to accept a wide range of prenatal therapeutic options, particularly if the foetal therapy proved to be long-lasting and safe. CONCLUSIONS: These data demonstrate the willingness of persons with haemophilia, and the haemophilia community, to explore new treatment options beyond the currently offered approaches.


Asunto(s)
Hemofilia A , Embarazo , Adulto , Femenino , Humanos , Hemofilia A/diagnóstico , Hemofilia A/terapia , Hemofilia A/genética , Diagnóstico Prenatal , Encuestas y Cuestionarios
3.
Am J Physiol Renal Physiol ; 318(4): F861-F869, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32003597

RESUMEN

Serum soluble Fas (sFas) levels are associated with erythropoietin (Epo) hyporesponsiveness in patients with chronic kidney disease (CKD). Whether sFas could predict the need for erythropoiesis-stimulating agent (ESA) usage and its influence in erythropoiesis remain unclear. We evaluated the relation between sFas and ESA therapy in patients with CKD with anemia and its effect on erythropoiesis in vitro. First, we performed a retrospective cohort study with 77 anemic patients with nondialysis CKD. We performed in vitro experiments to investigate whether sFas could interfere with the behavior of hematopoietic stem cells (HSCs). HSCs were isolated from umbilical cord blood and incubated with recombinant sFas protein in a dose-dependent manner. Serum sFas positively correlated with Epo levels (r = 0.30, P = 0.001) but negatively with hemoglobin (r = -0.55, P < 0.001) and glomerular filtration rate (r = -0.58, P < 0.001) in patients with CKD at baseline. Elevated sFas serum levels (4,316 ± 897 vs. 2,776 ± 749, P < 0.001) with lower estimated glomerular filtration rate (26.2 ± 10.1 vs. 33.5 ± 14.3, P = 0.01) and reduced hemoglobin concentration (11.1 ± 0.9 vs. 12.5 ± 1.2, P < 0.001) were identified in patients who required ESA therapy compared with patients with non-ESA. Afterward, we detected that the sFas level was slight correlated with a necessity of ESA therapy in patients with nondialysis CKD and anemia. In vitro assays demonstrated that the erythroid progenitor cell frequency negatively correlated with sFas concentration (r = -0.72, P < 0.001). There was decreased erythroid colony formation in vitro when CD34+ HSCs were incubated with a higher concentration of sFas protein (1.56 ± 0.29, 4.33 ± 0.53, P < 0.001). Our findings suggest that sFas is a potential predictor for ESA therapy in patients with nondialysis CKD and that elevated sFas could affect erythropoiesis in vitro.


Asunto(s)
Anemia/sangre , Eritropoyesis , Células Madre Hematopoyéticas/metabolismo , Células Madre Multipotentes/metabolismo , Insuficiencia Renal Crónica/complicaciones , Receptor fas/sangre , Adulto , Anciano , Anemia/diagnóstico , Anemia/tratamiento farmacológico , Anemia/etiología , Biomarcadores/sangre , Brasil , Células Cultivadas , Toma de Decisiones Clínicas , Bases de Datos Factuales , Eritropoyesis/efectos de los fármacos , Eritropoyetina/sangre , Femenino , Hematínicos/uso terapéutico , Células Madre Hematopoyéticas/efectos de los fármacos , Hemoglobinas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Células Madre Multipotentes/efectos de los fármacos , North Carolina , Selección de Paciente , Valor Predictivo de las Pruebas , Proteínas Recombinantes/farmacología , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/diagnóstico , Estudios Retrospectivos
5.
Small ; 15(43): e1902971, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31464364

RESUMEN

Human hematopoietic niches are complex specialized microenvironments that maintain and regulate hematopoietic stem and progenitor cells (HSPC). Thus far, most of the studies performed investigating alterations of HSPC-niche dynamic interactions are conducted in animal models. Herein, organ microengineering with microfluidics is combined to develop a human bone marrow (BM)-on-a-chip with an integrated recirculating perfusion system that consolidates a variety of important parameters such as 3D architecture, cell-cell/cell-matrix interactions, and circulation, allowing a better mimicry of in vivo conditions. The complex BM environment is deconvoluted to 4 major distinct, but integrated, tissue-engineered 3D niche constructs housed within a single, closed, recirculating microfluidic device system, and equipped with cell tracking technology. It is shown that this technology successfully enables the identification and quantification of preferential interactions-homing and retention-of circulating normal and malignant HSPC with distinct niches.


Asunto(s)
Médula Ósea/metabolismo , Comunicación Celular , Células Madre Hematopoyéticas/patología , Dispositivos Laboratorio en un Chip , Nicho de Células Madre , Antígenos CD34/metabolismo , Biomarcadores/metabolismo , Línea Celular Tumoral , Colorantes Fluorescentes/metabolismo , Humanos , Microtecnología
6.
Methods ; 99: 44-61, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26319943

RESUMEN

Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be "mobilized" peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine.


Asunto(s)
Enfermedades Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas , Medicina Regenerativa , Animales , Enfermedades Autoinmunes/terapia , Hematopoyesis , Células Madre Hematopoyéticas/fisiología , Humanos , Tolerancia Inmunológica
7.
Stem Cells ; 33(1): 122-32, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25186828

RESUMEN

Unmatched allogeneic in utero stem cell transplantation (IUSCT) produces poor engraftment unless the fetus has congenital immunodeficiency, probably because of maternal and fetal immune responses to injected cells. We studied the functional hematopoietic potential of transduced green fluorescent protein (GFP+) sheep amniotic fluid (AF) stem cells, before and after autologous IUSCT. CD34+ cells were selected from first trimester sheep AF, transduced overnight, and injected intravenously into NOD-SCID-gamma (NSG) mice. At 3 months, primary recipient bone marrow (BM) was injected into secondary NSG recipients. GFP+ cells were detected in the hematopoietic organs and peripheral blood of primary and secondary recipients at 3 months. Autologous IUSCT (transduced GFP+CD34+AF) was performed in fetal sheep. Six months postnatally, lamb BM was injected into secondary NSG recipients. GFP+ cells were detected in the peripheral blood of primary and secondary recipients. This confirms the hematopoietic potential of AF stem cells supporting the concept of autologous IUSCT to treat congenital hematopoietic disease.


Asunto(s)
Líquido Amniótico/citología , Líquido Amniótico/metabolismo , Antígenos CD34/biosíntesis , Trasplante de Células Madre Hematopoyéticas/métodos , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Femenino , Feto/cirugía , Ratones , Ratones Endogámicos NOD , Ratones SCID , Embarazo , Ovinos , Trasplante Autólogo , Trasplante Heterólogo
11.
Br J Haematol ; 166(2): 268-78, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24673111

RESUMEN

The fetal sheep model has served as a biologically relevant and translational model to study in utero haematopoietic stem cell transplantation (IUHSCT), yet little is known about the ontogeny of the bone marrow (BM) niches in this model. Because the BMmicroenvironment plays a critical role in the outcome of haematopoietic engraftment, we have established the correlation between the fetal-sheep and fetal-human BM niche ontogeny, so that studies addressing the role of niche development at the time of IUHSCT could be accurately performed. Immunofluorescence confocal microscopic analysis of sheep fetal bone from gestational days (gd) 25-68 showed that the BM microenvironment commences development with formation of the vascular niche between 25 and 36 gd in sheep; correlating with the events at 10-11 gestational weeks (gw) in humans. Subsequently, between 45 and 51 gd in sheep (c. 14 gw in humans), the osteoblastic/endosteal niche started developing, the presence of CD34(+)  CD45(+) cells were promptly detected, and their number increased with gestational age. IUHSCT, performed in sheep at 45 and 65 gd, showed significant haematopoietic engraftment only at the later time point, indicating that a fully functional BM microenvironment improved engraftment. These studies show that sheep niche ontogeny closely parallels human, validating this model for investigating niche influence/manipulation in IUHSCT engraftment.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Modelos Animales , Nicho de Células Madre/fisiología , Animales , Antígenos CD34/metabolismo , Médula Ósea/embriología , Células de la Médula Ósea/citología , Femenino , Desarrollo Fetal/fisiología , Feto/citología , Edad Gestacional , Supervivencia de Injerto/fisiología , Xenoinjertos , Humanos , Osteoblastos/fisiología , Embarazo , Ovinos
12.
FASEB J ; 27(6): 2111-21, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23413357

RESUMEN

To identify human bone marrow stromal cell (BMSC) subsets with enhanced ability to engraft/contribute to the resident intestinal cellular pool, we transplanted clonally derived BMSCs into fetal sheep. Analysis at 75 d post-transplantation showed 2 of the 6 clones engrafting the intestine at 4- to 5-fold higher levels (5.03±0.089 and 5.04±0.15%, respectively) than the other clones (P<0.01), correlating with the percentage of donor-derived Musashi-1(+) (12.01-14.17 vs. 1.2-3.8%; P<0.01) or leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5)(+) cells within the intestinal stem cell (ISC) region. Phenotypic and transcriptome analysis determined that the clones with enhanced intestinal contribution expressed high levels of Ephrin type B receptor 2 (EphB2). Intestinal explants demonstrated proliferation of the engrafted cells and ability to generate crypt-like structures in vitro still expressing EphB2. Additional transplants based on BMSC EphB2 expression demonstrated that, at 7 d post-transplant, the EphB2(high) BMSCs engrafted in the ISC region at levels of 2.1 ± 0.2%, while control EphB2(low) BMSCs engrafted at 0.3 ± 0.1% (P<0.01). Therefore we identified a marker for isolating and culturing an expandable subpopulation of BMSCs with enhanced intestinal homing and contribution to the ISC region.


Asunto(s)
Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Células Madre Mesenquimatosas/clasificación , Células Madre Mesenquimatosas/metabolismo , Receptor EphB2/metabolismo , Animales , Biomarcadores/metabolismo , Linaje de la Célula , Femenino , Feto , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Mucosa Intestinal/embriología , Intestino Delgado/citología , Intestino Delgado/embriología , Intestino Delgado/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Embarazo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptor EphB2/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ovinos , Nicho de Células Madre , Transcriptoma , Trasplante Heterólogo
13.
Sci Rep ; 14(1): 276, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168584

RESUMEN

Sickle cell disease (SCD) affects millions worldwide, yet there are few therapeutic options. To develop effective treatments, preclinical models that recapitulate human physiology and SCD pathophysiology are needed. SCD arises from a single Glu-to-Val substitution at position 6 in the ß subunit of hemoglobin (Hb), promoting Hb polymerization and subsequent disease. Sheep share important physiological and developmental characteristics with humans, including the same developmental pattern of fetal to adult Hb switching. Herein, we investigated whether introducing the SCD mutation into the sheep ß-globin locus would recapitulate SCD's complex pathophysiology by generating high quality SWISS-MODEL sheep Hb structures and performing MD simulations of normal/sickle human (huHbA/huHbS) and sheep (shHbB/shHbS) Hb, establishing how accurately shHbS mimics huHbS behavior. shHbS, like huHbS, remained stable with low RMSD, while huHbA and shHbB had higher and fluctuating RMSD. shHbB and shHbS also behaved identically to huHbA and huHbS with respect to ß2-Glu6 and ß1-Asp73 (ß1-Asn72 in sheep) solvent interactions. These data demonstrate that introducing the single SCD-causing Glu-to-Val substitution into sheep ß-globin causes alterations consistent with the Hb polymerization that drives RBC sickling, supporting the development of a SCD sheep model to pave the way for alternative cures for this debilitating, globally impactful disease.


Asunto(s)
Anemia de Células Falciformes , Hemoglobinas , Adulto , Humanos , Animales , Ovinos , Hemoglobinas/genética , Anemia de Células Falciformes/terapia , Hemoglobina A , Globinas beta/genética , Modelos Animales , Hemoglobina Falciforme/genética , Hemoglobina Falciforme/química
14.
J Cell Physiol ; 228(5): 1010-6, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23042590

RESUMEN

Besides the liver, it has been difficult to identify which organ(s) and/or cellular component(s) contribute significantly to the production of human FVIII:c (FVIII). Thus far, only endothelial cells have been shown to constitute a robust extrahepatic source of FVIII, possibly explaining both the diverse presence of FVIII mRNA in the body, and the observed increase in FVIII levels during liver failure. Here, we investigate whether human mesenchymal stem cells (MSC), ubiquitously present in different organs, could also contribute to FVIII production. MSC isolated from human lung, liver, brain, and bone marrow expressed FVIII message as determined by quantitative-RT-PCR. Using an antibody specific for FVIII, confocal microscopy, and umbilical cord-derived endothelial cells (HUVEC) as a negative control, we demonstrated that, in MSC, FVIII protein was not stored in granules; rather, it localized to the perinuclear region. Furthermore, functional FVIII was detected in MSC supernatants and cell lysates by aPTT and chromogenic assays. These results demonstrate that MSC can contribute at low levels to the functional FVIII pool, and advance the understanding of the physiology of FVIII production and secretion.


Asunto(s)
Factor VIII/biosíntesis , Factor VIII/metabolismo , Células Madre Mesenquimatosas , Diferenciación Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Mesenquimatosas/metabolismo , Microscopía Confocal , ARN Mensajero/metabolismo , Vesículas Secretoras/metabolismo , Distribución Tisular
15.
Hepatology ; 56(3): 1086-96, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22488442

RESUMEN

UNLABELLED: Although the vasculogenic potential of circulating and cord blood (CB)-derived endothelial colony-forming cells (ECFC) has been demonstrated in vitro and in vivo, little is known about the inherent biologic ability of these cells to home to different organs and contribute to tissue-specific cell populations. Here we used a fetal sheep model of in utero transplantation to investigate and compare the intrinsic ability of human CB-derived ECFC to migrate to the liver and to the intestine, and to define ECFC's intrinsic ability to integrate and contribute to the cytoarchitecture of these same organs. ECFCs were transplanted by an intraperitoneal or intrahepatic route (IH) into fetal sheep at concentrations ranging from 1.1-2.6 × 10(6) cells/fetus. Recipients were evaluated at 85 days posttransplant for donor (human) cells using flow cytometry and confocal microscopy. We found that, regardless of the route of injection, and despite the IH delivery of ECFC, the overall liver engraftment was low, but a significant percentage of cells were located in the perivascular regions and retained the expression of hallmark endothelial makers. By contrast, ECFC migrated preferentially to the intestinal crypt region and contributed significantly to the myofibroblast population. Furthermore, ECFC expressing CD133 and CD117 lodged in areas where endogenous cells expressed those same phenotypes. CONCLUSION: ECFC inherently constitute a potential source of cells for the treatment of intestinal diseases, but strategies to increase the numbers of ECFC persisting within the hepatic parenchyma are needed in order to enhance ECFC therapeutic potential for this organ.


Asunto(s)
Movimiento Celular , Células Endoteliales/fisiología , Sangre Fetal , Intestinos/citología , Hígado/citología , Animales , Células Endoteliales/trasplante , Humanos , Ovinos
16.
N C Med J ; 74(6): 526-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24316783

RESUMEN

Gene therapy offers the possibility of a permanent cure for any of the more than 10,000 human diseases caused by a defect in a single gene. Among these diseases, the hemophilias represent an ideal target, and studies in both animals and humans have provided evidence that a permanent cure for hemophilia is within reach.


Asunto(s)
Terapia Genética , Hemofilia A/genética , Hemofilia A/terapia , Humanos
17.
Artículo en Inglés | MEDLINE | ID: mdl-38741937

RESUMEN

Introduction: Missions beyond low Earth orbit (LEO) will expose astronauts to ionizing radiation (IR) in the form of solar energetic particles (SEP) and galactic cosmic rays (GCR) including high atomic number and energy (HZE) nuclei. The gastrointestinal (GI) system is documented to be highly radiosensitive with even relatively low dose IR exposures capable of inducing mucosal lesions and disrupting epithelial barrier function. IR is also an established risk factor for colorectal cancer (CRC) with several studies examining long-term GI effects of SEP/GCR exposure using tumor-prone APC mouse models. Studies of acute short-term effects of modeled space radiation exposures in wildtype mouse models are more limited and necessary to better define charged particle-induced GI pathologies and test novel medical countermeasures (MCMs) to promote astronaut safety. Methods: In this study, we performed ground-based studies where male and female C57BL/6J mice were exposed to γ-rays, 50 MeV protons, or 1 GeV/n Fe-56 ions at the NASA Space Radiation Laboratory (NSRL) with histology and immunohistochemistry endpoints measured in the first 24 h post-irradiation to define immediate SEP/GCR-induced GI alterations. Results: Our data show that unlike matched γ-ray controls, acute exposures to protons and iron ions disrupts intestinal function and induces mucosal lesions, vascular congestion, epithelial barrier breakdown, and marked enlargement of mucosa-associated lymphoid tissue. We also measured kinetics of DNA double-strand break (DSB) repair using gamma-H2AX- specific antibodies and apoptosis via TUNEL labeling, noting the induction and disappearance of extranuclear cytoplasmic DNA marked by gamma-H2AX only in the charged particle-irradiated samples. We show that 18 h pre-treatment with curcumin-loaded nanolipoprotein particles (cNLPs) delivered via IV injection reduces DSB-associated foci levels and apoptosis and restore crypt villi lengths. Discussion: These data improve our understanding of physiological alterations in the GI tract immediately following exposures to modeled space radiations and demonstrates effectiveness of a promising space radiation MCM.

18.
Nat Commun ; 14(1): 4206, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452013

RESUMEN

Hemophilia A is the most common X-linked bleeding disorder affecting more than half-a-million individuals worldwide. Persons with severe hemophilia A have coagulation FVIII levels <1% and experience spontaneous debilitating and life-threatening bleeds. Advances in hemophilia A therapeutics have significantly improved health outcomes, but development of FVIII inhibitory antibodies and breakthrough bleeds during therapy significantly increase patient morbidity and mortality. Here we use sheep fetuses at the human equivalent of 16-18 gestational weeks, and we show that prenatal transplantation of human placental cells (107-108/kg) bioengineered to produce an optimized FVIII protein, results in considerable elevation in plasma FVIII levels that persists for >3 years post-treatment. Cells engraft in major organs, and none of the recipients mount immune responses to either the cells or the FVIII they produce. Thus, these studies attest to the feasibility, immunologic advantage, and safety of treating hemophilia A prior to birth.


Asunto(s)
Hemofilia A , Humanos , Animales , Femenino , Embarazo , Ovinos , Hemofilia A/genética , Factor VIII/genética , Factor VIII/metabolismo , Placenta/metabolismo , Coagulación Sanguínea , Feto/metabolismo
19.
J Gene Med ; 14(3): 169-81, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22262359

RESUMEN

BACKGROUND: A fundamental obstacle to using retroviral-mediated gene transfer (GT) to treat human diseases is the relatively low transduction levels that have been achieved in clinically relevant human cells. We previously showed that performing GT in utero overcomes this obstacle and results in significant levels of transduction within multiple fetal organs, with different tissues exhibiting optimal transduction at different developmental stages. We undertook the present study aiming to elucidate the mechanism for this age-dependent transduction, testing the two factors that we hypothesized could be responsible: (i) the proliferative status of the tissue at the time of GT and (ii) the expression level of the amphotropic PiT-2 receptor. METHODS: Immunofluorescence was performed on tissues from sheep of varying developmental stages to assess the proliferative status of the predominant cells within each organ as a function of age. After developing an enzyme-linked immunosorbent assay (ELISA) and a quantitative reverse transcription chain reaction (qRT-PCR) assay, we then quantified PiT-2 expression at the protein and mRNA levels, respectively. RESULTS: The results obtained indicate that the proliferative status of organs at the time of fetal GT is not the major determinant governing transduction efficiency. By contrast, our ELISA and qRT-PCR analyses demonstrated that PiT-2 mRNA and protein levels vary with gestational age, correlating with the observed differences in transduction efficiency. CONCLUSIONS: The findings of the present study explain the age-related differences that we previously observed in transduction efficiency after in utero GT. They also suggest it may be possible to achieve relatively selective GT to specific tissues by performing in utero GT when levels of PiT-2 are maximal in the desired target organ.


Asunto(s)
Feto/metabolismo , Técnicas de Transferencia de Gen , Edad Gestacional , Receptores Virales/metabolismo , Transducción Genética/métodos , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Vectores Genéticos , Retroviridae , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ovinos
20.
Front Immunol ; 13: 1011143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225917

RESUMEN

The FDA has predicted that at least 10-20 gene therapy products will be approved by 2025. The surge in the development of such therapies can be attributed to the advent of safe and effective gene delivery vectors such as adeno-associated virus (AAV). The enormous potential of AAV has been demonstrated by its use in over 100 clinical trials and the FDA's approval of two AAV-based gene therapy products. Despite its demonstrated success in some clinical settings, AAV-based gene therapy is still plagued by issues related to host immunity, and recent studies have suggested that AAV vectors may actually integrate into the host cell genome, raising concerns over the potential for genotoxicity. To better understand these issues and develop means to overcome them, preclinical model systems that accurately recapitulate human physiology are needed. The objective of this review is to provide a brief overview of AAV gene therapy and its current hurdles, to discuss how 3D organoids, microphysiological systems, and body-on-a-chip platforms could serve as powerful models that could be adopted in the preclinical stage, and to provide some examples of the successful application of these models to answer critical questions regarding AAV biology and toxicity that could not have been answered using current animal models. Finally, technical considerations while adopting these models to study AAV gene therapy are also discussed.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/genética , Humanos , Organoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA