Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922336

RESUMEN

Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a long latency period and dismal prognosis. Recently, tazemetostat (EPZ-6438), an inhibitor of the histone methyltransferase EZH2, has entered clinical trials due to the antiproliferative effects reported on MPM cells. However, the direct and indirect effects of epigenetic reprogramming on the tumor microenvironment are hitherto unexplored. To investigate the impact of tumor-associated macrophages (TAMs) on MPM cell responsiveness to tazemetostat, we developed a three-dimensional MPM spheroid model that recapitulates in vitro, both monocytes' recruitment in tumors and their functional differentiation toward a TAM-like phenotype (Mo-TAMs). Along with an increased expression of genes for monocyte chemoattractants, inhibitory immune checkpoints, immunosuppressive and M2-like molecules, Mo-TAMs promote tumor cell proliferation and spreading. Prolonged treatment of MPM spheroids with tazemetostat enhances both the recruitment of Mo-TAMs and the expression of their protumor phenotype. Therefore, Mo-TAMs profoundly suppress the antiproliferative effects due to EZH2 inhibition in MPM cells. Overall, our findings indicate that TAMs are a driving force for MPM growth, progression, and resistance to tazemetostat; therefore, strategies of TAM depletion might be evaluated to improve the therapeutic efficacy of pharmacological inhibition of EZH2.


Asunto(s)
Benzamidas/farmacología , Compuestos de Bifenilo/farmacología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Mesotelioma/patología , Monocitos/patología , Morfolinas/farmacología , Piridonas/farmacología , Esferoides Celulares/patología , Macrófagos Asociados a Tumores/patología , Proliferación Celular , Humanos , Mesotelioma/tratamiento farmacológico , Mesotelioma/metabolismo , Monocitos/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Células Tumorales Cultivadas , Microambiente Tumoral , Macrófagos Asociados a Tumores/efectos de los fármacos
2.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962159

RESUMEN

Tumor-associated macrophages (TAMs) are the main population of myeloid cells infiltrating solid tumors and the pivotal orchestrators of cancer-promoting inflammation. However, due to their exceptional plasticity, macrophages can be also key effector cells and powerful activators of adaptive anti-tumor immunity. This functional heterogeneity is emerging in human tumors, colorectal cancer (CRC) in particular, where the dynamic co-existence of different macrophage subtypes influences tumor development, outcome, and response to therapies. Intestinal macrophages are in close interaction with enteric microbiota, which contributes to carcinogenesis and affects treatment outcomes. This interplay may be particularly relevant in CRC, one of the most prevalent and lethal cancer types in the world. Therefore, both macrophages and intestinal microbiota are considered promising prognostic indicators and valuable targets for new therapeutic approaches. Here, we discuss the current understanding of the molecular circuits underlying the interplay between macrophages and microbiota in CRC development, progression, and response to both conventional therapies and immunotherapies.


Asunto(s)
Carcinogénesis/inmunología , Neoplasias del Colon/inmunología , Neoplasias Colorrectales/inmunología , Microbioma Gastrointestinal , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Carcinogénesis/metabolismo , Neoplasias del Colon/microbiología , Neoplasias del Colon/patología , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Citocinas/metabolismo , Humanos , Inflamación/inmunología , Inflamación/microbiología , Inflamación/patología , Pronóstico , Transducción de Señal/inmunología , Macrófagos Asociados a Tumores/citología
3.
Semin Immunol ; 27(4): 237-48, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26561250

RESUMEN

Macrophages are unique cells for origin, heterogeneity and plasticity. At steady state most of macrophages are derived from fetal sources and maintained in adulthood through self-renewing. Despite sharing common progenitors, a remarkable heterogeneity characterized tissue-resident macrophages indicating that local signals educate them to express organ-specific functions. Macrophages are extremely plastic: chromatin landscape and transcriptional programs can be dynamically re-shaped in response to microenvironmental changes. Owing to their ductility, macrophages are crucial orchestrators of both initiation and resolution of immune responses and key supporters of tissue development and functions in homeostatic and pathological conditions. Herein, we describe current understanding of heterogeneity and plasticity of macrophages using the M1-M2 dichotomy as operationally useful simplification of polarized activation. We focused on the complex network of signaling cascades, metabolic pathways, transcription factors, and epigenetic changes that control macrophage activation. In particular, this network was addressed in sepsis, as a paradigm of a pathological condition determining dynamic macrophage reprogramming.


Asunto(s)
Epigénesis Genética , Inflamación/inmunología , Activación de Macrófagos , Animales , Humanos , Neoplasias/inmunología , Obesidad/inmunología , Cicatrización de Heridas
4.
Carcinogenesis ; 39(9): 1095-1104, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-29982315

RESUMEN

New evidences indicate that the metabolic instruction of immunity (immune metabolism) results from the integration of cell metabolism and whole-body metabolism, which are both influenced by nutrition, microbiome metabolites and disease-driven metabolism (e.g. cancer metabolism). Cancer metabolism influences the immunological homeostasis and promotes immune alterations that support disease progression, hence influencing the clinical outcome. Cancer cells display increased glucose uptake and fermentation of glucose to lactate, even in the presence of completely functioning mitochondria. A major side effect of this event is immunosuppression, characterized by limited immunogenicity of cancer cells and restriction of the therapeutic efficacy of anticancer immunotherapy. Here, we discuss how the metabolism of myeloid cells associated with cancer contributes to the differentiation of their suppressive phenotype and therefore to cancer immune evasion.


Asunto(s)
Tolerancia Inmunológica/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neoplasias/inmunología , Neoplasias/metabolismo , Escape del Tumor/inmunología , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Microbiota/inmunología , Escape del Tumor/fisiología , Microambiente Tumoral/inmunología
5.
Pharmacol Res ; 135: 25-36, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30031171

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is the bottleneck enzyme of the NAD salvage pathway and thereby is a controller of intracellular NAD concentrations. It has been long known that the same enzyme can be secreted by a number of cell types and acts as a cytokine, although its receptor is at present unknown. Investigational compounds have been developed that target the enzymatic activity as well as the extracellular action (i.e. neutralizing antibodies). The present contribution reviews the evidence that links intracellular and extracellular NAMPT to myeloid biology, for example governing monocyte/macrophage differentiation, polarization and migration. Furthermore, it reviews the evidence that links this protein to some disorders in which myeloid cells have a prominent role (acute infarct, inflammatory bowel disease, acute lung injury and rheumatoid arthritis) and the data showing that inhibition of the enzymatic activity or the neutralization of the cytokine is beneficial in preclinical animal models.


Asunto(s)
Macrófagos/inmunología , Monocitos/inmunología , Nicotinamida Fosforribosiltransferasa/inmunología , Animales , Humanos , Inflamación/inmunología
6.
Cancer Immunol Immunother ; 66(8): 1025-1036, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28401258

RESUMEN

Due to their ability to differentiate into various cell types and to support tissue regeneration, stem cells simultaneously became the holy grail of regenerative medicine and the evil obstacle in cancer therapy. Several studies have investigated niche-related conditions that favor stemness properties and increasingly emphasized their association with an inflammatory environment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are major orchestrators of cancer-related inflammation, able to dynamically express different polarized inflammatory programs that promote tumor outgrowth, including tumor angiogenesis, immunosuppression, tissue remodeling and metastasis formation. In addition, these myeloid populations support cancer cell stemness, favoring tumor maintenance and progression, as well as resistance to anticancer treatments. Here, we discuss inflammatory circuits and molecules expressed by TAMs and MDSCs as guiding forces of cancer cell stemness.


Asunto(s)
Inmunoterapia/métodos , Inflamación/inmunología , Macrófagos/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neoplasias/inmunología , Células Madre Neoplásicas/fisiología , Animales , Carcinogénesis , Regulación Neoplásica de la Expresión Génica , Humanos , Tolerancia Inmunológica , Inflamación/terapia , Neoplasias/terapia , Microambiente Tumoral
7.
Cell Mol Life Sci ; 72(21): 4111-26, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26210152

RESUMEN

Macrophages are cells of the innate immunity constituting the mononuclear phagocyte system and endowed with remarkable different roles essential for defense mechanisms, development of tissues, and homeostasis. They derive from hematopoietic precursors and since the early steps of fetal life populate peripheral tissues, a process continuing throughout adult life. Although present essentially in every organ/tissue, macrophages are more abundant in the gastro-intestinal tract, liver, spleen, upper airways, and brain. They have phagocytic and bactericidal activity and produce inflammatory cytokines that are important to drive adaptive immune responses. Macrophage functions are settled in response to microenvironmental signals, which drive the acquisition of polarized programs, whose extremes are simplified in the M1 and M2 dichotomy. Functional skewing of monocyte/macrophage polarization occurs in physiological conditions (e.g., ontogenesis and pregnancy), as well as in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer) and is now considered a key determinant of disease development and/or regression. Here, we will review evidence supporting a dynamic skewing of macrophage functions in disease, which may provide a basis for macrophage-centered therapeutic strategies.


Asunto(s)
Infecciones/patología , Macrófagos/patología , Macrófagos/fisiología , Neoplasias/patología , Obesidad/patología , Polaridad Celular , Infecciones por VIH/patología , Infecciones por Helicobacter/patología , Homeostasis , Humanos , Hipersensibilidad/patología , Infecciones/microbiología , Infecciones/parasitología , Infecciones/virología , Obesidad/metabolismo , Sepsis/patología , Tuberculosis/patología , Cicatrización de Heridas
8.
Int Immunol ; 25(2): 67-75, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23179187

RESUMEN

Oxygen availability affects cell differentiation, survival and function, with profound consequences on tissue homeostasis, inflammation and immunity. A gradient of oxygen levels is present in most organs of the body as well as in virtually every site of inflammation, damaged or pathological tissue. As a consequence, infiltrating leukocytes, macrophages in particular, are equipped with the capacity to shift their metabolism to anaerobic glycolysis, to generate ATP and induce the expression of factors that increase the supply of oxygen and nutrients. Strikingly, low oxygen conditions (hypoxia) and inflammatory signals share selected transcriptional events, including the activation of members of both the hypoxia-inducible factor and nuclear factor κB families, which may converge to activate specific cell programs. In the pathological response to hypoxia, cancer in particular, macrophages act as orchestrators of disease evolution and their number can be used as a prognostic marker. Here we review mechanisms of macrophage adaptation to hypoxia, their role in disease as well as new perspectives for their therapeutic targeting.


Asunto(s)
Hipoxia/metabolismo , Macrófagos/metabolismo , Humanos , Hipoxia/fisiopatología
9.
Cancers (Basel) ; 15(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36900330

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive thoracic cancer that is mainly associated with prior exposure to asbestos fibers. Despite being a rare cancer, its global rate is increasing and the prognosis remains extremely poor. Over the last two decades, despite the constant research of new therapeutic options, the combination chemotherapy with cisplatin and pemetrexed has remained the only first-line therapy for MPM. The recent approval of immune checkpoint blockade (ICB)-based immunotherapy has opened new promising avenues of research. However, MPM is still a fatal cancer with no effective treatments. Enhancer of zeste homolog 2 (EZH2) is a histone methyl transferase that exerts pro-oncogenic and immunomodulatory activities in a variety of tumors. Accordingly, a growing number of studies indicate that EZH2 is also an oncogenic driver in MPM, but its effects on tumor microenvironments are still largely unexplored. This review describes the state-of-the-art of EZH2 in MPM biology and discusses its potential use both as a diagnostic and therapeutic target. We highlight current gaps of knowledge, the filling of which will likely favor the entry of EZH2 inhibitors within the treatment options for MPM patients.

10.
Eur J Immunol ; 41(11): 3270-80, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21805465

RESUMEN

A balance between parasite elimination and control of infection-associated pathogenicity is crucial for resistance to African trypanosomiasis. By producing TNF and NO, CD11b(+) myeloid cells with a classical activation status (M1) contribute to parasitemia control in experimental Trypanosoma congolense infection in resistant C57BL/6 mice. However, in these mice, IL-10 is required to regulate M1-associated inflammation, avoiding tissue/liver damage and ensuring prolonged survival. In an effort to dissect the mechanisms behind the anti-inflammatory activity of IL-10 in T. congolense-infected C57BL/6 mice, we show, using an antibody blocking the IL-10 receptor, that IL-10 impairs the accumulation and M1 activation of TNF/iNOS-producing CD11b(+) Ly6C(+) cells in the liver. Using infected IL-10(flox/flox) LysM-Cre(+/+) mice, we show that myeloid cell-derived IL-10 limits M1 activation of CD11b(+) Ly6C(+) cells specifically at the level of TNF production. Moreover, higher production of TNF in infected IL-10(flox/flox) LysM-Cre(+/+) mice is associated with reduced nuclear accumulation of the NF-κB p50 subunit in CD11b(+) M1 cells. Furthermore, in infected p50(-/-) mice, TNF production by CD11b(+) Ly6C(+) cells and liver injury increases. These data suggest that preferential nuclear accumulation of p50 represents an IL-10-dependent anti-inflammatory mechanism in M1-type CD11b(+) myeloid cells that regulates the production of pathogenic TNF during T. congolense infection in resistant C57BL/6 mice.


Asunto(s)
Interleucina-10/inmunología , Células Mieloides/inmunología , Subunidad p50 de NF-kappa B/inmunología , Trypanosoma congolense/inmunología , Tripanosomiasis Africana/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Western Blotting , Separación Celular , Citometría de Flujo , Interleucina-10/metabolismo , Hígado/citología , Hígado/inmunología , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Transducción de Señal/inmunología , Tripanosomiasis Africana/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis
11.
Proc Natl Acad Sci U S A ; 106(35): 14978-83, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19706447

RESUMEN

Cells of the monocyte-macrophage lineage play a central role in the orchestration and resolution of inflammation. Plasticity is a hallmark of mononuclear phagocytes, and in response to environmental signals these cells undergo different forms of polarized activation, the extremes of which are called classic or M1 and alternative or M2. NF-kappaB is a key regulator of inflammation and resolution, and its activation is subject to multiple levels of regulation, including inhibitory, which finely tune macrophage functions. Here we identify the p50 subunit of NF-kappaB as a key regulator of M2-driven inflammatory reactions in vitro and in vivo. p50 NF-kappaB inhibits NF-kappaB-driven, M1-polarizing, IFN-beta production. Accordingly, p50-deficient mice show exacerbated M1-driven inflammation and defective capacity to mount allergy and helminth-driven M2-polarized inflammatory reactions. Thus, NF-kappaB p50 is a key component in the orchestration of M2-driven inflammatory reactions.


Asunto(s)
Polaridad Celular , Tolerancia Inmunológica , Macrófagos/inmunología , Macrófagos/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Animales , Células Cultivadas , Endotoxinas/farmacología , Humanos , Interferón beta/biosíntesis , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Ratones Noqueados , Subunidad p50 de NF-kappa B/deficiencia , Factor de Transcripción STAT1/metabolismo
12.
iScience ; 25(4): 104147, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35402885

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT), alongside being a crucial enzyme in NAD synthesis, has been shown to be a secreted protein (eNAMPT), whose levels are increased in patients affected by immune-mediated disorders. Accordingly, preclinical studies have highlighted that eNAMPT participates in the pathogenesis of several inflammatory diseases. Herein, we analyzed the effects of eNAMPT on macrophage-driven inflammation. RNAseq analysis of peritoneal macrophages (PECs) demonstrates that eNAMPT triggers an M1-skewed transcriptional program, and this effect is not dependent on the enzymatic activity. Noteworthy, both in PECs and in human monocyte-derived macrophages, eNAMPT selectively boosts IFNγ-driven transcriptional activation via STAT1/3 phosphorylation. Importantly, the secretion of eNAMPT promotes the chemotactic recruitment of myeloid cells, therefore providing a potential positive feedback loop to foster inflammation. Last, we report that these events are independent of the activation of TLR4, the only eNAMPT receptor that has hitherto been recognized, prompting the knowledge that other receptors are involved.

13.
Cancers (Basel) ; 14(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35158779

RESUMEN

In recent years, the immune system has emerged as a critical regulator of tumor development, progression and dissemination. Advanced therapeutic approaches targeting immune cells are currently under clinical use and improvement for the treatment of patients affected by advanced malignancies. Among these, anti-PD1/PD-L1 and anti-CTLA4 immune checkpoint inhibitors (ICIs) are the most effective immunotherapeutic drugs at present. In spite of these advances, great variability in responses to therapy exists among patients, probably due to the heterogeneity of both cancer cells and immune responses, which manifest in diverse forms in the tumor microenvironment (TME). The variability of the immune profile within TME and its prognostic significance largely depend on the frequency of the infiltrating myeloid cells, which often represent the predominant population, characterized by high phenotypic heterogeneity. The generation of heterogeneous myeloid populations endowed with tumor-promoting activities is typically promoted by growing tumors, indicating the sequential levels of myeloid reprogramming as possible antitumor targets. This work reviews the current knowledge on the events governing protumoral myelopoiesis, analyzing the mechanisms that drive the expansion of major myeloid subsets, as well as their functional properties, and highlighting recent translational strategies for clinical developments.

14.
Eur J Immunol ; 40(8): 2131-3, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20623553

RESUMEN

The construction of an inflammatory microenvironment provides the fuel for cancer development and progression. Hence, solid tumors promote infiltration of leukocyte populations, among which tumor-associated macrophages (TAM) represent a paradigm for cancer-promoting inflammation. TAM orchestrate various aspects of cancer, including diversion and skewing of adaptive responses, cell growth, angiogenesis, matrix deposition and remodelling, the construction of a metastatic niche and actual metastasis, response to hormones and chemotherapeutic agents. Several lines of evidence indicate that TAM show a remarkable degree of plasticity and functional heterogeneity, suggesting that during tumor progression macrophages undergo a phenotypic "switch", eventually exhibiting the alternatively activated, "M2", phenotype that is associated with immunosuppression, promotion of tumor angiogenesis and metastasis. Although recent studies have attempted to address the role of microenvironmental signals on TAM "reprogramming", the interplay between innate and adaptive immunity is emerging as a crucial step of this event. In this issue of the European Journal of Immunology, a study demonstrates that B1 lymphocytes expressing IL-10 play a key role in promoting a pro-tumoral M2-biased phenotype of macrophages. This article defines a new in vivo pathway of macrophage polarization and suggests that targeting B cells is a possible therapeutic intervention to reinstate anti-cancer functions by TAM.


Asunto(s)
Linfocitos B/metabolismo , Comunicación Celular , Terapia de Inmunosupresión , Macrófagos/metabolismo , Neoplasias/inmunología , Inmunidad Adaptativa , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Comunicación Celular/inmunología , Diferenciación Celular , Progresión de la Enfermedad , Inmunidad Innata , Inflamación , Interleucina-10/inmunología , Interleucina-10/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Ratones , Neoplasias/patología , Neoplasias/fisiopatología , Neoplasias/terapia , Transducción de Señal , Activación Transcripcional
15.
Pharmaceutics ; 13(4)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808361

RESUMEN

The spread of antimicrobial-resistant pathogens typically existing in biofilm formation and the recent COVID-19 pandemic, although unrelated phenomena, have demonstrated the urgent need for methods to combat such increasing threats. New avenues of research for natural molecules with desirable properties to alleviate this situation have, therefore, been expanding. Biosurfactants comprise a group of unique and varied amphiphilic molecules of microbial origin capable of interacting with lipidic membranes/components of microorganisms and altering their physicochemical properties. These features have encouraged closer investigations of these microbial metabolites as new pharmaceutics with potential applications in clinical, hygiene and therapeutic fields. Mounting evidence has indicated that biosurfactants have antimicrobial, antibiofilm, antiviral, immunomodulatory and antiproliferative activities that are exploitable in new anticancer treatments and wound healing applications. Some biosurfactants have already been approved for use in clinical, food and environmental fields, while others are currently under investigation and development as antimicrobials or adjuvants to antibiotics for microbial suppression and biofilm eradication strategies. Moreover, due to the COVID-19 pandemic, biosurfactants are now being explored as an alternative to current products or procedures for effective cleaning and handwash formulations, antiviral plastic and fabric surface coating agents for shields and masks. In addition, biosurfactants have shown promise as drug delivery systems and in the medicinal relief of symptoms associated with SARS-CoV-2 acute respiratory distress syndrome.

16.
Semin Cancer Biol ; 18(5): 349-55, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18467122

RESUMEN

Macrophages are a fundamental part of the innate defense mechanisms, which can promote specific immunity by inducing T cell recruitment and activation. Despite this, their presence within the tumour microenvironment has been associated with enhanced tumour progression and shown to promote cancer cell growth and spread, angiogenesis and immunosuppression. This paradoxical role of macrophages in cancer finds an explanation in their functional plasticity, that may result in the polarized expression of either pro- or anti-tumoural functions. Key players in the setting of their phenotype are the microenvironmental signals to which macrophages are exposed, which selectively tune their functions within a functional spectrum encompassing the M1 and M2 extremes. Here, we discuss recent findings suggesting that targeting tumour-associated macrophages (TAMs) polarization may represent a novel therapeutic strategy against cancer.


Asunto(s)
Macrófagos/fisiología , Neoplasias/inmunología , Neoplasias/fisiopatología , Animales , Citocinas/inmunología , Citocinas/metabolismo , Progresión de la Enfermedad , Humanos , Inmunidad Activa , Inflamación/inmunología , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Monocitos/inmunología , Monocitos/metabolismo
17.
J Mol Med (Berl) ; 98(4): 595-612, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32338310

RESUMEN

Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is increased in inflammatory bowel disease (IBD) patients, and its serum levels correlate with a worse prognosis. In the present manuscript, we show that eNAMPT serum levels are increased in IBD patients that fail to respond to anti-TNFα therapy (infliximab or adalimumab) and that its levels drop in patients that are responsive to these therapies, with values comparable with healthy subjects. Furthermore, eNAMPT administration in dinitrobenzene sulfonic acid (DNBS)-treated mice exacerbates the symptoms of colitis, suggesting a causative role of this protein in IBD. To determine the druggability of this cytokine, we developed a novel monoclonal antibody (C269) that neutralizes in vitro the cytokine-like action of eNAMPT and that reduces its serum levels in rodents. Of note, this newly generated antibody is able to significantly reduce acute and chronic colitis in both DNBS- and dextran sulfate sodium (DSS)-induced colitis. Importantly, C269 ameliorates the symptoms by reducing pro-inflammatory cytokines. Specifically, in the lamina propria, a reduced number of inflammatory monocytes, neutrophils, Th1, and cytotoxic T lymphocytes are found upon C269 treatment. Our data demonstrate that eNAMPT participates in IBD and, more importantly, that eNAMPT-neutralizing antibodies are endowed with a therapeutic potential in IBD. KEY MESSAGES: What are the new findings? Higher serum eNAMPT levels in IBD patients might decrease response to anti-TNF therapy. The cytokine-like activity of eNAMPT may be neutralized with a monoclonal antibody. Neutralization of eNAMPT ameliorates acute and chronic experimental colitis. Neutralization of eNAMPT limits the expression of IBD inflammatory signature. Neutralization of eNAMPT impairs immune cell infiltration in lamina propria.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Colitis/etiología , Citocinas/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Animales , Biomarcadores , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Espacio Extracelular/metabolismo , Mediadores de Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Ratones , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo
18.
Cancer Res ; 80(13): 2874-2888, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32265223

RESUMEN

Myeloid-derived suppressor cells (MDSC) include immature monocytic (M-MDSC) and granulocytic (PMN-MDSC) cells that share the ability to suppress adaptive immunity and to hinder the effectiveness of anticancer treatments. Of note, in response to IFNγ, M-MDSCs release the tumor-promoting and immunosuppressive molecule nitric oxide (NO), whereas macrophages largely express antitumor properties. Investigating these opposing activities, we found that tumor-derived prostaglandin E2 (PGE2) induces nuclear accumulation of p50 NF-κB in M-MDSCs, diverting their response to IFNγ toward NO-mediated immunosuppression and reducing TNFα expression. At the genome level, p50 NF-κB promoted binding of STAT1 to regulatory regions of selected IFNγ-dependent genes, including inducible nitric oxide synthase (Nos2). In agreement, ablation of p50 as well as pharmacologic inhibition of either the PGE2 receptor EP2 or NO production reprogrammed M-MDSCs toward a NOS2low/TNFαhigh phenotype, restoring the in vivo antitumor activity of IFNγ. Our results indicate that inhibition of the PGE2/p50/NO axis prevents MDSC-suppressive functions and restores the efficacy of anticancer immunotherapy. SIGNIFICANCE: Tumor-derived PGE2-mediated induction of nuclear p50 NF-κB epigenetically reprograms the response of monocytic cells to IFNγ toward an immunosuppressive phenotype, thus retrieving the anticancer properties of IFNγ. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/13/2874/F1.large.jpg.


Asunto(s)
Diferenciación Celular , Neoplasias Colorrectales/patología , Dinoprostona/farmacología , Monocitos/patología , Células Supresoras de Origen Mieloide/patología , Subunidad p50 de NF-kappa B/metabolismo , Neoplasias Pancreáticas/patología , Animales , Apoptosis , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Humanos , Tolerancia Inmunológica , Interferón gamma/metabolismo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Subunidad p50 de NF-kappa B/genética , Óxido Nítrico/metabolismo , Oxitócicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Células Tumorales Cultivadas
20.
Front Immunol ; 10: 949, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31130949

RESUMEN

Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells with major regulatory functions and rise during pathological conditions, including cancer, infections and autoimmune conditions. MDSC expansion is generally linked to inflammatory processes that emerge in response to stable immunological stress, which alter both magnitude and quality of the myelopoietic output. Inability to reinstate physiological myelopoiesis would fall in an "emergency state" that perpetually reprograms myeloid cells toward suppressive functions. While differentiation and reprogramming of myeloid cells toward an immunosuppressive phenotype can be considered the result of a multistep process that originates in the bone marrow and culminates in the tumor microenvironment, the identification of its driving events may offer potential therapeutic approaches in different pathologies. Indeed, whereas expansion of MDSCs, in both murine and human tumor bearers, results in reduced immune surveillance and antitumor cytotoxicity, placing an obstacle to the effectiveness of anticancer therapies, adoptive transfer of MDSCs has shown therapeutic benefits in autoimmune disorders. Here, we describe relevant mechanisms of myeloid cell reprogramming leading to generation of suppressive MDSCs and discuss their therapeutic ductility in disease.


Asunto(s)
Células Supresoras de Origen Mieloide/inmunología , Animales , Autoinmunidad , Humanos , Tolerancia Inmunológica , Neoplasias/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA