Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Mosq Control Assoc ; 33(3): 229-232, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28854113

RESUMEN

Container-breeding mosquitoes are important in public health due to outbreaks of Zika, chikungunya, and dengue viruses. This paper documents the distribution of container-breeding mosquito species in Mississippi, with special emphasis on the genus Aedes. Five sites in each of the 82 Mississippi counties were sampled monthly between May 1 and August 31, 2016, and 50,109 mosquitoes in 14 species were collected. The most prevalent and widely distributed species found was Ae. albopictus, being found in all 82 counties, especially during July. A recent invasive, Ae. japonicus, seems to be spreading rapidly in Mississippi since first being discovered in the state in 2011. The most abundant Culex species collected were Cx. quinquefasciatus (found statewide), Cx. salinarius (almost exclusively in the southern portion of the state), and Cx. restuans (mostly central and southern Mississippi). Another relatively recent invasive species, Cx. coronator, was found in 20 counties, predominantly in the southern one-third of the state during late summer. Co-occurrence data of mosquito species found in the artificial containers were also documented and analyzed. Lastly, even though we sampled extensively in 410 sites across Mississippi, no larval Ae. aegypti were found. These data represent the first modern statewide survey of container species in Mississippi, and as such, allows for better public health readiness for emerging diseases and design of more effective vector control programs.


Asunto(s)
Distribución Animal , Culicidae/fisiología , Aedes/fisiología , Animales , Culicidae/crecimiento & desarrollo , Especies Introducidas , Larva/crecimiento & desarrollo , Larva/fisiología , Mississippi
2.
J Med Entomol ; 57(3): 653-656, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-31768539

RESUMEN

In the 1930s, R. A. Cooley noted that Dermacentor occidentalis (Acarina: Ixodidae) and Dermacentor andersoni were closely related and could hybridize. Decades later, James Oliver discovered that crosses of Dermacentor variabilis, D. andersoni, and D. occidentalis could, on occasion, produce hybrids. A recent molecular analysis (both mtDNA and nDNA) in our laboratory revealed that certain specimens of Dermacentor andersoni nested with Dermacentor parumapertus. Does this close relationship, along with the mito-nuclear discordance we have observed, mean D. andersoni and D. parumapertus are a single species? By contemporary taxonomic criteria, this seems improbable based on their distinctly different morphologies, host associations, and ecologies. This paper explores ideas related to mito-nuclear discordance, hybridization, and introgression (primarily) not only in these two species but also other members of the genus Dermacentor. Both D. andersoni and D. parumapertus can be found on the same hosts and have sympatric distributions, so introgression of genetic material by occasional cross-mating between these two species is possible. Further, the difficulty in applying specific species concepts in ticks has been recently pointed out and a unified agreement on an integrative species concepts could clearly be useful in this situation. With the discovery of D. parumapertus as a potential vector of Rickettsia parkeri and the historically recognized role of D. andersoni in transmission of Rickettsia rickettsii, understanding the specific status of each lineage of these species (and others in the genus) is extremely important from a public health perspective.


Asunto(s)
Dermacentor/genética , Introgresión Genética , Hibridación Genética , Animales
3.
J Med Entomol ; 56(4): 979-983, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-30950495

RESUMEN

Dermacentor parumapertus Neumann (Acari: Ixodidae) is a rather obscure tick found on jackrabbits in the western United States and parts of Canada and Mexico. Specimens from the northern part of their range are consistently different morphologically from ones found in southern and eastern parts of their range (particularly west Texas), leading some researchers to declare the southern form a variety or subspecies. This study examined field-collected adult D. parumapertus from two main locations-Utah and Texas-within its geographic distribution to ascertain the degree of genetic divergence in the two populations based upon both nuclear and mitochondrial DNA sequences. In total, 30 D. parumapertus were analyzed by PCR using both mtDNA and nDNA genes, and one D. nitens was included for comparison. Trees were constructed for all mtDNA genes individually, as well as after concatenating mtDNA (COI, COII, 12S) and nDNA (2 ITS2 primers), respectively. All constructed trees were exported to FigTree v1.4.3 and TreeGraph v2.14.1-771 beta for visualization. The majority of the Utah and Texas populations of D. parumapertus separated molecularly in both mtDNA and nDNA trees; however, analysis with mtDNA genes showed that 3/13 (23%) of Utah tick specimens were removed molecularly from other specimens collected at the same location. Thus, there was not enough evidence to declare these two disparate and morphologically different populations as distinct and separate species.


Asunto(s)
Dermacentor/genética , Filogenia , Animales
4.
JAMA Dermatol ; 151(12): 1373-1375, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26309141
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA