Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurochem ; 161(2): 173-186, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35157328

RESUMEN

Severe traumatic brain injury (TBI) is associated with high rates of mortality and long-term disability linked to neurochemical abnormalities. Although purine derivatives play important roles in TBI pathogenesis in preclinical models, little is known about potential changes in purine levels and their implications in human TBI. We assessed cerebrospinal fluid (CSF) levels of purines in severe TBI patients as potential biomarkers that predict mortality and long-term dysfunction. This was a cross-sectional study performed in 17 severe TBI patients (Glasgow Coma Scale <8) and 51 controls. Two to 4 h after admission to ICU, patients were submitted to ventricular drainage and CSF collection for quantification of adenine and guanine purine derivatives by HPLC. TBI patients' survival was followed up to 3 days from admission. A neurofunctional assessment was performed through the modified Rankin Scale (mRS) 2 years after ICU admission. Purine levels were compared between control and TBI patients, and between surviving and non-surviving patients. Relative to controls, TBI patients presented increased CSF levels of GDP, guanosine, adenosine, inosine, hypoxanthine, and xanthine. Further, GTP, GDP, IMP, and xanthine levels were different between surviving and non-surviving patients. Among the purines, guanosine was associated with improved mRS (p = 0.042; r = -0.506). Remarkably, GTP displayed predictive value (AUC = 0.841, p = 0.024) for discriminating survival versus non-survival patients up to 3 days from admission. These results support TBI-specific purine signatures, suggesting GTP as a promising biomarker of mortality and guanosine as an indicator of long-term functional disability.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Biomarcadores/líquido cefalorraquídeo , Lesiones Traumáticas del Encéfalo/diagnóstico , Estudios Transversales , Escala de Coma de Glasgow , Guanosina , Guanosina Trifosfato , Humanos , Purinas , Xantina
2.
Mol Neurobiol ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313656

RESUMEN

The abuse of synthetic steroids, such as nandrolone decanoate (ND), is often associated with violent behavior, increasing the risk of traumatic brain injury (TBI). After a TBI, proteins like APP, ß-amyloid peptide-42 (Aß42), and phosphorylated tau (pTau) accumulate and trigger endoplasmic reticulum (ER) stress associated with an unfolded protein response (UPR). The involvement of mitochondrial bioenergetics in this context remains unexplored. We interrogate whether the abuse of ND before TBI alters the responses of ER stress and mitochondrial bioenergetics in connection with neurodegeneration and memory processing in mice. Male CF1 adult mice were administered ND (15 mg/kg) or vehicle (VEH) s.c. for 19 days, coinciding with the peak day of aggressive behavior, and then underwent cortical controlled impact (CCI) or sham surgery. Spatial memory was assessed through the Morris water maze task (MWM) post-TBI. In synaptosome preparations, i) we challenged mitochondrial complexes (I, II, and V) in a respirometry assay, employing metabolic substrates, an uncoupler, and inhibitors; and ii) assessed molecular biomarkers through Western blot. TBI significantly increased APP, Aß42, and pTauSer396 levels, along with ER-stress proteins, GRP78, ATF6, and CHOP, implying it primed apoptotic signaling. Concurrently, TBI reduced mitochondrial Ca2+ efflux in exchange with Na+, disturbed the formation/dissipation of membrane potential, increased H2O2 production, decreased biogenesis (PGC-1⍺ and TOM20), and ATP biosynthesis coupled with oxygen consumption. Unexpectedly, ND abuse before TBI attenuated the elevations in APP, Aß42, and pTauSer396, accompanied by a decrease in GRP78, ATF6, and CHOP levels, and partial normalization of mitochondrial-related endpoints. A principal component analysis revealed a key hierarchical signature featuring mitochondrial Ca2+ efflux, CHOP, GRP78, TOM20, H2O2, and bioenergetic efficiency as a unique variable (PC1) able to explain the memory deficits caused by TBI, as well as the preservation of memory fitness induced by prior ND abuse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA