Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem ; 23(15): 4324-4332, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26142319

RESUMEN

Unspecific peroxygenases (UPOs, EC 1.11.2.1) have proved to be stable oxygen-transferring biocatalysts for H2O2-dependent transformation of pharmaceuticals. We have applied UPOs in a drug development program and consider the enzymatic approach in parallel to a conventional chemical synthesis of the human metabolites of the bile acid reabsorption inhibitor SAR548304. Chemical preparation of N,N-di-desmethyl metabolite was realized by a seven-step synthesis starting from a late precursor of SAR548304 and included among others palladium catalysis and laborious chromatographic purification with an overall yield of 27%. The enzymatic approach revealed that the UPO of Marasmius rotula is particularly suitable for selective N-dealkylation of the drug and enabled us to prepare both human metabolites via one-pot conversion with an overall yield of 66% N,N-di-desmethyl metabolite and 49% of N-mono-desmethylated compound in two separated kinetic-controlled reactions.


Asunto(s)
Glucosamina/análogos & derivados , Compuestos Heterocíclicos/química , Marasmius/enzimología , Oxigenasas de Función Mixta/metabolismo , Compuestos de Fenilurea/síntesis química , Catálisis , Glucosamina/síntesis química , Glucosamina/química , Glucosamina/metabolismo , Compuestos Heterocíclicos/síntesis química , Humanos , Peróxido de Hidrógeno/química , Paladio/química , Compuestos de Fenilurea/química , Compuestos de Fenilurea/metabolismo
2.
J Labelled Comp Radiopharm ; 56(9-10): 513-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24285530

RESUMEN

Enzymatic conversion of a drug can be an efficient alternative for the preparation of a complex metabolite compared with a multi-step chemical synthesis approach. Limitations exist for chemical methods for direct oxygen incorporation into organic molecules often suffering from low yields and unspecific oxidation and also for alternative whole-cell biotransformation processes, which require specific fermentation know-how. Stable oxygen-transferring biocatalysts such as unspecific peroxygenases (UPOs) could be an alternative for the synthesis of human drug metabolites and related stable isotope-labeled analogues. This work shows that UPOs can be used in combination with hydrogen/deuterium exchange for an efficient one-step process for the preparation of 4'-OH-diclofenac-d6. The scope of the reaction was investigated by screening of different peroxygenase subtypes for the transformation of selected deuterium-labeled substrates such as phenacetin-d3 or lidocaine-d3. Experiments with diclofenac-d7 revealed that the deuterium-labeling does not affect the kinetic parameters. By using the latter substrate and H2 (18) O2 as cosubstrate, it was possible to prepare a doubly isotope-labeled metabolite (4'-(18) OH-diclofenac-d6). UPOs offer certain practical advantages compared with P450 enzyme systems in terms of stability and ease of handling. Given these advantages, future work will expand the existing 'monooxygenation toolbox' of different fungal peroxygenases that mimic P450 in vitro reactions.


Asunto(s)
Agaricales/enzimología , Interacciones Farmacológicas , Oxigenasas de Función Mixta/metabolismo , Sondas Moleculares/metabolismo , Preparaciones Farmacéuticas/metabolismo , Medición de Intercambio de Deuterio , Humanos , Hidroxilación , Preparaciones Farmacéuticas/química
3.
Anal Biochem ; 421(1): 327-9, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22037293

RESUMEN

Rapid and simple spectrophotometric methods are required for the unambiguous detection of recently discovered fungal peroxygenases in vivo and in vitro. This paper describes a peroxygenase-specific assay using 5-nitro-1,3-benzodioxole as substrate. The product, 4-nitrocatechol, produces a yellow color at pH 7, which can be followed over time at 425 nm (ε(425)=9,700 M(-1) cm(-1)), and a red color when adjusted to pH >12, which can be measured in form of an end-point determination at 514 nm (ε(514)=11,400 M(-1) cm(-1)). The assay is suitable for detecting peroxygenase activities in complex growth media and environmental samples as well as for high-throughput screenings.


Asunto(s)
Hongos/enzimología , Oxigenasas de Función Mixta/análisis , Espectrofotometría/métodos , Catecoles/metabolismo , Dioxoles/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Concentración de Iones de Hidrógeno , Oxigenasas de Función Mixta/metabolismo
4.
J Biol Chem ; 284(43): 29343-9, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19713216

RESUMEN

Many litter-decay fungi secrete heme-thiolate peroxygenases that oxidize various organic chemicals, but little is known about the role or mechanism of these enzymes. We found that the extracellular peroxygenase of Agrocybe aegerita catalyzed the H2O2-dependent cleavage of environmentally significant ethers, including methyl t-butyl ether, tetrahydrofuran, and 1,4-dioxane. Experiments with tetrahydrofuran showed the reaction was a two-electron oxidation that generated one aldehyde group and one alcohol group, yielding the ring-opened product 4-hydroxybutanal. Investigations with several model substrates provided information about the route for ether cleavage: (a) steady-state kinetics results with methyl 3,4-dimethoxybenzyl ether, which was oxidized to 3,4-dimethoxybenzaldehyde, gave parallel double reciprocal plots suggestive of a ping-pong mechanism (K(m)((peroxide)), 1.99 +/- 0.25 mM; K(m)((ether)), 1.43 +/- 0.23 mM; k(cat), 720 +/- 87 s(-1)), (b) the cleavage of methyl 4-nitrobenzyl ether in the presence of H2(18)O2 resulted in incorporation of 18O into the carbonyl group of the resulting 4-nitrobenzaldehyde, and (c) the demethylation of 1-methoxy-4-trideuteromethoxybenzene showed an observed intramolecular deuterium isotope effect [(k(H)/k(D))(obs)] of 11.9 +/- 0.4. These results suggest a hydrogen abstraction and oxygen rebound mechanism that oxidizes ethers to hemiacetals, which subsequently hydrolyze. The peroxygenase appeared to lack activity on macromolecular ethers, but otherwise exhibited a broad substrate range. It may accordingly have a role in the biodegradation of natural and anthropogenic low molecular weight ethers in soils and plant litter.


Asunto(s)
Agrocybe/enzimología , Éteres/química , Proteínas Fúngicas/química , Peróxido de Hidrógeno/química , Oxigenasas de Función Mixta/química , Modelos Químicos , Cinética , Oxidación-Reducción , Especificidad por Sustrato
5.
Bioorg Med Chem Lett ; 19(11): 3085-7, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19394224

RESUMEN

An extracellular peroxygenase of Agrocybe aegerita catalyzed the H(2)O(2)-dependent hydroxylation of the multi-function beta-adrenergic blocker propranolol (1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2-ol) and the non-steroidal anti-inflammatory drug diclofenac (2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid) to give the human drug metabolites 5-hydroxypropranolol (5-OHP) and 4'-hydroxydiclofenac (4'-OHD). The reactions proceeded regioselectively with high isomeric purity and gave the desired 5-OHP and 4'-OHD in yields up to 20% and 65%, respectively. (18)O-labeling experiments showed that the phenolic hydroxyl groups in 5-OHP and 4'-OHD originated from H(2)O(2), which establishes that the reaction is mechanistically a peroxygenation. Our results raise the possibility that fungal peroxygenases may be useful for versatile, cost-effective, and scalable syntheses of drug metabolites.


Asunto(s)
Diclofenaco/análogos & derivados , Oxigenasas de Función Mixta/metabolismo , Propranolol/análogos & derivados , Propranolol/química , Agrocybe/enzimología , Biocatálisis , Sistema Enzimático del Citocromo P-450/metabolismo , Diclofenaco/química , Peróxido de Hidrógeno/metabolismo , Propranolol/metabolismo , Estereoisomerismo
6.
J Inorg Biochem ; 183: 84-93, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29604496

RESUMEN

Two unspecific peroxygenases (UPO, EC 1.11.2.1) from the basidiomycetous fungi Marasmius rotula and Marasmius wettsteinii oxidized steroids with hydroxyacetyl and hydroxyl functionalities at C17 - such as cortisone, Reichstein's substance S and prednisone - via stepwise oxygenation and final fission of the side chain. The sequential oxidation started with the hydroxylation of the terminal carbon (C21) leading to a stable geminal alcohol (e.g. cortisone 21-gem-diol) and proceeded via a second oxygenation resulting in the corresponding α-ketocarboxylic acid (e.g. cortisone 21-oic acid). The latter decomposed under formation of adrenosterone (4-androstene-3,11,17-trione) as well as formic acid and carbonic acid (that is in equilibrium with carbon dioxide); fission products comprising two carbon atoms such as glycolic acid or glyoxylic acid were not detected. Protein models based on the crystal structure data of MroUPO (Marasmius rotula unspecific peroxygenase) revealed that the bulky cortisone molecule suitably fits into the enzyme's access channel, which enables the heme iron to come in close contact to the carbons (C21, C20) of the steroidal side chain. ICP-MS analysis of purified MroUPO confirmed the presence of magnesium supposedly stabilizing the porphyrin ring system.


Asunto(s)
Corticoesteroides/química , Corticoesteroides/metabolismo , Oxigenasas de Función Mixta/metabolismo , Catálisis , Glicolatos/química , Glioxilatos/química , Espectrometría de Masas , Oxidación-Reducción , Especificidad por Sustrato
7.
Biochem Pharmacol ; 82(7): 789-96, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21723855

RESUMEN

The synthesis of hydroxylated and O- or N-dealkylated human drug metabolites (HDMs) via selective monooxygenation remains a challenging task for synthetic organic chemists. Here we report that aromatic peroxygenases (APOs; EC 1.11.2.1) secreted by the agaric fungi Agrocybe aegerita and Coprinellus radians catalyzed the H2O2-dependent selective monooxygenation of diverse drugs, including acetanilide, dextrorphan, ibuprofen, naproxen, phenacetin, sildenafil and tolbutamide. Reactions included the hydroxylation of aromatic rings and aliphatic side chains, as well as O- and N-dealkylations and exhibited different regioselectivities depending on the particular APO used. At best, desired HDMs were obtained in yields greater than 80% and with isomeric purities up to 99%. Oxidations of tolbutamide, acetanilide and carbamazepine in the presence of H2¹8O2 resulted in almost complete incorporation of ¹8O into the corresponding products, thus establishing that these reactions are peroxygenations. The deethylation of phenacetin-d1 showed an observed intramolecular deuterium isotope effect [(k(H)/k(D))(obs)] of 3.1±0.2, which is consistent with the existence of a cytochrome P450-like intermediate in the reaction cycle of APOs. Our results indicate that fungal peroxygenases may be useful biocatalytic tools to prepare pharmacologically relevant drug metabolites.


Asunto(s)
Agaricales/enzimología , Agrocybe/enzimología , Oxigenasas de Función Mixta/química , Preparaciones Farmacéuticas/química , Remoción de Radical Alquila , Peróxido de Hidrógeno/química , Hidroxilación , Cinética , Oxidación-Reducción , Isótopos de Oxígeno , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA