Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 630(8015): 158-165, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38693268

RESUMEN

The liver has a unique ability to regenerate1,2; however, in the setting of acute liver failure (ALF), this regenerative capacity is often overwhelmed, leaving emergency liver transplantation as the only curative option3-5. Here, to advance understanding of human liver regeneration, we use paired single-nucleus RNA sequencing combined with spatial profiling of healthy and ALF explant human livers to generate a single-cell, pan-lineage atlas of human liver regeneration. We uncover a novel ANXA2+ migratory hepatocyte subpopulation, which emerges during human liver regeneration, and a corollary subpopulation in a mouse model of acetaminophen (APAP)-induced liver regeneration. Interrogation of necrotic wound closure and hepatocyte proliferation across multiple timepoints following APAP-induced liver injury in mice demonstrates that wound closure precedes hepatocyte proliferation. Four-dimensional intravital imaging of APAP-induced mouse liver injury identifies motile hepatocytes at the edge of the necrotic area, enabling collective migration of the hepatocyte sheet to effect wound closure. Depletion of hepatocyte ANXA2 reduces hepatocyte growth factor-induced human and mouse hepatocyte migration in vitro, and abrogates necrotic wound closure following APAP-induced mouse liver injury. Together, our work dissects unanticipated aspects of liver regeneration, demonstrating an uncoupling of wound closure and hepatocyte proliferation and uncovering a novel migratory hepatocyte subpopulation that mediates wound closure following liver injury. Therapies designed to promote rapid reconstitution of normal hepatic microarchitecture and reparation of the gut-liver barrier may advance new areas of therapeutic discovery in regenerative medicine.


Asunto(s)
Fallo Hepático Agudo , Regeneración Hepática , Animales , Femenino , Humanos , Masculino , Ratones , Acetaminofén/farmacología , Linaje de la Célula , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/farmacología , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/citología , Hígado/efectos de los fármacos , Hígado/patología , Fallo Hepático Agudo/patología , Fallo Hepático Agudo/inducido químicamente , Regeneración Hepática/efectos de los fármacos , Ratones Endogámicos C57BL , Necrosis/inducido químicamente , Medicina Regenerativa , Análisis de Expresión Génica de una Sola Célula , Cicatrización de Heridas
2.
Nature ; 575(7783): 512-518, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31597160

RESUMEN

Liver cirrhosis is a major cause of death worldwide and is characterized by extensive fibrosis. There are currently no effective antifibrotic therapies available. To obtain a better understanding of the cellular and molecular mechanisms involved in disease pathogenesis and enable the discovery of therapeutic targets, here we profile the transcriptomes of more than 100,000 single human cells, yielding molecular definitions for non-parenchymal cell types that are found in healthy and cirrhotic human liver. We identify a scar-associated TREM2+CD9+ subpopulation of macrophages, which expands in liver fibrosis, differentiates from circulating monocytes and is pro-fibrogenic. We also define ACKR1+ and PLVAP+ endothelial cells that expand in cirrhosis, are topographically restricted to the fibrotic niche and enhance the transmigration of leucocytes. Multi-lineage modelling of ligand and receptor interactions between the scar-associated macrophages, endothelial cells and PDGFRα+ collagen-producing mesenchymal cells reveals intra-scar activity of several pro-fibrogenic pathways including TNFRSF12A, PDGFR and NOTCH signalling. Our work dissects unanticipated aspects of the cellular and molecular basis of human organ fibrosis at a single-cell level, and provides a conceptual framework for the discovery of rational therapeutic targets in liver cirrhosis.


Asunto(s)
Células Endoteliales/patología , Cirrosis Hepática/patología , Hígado/patología , Macrófagos/patología , Análisis de la Célula Individual , Animales , Estudios de Casos y Controles , Linaje de la Célula , Sistema del Grupo Sanguíneo Duffy/metabolismo , Células Endoteliales/metabolismo , Femenino , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/citología , Cirrosis Hepática/genética , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Fenotipo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/metabolismo , Tetraspanina 29/metabolismo , Transcriptoma , Migración Transendotelial y Transepitelial
3.
Nat Commun ; 12(1): 4434, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290249

RESUMEN

Dyslipidemia is a main driver of cardiovascular diseases. The ability of macrophages to scavenge excess lipids implicate them as mediators in this process and understanding the mechanisms underlying macrophage lipid metabolism is key to the development of new treatments. Here, we investigated how adipose tissue macrophages regulate post-prandial cholesterol transport. Single-cell RNA sequencing and protected bone marrow chimeras demonstrated that ingestion of lipids led to specific transcriptional activation of a population of resident macrophages expressing Lyve1, Tim4, and ABCA1. Blocking the phosphatidylserine receptor Tim4 inhibited lysosomal activation and the release of post-prandial high density lipoprotein cholesterol following a high fat meal. Both effects were recapitulated by chloroquine, an inhibitor of lysosomal function. Moreover, clodronate-mediated cell-depletion implicated Tim4+ resident adipose tissue macrophages in this process. Thus, these data indicate that Tim4 is a key regulator of post-prandial cholesterol transport and adipose tissue macrophage function and may represent a novel pathway to treat dyslipidemia.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Tejido Adiposo/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Periodo Posprandial/fisiología , Tejido Adiposo/citología , Animales , HDL-Colesterol/metabolismo , Dieta Alta en Grasa , Metabolismo de los Lípidos , Lisosomas/metabolismo , Macrófagos/citología , Ratones , Obesidad/metabolismo , Obesidad/patología , Activación Transcripcional , Proteínas de Transporte Vesicular/metabolismo
4.
J Mol Biol ; 431(20): 4093-4102, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31175845

RESUMEN

Transcription-coupled repair is mediated by the Mfd protein. TCR is defined as the preferential repair of DNA lesions in the transcribed strand of actively transcribed genes, and is opposed to the strand-aspecific global genome repair. The Mfd protein mediates TCR by binding to and displacing RNA polymerase, which is stalled at a DNA lesion on the transcribed strand of DNA, then recruiting UvrA and UvrB. The repair cascade results in the recruitment of, and DNA excision by, UvrC; removal of the damage-bearing oligonucleotide by UvrD; "filling-in" of the DNA by DNA polymerase; and sealing of the strands by DNA ligase. The gene required for Mfd was originally identified as a gene needed for the "mutation frequency decline" phenotype in which the repair of certain UV-induced lesions in the transcribed strand of tRNA genes is increased when cells are forced to delay replication immediately following UV exposure. This review will focus on the genetics that led to the discovery of the Mfd gene; summarize the subsequent biochemical, structural and single-molecule interrogations of the Mfd protein; and explore the more recent findings of Mfd in mutagenesis.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Reparación del ADN , Factores de Transcripción/metabolismo , Transcripción Genética , Enzimas Reparadoras del ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Unión Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA