Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioresour Technol ; 372: 128666, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36693509

RESUMEN

Lignocellulosic biomass is a renewable material of great abundance. However, its recalcitrant characteristic requires the application of pretreatments. Sugarcane bagasse (SB), soybean hulls (SH), cocoa pod husks (CPH) and oil palm empty fruit bunches (OPEFB) were subjected to imidazole pretreatment in order to evaluate chemical composition variations and influence over enzymatic hydrolysis efficiency. Non-treated SH, SB and OPEFB have higher content of holocellulose, while CPH is rich in lignin polymers (31.2%). After imidazole-pretreatment, all biomasses presented structural disorganization of lignocellulosic fibres and enrichment in the percentage of cellulose. Levels of up to 72% delignification were obtained, which allowed an enzymatic conversion greater than 95% for SB, SH and OPEFB, while only 83% was reached for CPH. Imidazole is then emerging as a potential catalyst for the pretreatment of agro-industrial by-products, allowing the valorisation of these residues and their reinsertion into the production chain under a biorefinery concept.


Asunto(s)
Celulosa , Saccharum , Celulosa/química , Solventes , Biomasa , Lignina/química , Imidazoles , Hidrólisis
2.
Bioresour Technol ; 372: 128650, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682478

RESUMEN

Soybean hulls are lignocellulosic residuesgeneratedinthe industrial processing of soybean, representing about 5 % of the mass of the whole bean. This by-product isan importantsource of polymers suchas cellulose(34 %) and hemicellulose (11 %),which could bevalorizedvia biotechnology to improvethe economic returnof the oilseed chain. In the present work,soybean hulls were evaluated as a carbon sourcefor biolipid productionbyLipomycesstarkeyi LPB 53. Initially the hulls were treated physicochemically and enzymatically to obtain fermentable sugars. Subsequently, biomass growth was evaluated using different nitrogen sources andthe lipid production was optimized, reaching a maximum cell biomass concentration of 26.5 g/L with 42.5 % of lipids. Around 65 % of the xylose content was consumed.The obtained oil wasmajorlycomposed of oleic, palmitic, palmitoleic, linoleic and stearic fatty acids in a proportion of 54 %, 32 %, 4 %, 3 % and 2 %, respectively.


Asunto(s)
Lípidos , Lipomyces , Glycine max , Fermentación
3.
Bioresour Technol ; 386: 129545, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37488015

RESUMEN

2,5-Furandicarboxylic acid (FDCA) is one of the platform chemicals and monomers used in plastic industries, currently synthesized by carcinogenic and toxic chemical processes with high pressure and temperature. The aim of this study was to develop a bioprocess for the production of FDCA. 5-(Hydroxymethyl)furfural (HMF) was synthesized (22.67 ± 1.36 g/l/h) from pineapple peel using chromium(III) chloride (CrCl3) at 100 °C. After optimization, approximately 3 mg/l/h FDCA was produced by Aspergillus flavus APLS-1 from HMF in a 2.5 L fermenter in a batch strategy. Parallel and immobilized packed bad bioreactors showed less production of FDCA. A fed-batch strategy produced 3.5 ± 0.3 mg/l/h of FDCA in shake flasks. Also, approximately 0.55 mg/l/h of FDCA was produced from pineapple waste derived HMF. However, these bioprocesses may be improved to increase the yield of renewable FDCA, in the future. This is the first report on FDCA production from pineapple waste.


Asunto(s)
Ananas , Fermentación , Furanos , Furaldehído , Ácidos Dicarboxílicos
4.
Bioresour Technol ; 346: 126635, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34971781

RESUMEN

A biorefinery approach was applied for pectin extraction, xylooligosaccharides' (XOs) and bioethanol production from cocoa pod husk (CPH) using citric acid-assisted hydrothermal pretreatment. Under optimal conditions at 120° C, 10 min and 2% w.v-1 of citric acid a high pectin recovery (19.5%) with high content of uronic acids (41.9%) was obtained. In addition, the liquid fraction presented a XOs concentration of 50.4 mg.g-1 and 69.7 mg.g-1 of fermentable sugars. Enzymatic hydrolysis of solid fraction showed glucan conversion of 60%. Finally, the hydrothermal and enzymatic hydrolysates of CPH were used in bioethanol production by Candida tropicalis and Saccharomyces cerevisiae, reaching 30.9 g and 45.2 g of bioethanol per kg of CPH, respectively. An environmentally friendly and rapid pretreatment method was development for pectin extraction, XOS and second-generation bioethanol production from CPH with great perspectives for the application of these biomolecules in food and bioenergy industry.


Asunto(s)
Cacao , Pectinas , Alimentos , Hidrólisis , Azúcares
5.
Bioresour Technol ; 362: 127800, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36007765

RESUMEN

The application of biorefinery concepts to produce different value-added biomolecules such as xylooligosaccharides (XOs) generates economical competitive, sustainable and environmentally friendly processes. The objective of this work was to develop an efficient imidazole-pretreatment process of sugarcane bagasse (SB) and the use of the obtained hemicellulose fraction in the production of XOs with the application of in house produced xylanolytic enzymes using SB as substrate, under a biorefinery approach. SB imidazole pretreatment allowed the recovery of a hemicellulose rich fraction (34%) with 91.2% of delignification. Xylanase production by Aspergillus niger reached 53.1 U·mL-1 at 120 h. The application of produced xylanases in the enzymatic hydrolysis of extracted xylan, allowed the production of 6.06 g·L-1 of XOs, where xylotriose represented >70%. Great perspectives are viewed for the implementation of mixed processes in a sustainable closed cycle to produce biomolecules with concomitant valorization of subproducts from SB chain.


Asunto(s)
Saccharum , Celulosa/química , Endo-1,4-beta Xilanasas/química , Glucuronatos/química , Hidrólisis , Imidazoles , Oligosacáridos , Saccharum/química
6.
Bioresour Technol ; 343: 126074, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34606920

RESUMEN

The main purpose of this work was the development of a new citric acid assisted hydrothermal pretreatment of cocoa pod husks (CPH), which has not yet been exploited for pectin recovery. CPH́s pectin recovery was improved with concomitant production of xylooligosaccharides (XOS) through efficient enzymatic hydrolysis of the solid fraction. A central composite experimental design was planned to analyze the effect of pretreatment conditions. Under optimal conditions at 120 °C, 10 min and 2% w.v-1, the recovery of pectin accounted for 19.3% of the biomass submitted to pretreatment with 52.2% of methyl esterification degree. Additionally, 51.9 mg.g-1 of XOS were also produced. The enzymatic conversion efficiency of the cellulosic fraction was 58.9%, leading to a production of 92.4 kg of glucose per ton of CPH. Great perspectives were observed in the implementation of CPH hydrothermal pretreatment for the production of value-added biomolecules under a biorefinery concept.


Asunto(s)
Ácido Cítrico , Pectinas , Glucuronatos , Hidrólisis , Oligosacáridos , Proyectos de Investigación
7.
Bioresour Technol ; 344(Pt B): 126252, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34728361

RESUMEN

Cocoa beans are produced through on-farm processing where residual biomass is discarded, including cocoa pod husks (CPH), cocoa bean shells and cocoa sweatings. CPH represents about 80% of these residues that are generated during the initial cocoa bean processing steps and their disposal occupies large areas, causing social and environmental concerns. In the last decades, the lignocellulosic composition of CPH has attracted the attention of the scientific and productive sector. Recently, some studies have reported the use of CPH in the production of medium to high value-added molecules, with potential applications in food and feed, agriculture, bioenergy, and other segments. This review presents biotechnological approaches and processes for the exploitation of CPH, including pre-treatment methods for the production of different biomolecules. Great perspectives and innovations were found concerning CPH exploitation and valorisation, but still more efforts are needed to valorise this potential feedstock and give support to producers in-development countries.


Asunto(s)
Cacao , Biomasa , Biotecnología , Alimentos
8.
Bioresour Technol ; 333: 125174, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33892428

RESUMEN

The use of low-cost feedstock for enzyme production is an environmental and economic solution. Sugarcane bagasse and soybean meal are employed in this study for optimised xylanase production with the concomitant synthesis of proteases. The enzymatic complex is produced by submerged fermentation by Aspergillus niger. Optimisation steps lead to a 2.16-fold increase in enzymatic activity. The fermentation kinetics are studied in Erlenmeyer flasks, a stirred tank reactor and a bubble column reactor, with the xylanase activities reaching 52.9; 33.7 and 60.5 U.mL-1, respectively. The protease production profile is also better in the bubble column reactor, exceeding 7 U.mL-1. The enzyme complex is then evaluated for the synthesis of xylooligosaccharides from sugarcane extracted xylan with a production of 3.1 g.L-1 where xylotriose is the main product. Excellent perspectives are observed for the developed process with potential applications in the animal feed, prebiotics and paper industries.


Asunto(s)
Saccharum , Celulosa/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Fermentación , Glucuronatos , Hidrólisis , Oligosacáridos , Saccharum/metabolismo
9.
Bioresour Technol ; 339: 125594, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34311407

RESUMEN

Soybean is one of the major world crops, with an annual production of 359 million tons. Each ton of processed soybean generates 50-80 kg of soybean hulls (SHs), representing 5-8% of the whole seed. Due to environmental concerns and great economic potential, the search of SHs re-use solutions are deeply discussed. The lignocellulosic composition of SHs has attracted the attention of the scientific and productive sector. Recently, some studies have reported the use of SHs in the production of medium to high value-added molecules, with potential applications in food and feed, agriculture, bioenergy, and other segments. This review presents biotechnological approaches and processes for the management and exploitation of SHs, including pre-treatment methods and fermentation techniques, for the production of different biomolecules. Great potentialities and innovations were found concerning SH exploration and valorisation of the soybean chain under a biorefinery and circular bioeconomy optic.


Asunto(s)
Biocombustibles , Glycine max , Carbohidratos , Medios de Cultivo , Fermentación
10.
Bioresour Technol ; 341: 125795, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34523570

RESUMEN

The generation of agroindustrial byproducts is rising fast worldwide. The slaughter of animals, the production of bioethanol, and the processing of oil palm, cassava, and milk are industrial activities that, in 2019, generated huge amounts of wastewaters, around 2448, 1650, 256, 85, and 0.143 billion liters, respectively. Thus, it is urgent to reduce the environmental impact of these effluents through new integrated processes applying biorefinery and circular economy concepts to produce energy or new products. This review provides the characteristics of some of the most important agro-industrial wastes, including their physicochemical composition, worldwide average production, and possible environmental impacts. In addition, some alternatives for reusing these materials are addressed, focusing mainly on energy savings and the possibilities of generating value-added products. Finally, this review considers recent research and technological innovations and perspectives for the future.


Asunto(s)
Manihot , Aguas Residuales , Animales , Residuos Industriales , Industrias
11.
Bioresour Technol ; 304: 122848, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32113832

RESUMEN

Lignocellulosic biomass is one of the most abundant organic resources worldwide and is a promising source of renewable energy and bioproducts. It basically consists of three fractions, cellulose, hemicelluloses and lignin, which confer a recalcitrant structure. As such, pretreatment steps are required to make each fraction available for further use, with acidic, alkaline and combined acidic-alkaline treatments being the most common techniques. This review focuses on recent strategies for lignocellulosic biomass pretreatment, with a critical discussion and comparison of their efficiency based on the composition of the materials. Mild pretreatments usually allow the recovery of the three biomass fractions for further transformation and valorisation. An insight is provided of newly developed technologies from recently filed patents on lignocellulosic biomass pretreatment and the transformation of agro-industrial residues into high value-added products, such as biofuels and organic acids.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Celulosa , Hidrólisis
13.
Appl Biochem Biotechnol ; 173(7): 1652-66, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24850359

RESUMEN

Of the many reported applications for xylanase, its use as a food supplement has played an important role for monogastric animals, because it can improve the utilisation of nutrients. The aim of this work was to produce xylanase by extractive fermentation in an aqueous two-phase system using Aspergillus tamarii URM 4634, increasing the scale of production in a bioreactor, partially characterising the xylanase and evaluating its influence on monogastric digestion in vitro. Through extractive fermentation in a bioreactor, xylanase was obtained with an activity of 331.4 U mL(-1) and 72% yield. The xylanase was stable under variable pH and temperature conditions, and it was optimally active at pH 3.6 and 90 °C. Xylanase activity potentiated the simulation of complete monogastric digestion by 6%, and only Mg2+ inhibited its activity. This process provides a system for efficient xylanase production by A. tamarii URM 4634 that has great potential for industrial use.


Asunto(s)
Aspergillus/metabolismo , Reactores Biológicos/microbiología , Endo-1,4-beta Xilanasas/biosíntesis , Fermentación
14.
Appl Biochem Biotechnol ; 151(2-3): 333-41, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18386184

RESUMEN

Propionic acid (PA) is widely used as additive in animal feed and also in the manufacturing of cellulose-based plastics, herbicides, and perfumes. Salts of propionic acid are used as preservative in food. PA is mainly produced by chemical synthesis. Nowadays, PA production by fermentation of low-cost industrial wastes or renewable sources has been an interesting alternative. In the present investigation, PA production by Propionibacterium acidipropionici ATCC 4965 was studied using a basal medium with sugarcane molasses (BMSM), glycerol or lactate (BML) in small batch fermentation at 30 and 36 degrees C. Bacterial growth was carried out under low dissolved oxygen concentration and without pH control. Results indicated that P. acidipropionici produced more biomass in BMSM than in other media at 30 degrees C (7.55 g l(-1)) as well as at 36 degrees C (3.71 g l(-1)). PA and biomass production were higher at 30 degrees C than at 36 degrees C in all cases studied. The best productivity was obtained by using BML (0.113 g l(-1) h(-1)), although the yielding of this metabolite was higher when using glycerol as carbon source (0.724 g g(-1)) because there was no detection of acetic acid. By the way, when using the other two carbon sources, acetic acid emerged as an undesirable by-product for further PA purification.


Asunto(s)
Propionatos/metabolismo , Propionibacterium/metabolismo , Biomasa , Medios de Cultivo , Fermentación , Glicerol/metabolismo , Ácido Láctico/metabolismo , Melaza , Propionibacterium/crecimiento & desarrollo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA