RESUMEN
Subterranean mammals representing a single subspecies occurring along an aridity gradient provide an appropriate model for investigating adaptive variation in thermal physiology with varying levels of precipitation and air temperature (Tair). This study examined the thermal physiological adaptations of common mole-rats (Cryptomys hottentotus hottentotus) across five populations along an aridity gradient, challenging the expectation that increased aridity would lead to reduced metabolic rate (MR), lower body temperatures (Tb), and broader thermoneutral zones (TNZ). No significant, consistent differences in MR, Tb, or thermal conductance were observed between populations, suggesting uniform thermoregulatory mechanisms across habitats. Instead, behavioral strategies such as huddling and torpor may play a more prominent role than physiological adaptations in managing temperature regulation and water balance. The study also observed osmoregulatory differences, with populations employing distinct behavioral cooling strategies in response to water availability. These results underscore the need for further research into the responses of subterranean species to climate change, particularly in understanding how increasing global temperatures and aridification might influence species distribution if they lack the physiological capacity to adapt to future climatic conditions.
RESUMEN
Birds' bills are their main tactile interface with the outside world. Tactile bill-tip organs associated with specialized foraging techniques are present in several bird groups, yet remain understudied in most clades. One example is Austrodyptornithes, the major seabird clade uniting Procellariiformes (albatrosses and petrels) and Sphenisciformes (penguins). Here, we describe the mechanoreceptor arrangement and neurovascular anatomy in the premaxillae of Austrodyptornithes. Using a wide phylogenetic sample of extant birds (361 species), we show that albatrosses and penguins exhibit complex tactile bill-tip anatomies, comparable to birds with known bill-tip organs, despite not being known to use tactile foraging. Petrels (Procellariidae, Hydrobatidae and Oceanitidae) lack these morphologies, indicating an evolutionary transition in bill-tip mechanosensitivity within Procellariiformes. The bill-tip organ in Austrodyptornithes may be functionally related to nocturnal foraging and prey detection under water, or courtship displays involving tactile stimulation of the bill. Alternatively, these organs may be vestigial as is likely the case in most palaeognaths (e.g. ostriches and emu). Ancestral state reconstructions fail to reject the hypothesis that the last common ancestor of Austrodyptornithes had a bill-tip organ; thus, tactile foraging may be ancestral for this major extant clade, perhaps retained from a deeper point in crown bird evolutionary history.
Asunto(s)
Pico , Evolución Biológica , Aves , Filogenia , Animales , Aves/fisiología , Aves/anatomía & histología , Pico/anatomía & histología , Tacto , Mecanorreceptores/fisiología , Conducta AlimentariaRESUMEN
As the avian embryo grows and develops within the egg, its metabolic rate gradually increases. Obligate avian brood-parasitic birds lay their eggs in the nests of other species to avoid the costs of parental care, and all but one of these brood-parasitic species are altricial at hatching. Yet the chicks of some altricial brood-parasitic species perform the physically demanding task of evicting, stabbing or otherwise killing host progeny within days of hatching. This implies a need for high metabolic rates in the embryo, just as precocial species require. Using flow-through respirometry in situ, we investigated embryonic metabolic rates in diverse avian brood parasite lineages which either kill host offspring (high virulence) or share the nest with host young (low virulence). High-virulence brood parasite embryos exhibited higher overall metabolic rates than both non-parasitic (parental) species and low-virulence parasites. This was driven by significantly elevated metabolic rates around the halfway point of incubation. Additionally, a fine-scale analysis of the embryos of a host-parasitic pair showed faster increases in metabolic rates in the parasite. Together these results suggest that the metabolic patterns of the embryos of high-virulence parasites facilitate their early-life demands.
Asunto(s)
Aves , Interacciones Huésped-Parásitos , Animales , Aves/parasitología , Aves/embriología , Embrión no Mamífero/metabolismo , Virulencia , Comportamiento de Nidificación , Metabolismo EnergéticoRESUMEN
The visual field of a bird defines the amount of information that can be extracted from the environment around it, using the eyes. Previous visual field research has left large phylogenetic gaps, where tropical bird species have been comparatively understudied. Using the ophthalmoscopic technique, we measured the visual fields of seven tropical seabird species, to understand what are the primary determinants of their visual fields. The visual field topographies of the seven seabird species were relatively similar, despite the two groups of Terns (Laridae) and Shearwaters (Procellariidae) being phylogenetically distant. We propose this similarity is due to their largely similar foraging ecology. These findings support previous research that foraging ecology rather than relatedness is the key determining factor behind a bird's visual field topography. Some bird species were identified to have more limited binocular fields, such as Brown Noddies (Anous stolidus) where binocularity onsets lower down within the visual field, resulting in a larger blind area about the head.
Asunto(s)
Aves , Clima Tropical , Campos Visuales , Animales , Campos Visuales/fisiología , Aves/fisiología , Aves/clasificación , Especificidad de la Especie , FilogeniaRESUMEN
The binocular field of vision differs widely in birds depending on ecological traits such as foraging. Owls (Strigiformes) have been considered to have a unique binocular field, but whether it is related to foraging has remained unknown. While taking into account allometry and phylogeny, we hypothesized that both daily activity cycle and diet determine the size and shape of the binocular field in owls. Here, we compared the binocular field configuration of 23 species of owls. While we found no effect of allometry and phylogeny, ecological traits strongly influence the binocular field shape and size. Binocular field shape of owls significantly differed from that of diurnal raptors. Among owls, binocular field shape was relatively conserved, but binocular field size differed among species depending on ecological traits, with larger binocular fields in species living in dense habitat and foraging on invertebrates. Our results suggest that (i) binocular field shape is associated with the time of foraging in the daily cycle (owls versus diurnal raptors) and (ii) that binocular field size differs between closely related owl species even though the general shape is conserved, possibly because the field of view is partially restricted by feathers, in a trade-off with auditory localization.
Asunto(s)
Rapaces , Localización de Sonidos , Estrigiformes , Animales , Visión Ocular , EcosistemaRESUMEN
Wide variation in visual field configuration across avian species is hypothesized to be driven primarily by foraging ecology and predator detection. While some studies of selected taxa have identified relationships between foraging ecology and binocular field characteristics in particular species, few have accounted for the relevance of shared ancestry. We conducted a large-scale, comparative analysis across 39 Anatidae species to investigate the relationship between the foraging ecology traits of diet or behaviour and binocular field parameters, while controlling for phylogeny. We used phylogenetic models to examine correlations between traits and binocular field characteristics, using unidimensional and morphometric approaches. We found that foraging behaviour influenced three parameters of binocular field size: maximum binocular field width, vertical binocular field extent, and angular separation between the eye-bill projection and the direction of maximum binocular field width. Foraging behaviour and body mass each influenced two descriptors of binocular field shape. Phylogenetic relatedness had minimal influence on binocular field size and shape, apart from vertical binocular field extent. Binocular field differences are associated with specific foraging behaviours, as related to the perceptual challenges of obtaining different food items from aquatic and terrestrial environments.
Asunto(s)
Anseriformes , Patos , Animales , Gansos , Visión Binocular , FilogeniaRESUMEN
Animals rely on movement to explore and exploit resources in their environment. While movement can provide energetic benefits, it also comes with energetic costs. This study examines how group phenotypic composition influences individual speed and energy expenditure during group travel in homing pigeons. We manipulated the composition of pigeon groups based on body mass and leadership rank. Our findings indicate that groups of 'leader' phenotypes show faster speeds and greater cohesion than 'follower' phenotype groups. Additionally, we show that groups of homogenous mass composition, whether all heavy or all light, were faster and expended less energy over the course of a whole flight than flocks composed of a mixture of heavy and light individuals. We highlight the importance of considering individual-level variation in social-level studies, and the interaction between individual and group-level traits in governing speed and the costs of travel.
Asunto(s)
Columbidae , Animales , Columbidae/anatomía & histología , Columbidae/fisiología , Distribución Animal , Metabolismo Energético , Vuelo Animal , Fenómenos de Retorno al Lugar HabitualRESUMEN
Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our knowledge of such rules for collective escape is limited by the lack of quantitative data on bird flocks under predation in the field. In the present study, we analyze the first GPS trajectories of pigeons in airborne flocks attacked by a robotic falcon in order to build a species-specific model of collective escape. We use our model to examine a recently identified distance-dependent pattern of collective behavior: the closer the prey is to the predator, the higher the frequency with which flock members turn away from it. We first extract from the empirical data of pigeon flocks the characteristics of their shape and internal structure (bearing angle and distance to nearest neighbors). Combining these with information on their coordination from the literature, we build an agent-based model adjusted to pigeons' collective escape. We show that the pattern of turning away from the predator with increased frequency when the predator is closer arises without prey prioritizing escape when the predator is near. Instead, it emerges through self-organization from a behavioral rule to avoid the predator independently of their distance to it. During this self-organization process, we show how flock members increase their consensus over which direction to escape and turn collectively as the predator gets closer. Our results suggest that coordination among flock members, combined with simple escape rules, reduces the cognitive costs of tracking the predator while flocking. Such escape rules that are independent of the distance to the predator can now be investigated in other species. Our study showcases the important role of computational models in the interpretation of empirical findings of collective behavior.
Asunto(s)
Columbidae/fisiología , Reacción de Fuga/fisiología , Conducta de Masa , Animales , Biología Computacional , Simulación por Computador , Especificidad de la EspecieRESUMEN
Flapping flight is the most energetically demanding form of sustained forwards locomotion that vertebrates perform. Flock dynamics therefore have significant implications for energy expenditure. Despite this, no studies have quantified the biomechanical consequences of flying in a cluster flock or pair relative to flying solo. Here, we compared the flight characteristics of homing pigeons (Columba livia) flying solo and in pairs released from a site 7 km from home, using high-precision 5 Hz global positioning system (GPS) and 200 Hz tri-axial accelerometer bio-loggers. As expected, paired individuals benefitted from improved homing route accuracy, which reduced flight distance by 7% and time by 9%. However, realising these navigational gains involved substantial changes in flight kinematics and energetics. Both individuals in a pair increased their wingbeat frequency by 18% by decreasing the duration of their upstroke. This sharp increase in wingbeat frequency caused just a 3% increase in airspeed but reduced the oscillatory displacement of the body by 22%, which we hypothesise relates to an increased requirement for visual stability and manoeuvrability when flying in a flock or pair. The combination of the increase in airspeed and a higher wingbeat frequency would result in a minimum 2.2% increase in the total aerodynamic power requirements if the wingbeats were fully optimised. Overall, the enhanced navigational performance will offset any additional energetic costs as long as the metabolic power requirements are not increased above 9%. Our results demonstrate that the increases in wingbeat frequency when flying together have previously been underestimated by an order of magnitude and force reinterpretation of their mechanistic origin. We show that, for pigeons flying in pairs, two heads are better than one but keeping a steady head necessitates energetically costly kinematics.
Asunto(s)
Fenómenos Biomecánicos/fisiología , Columbidae/fisiología , Vuelo Animal/fisiología , Animales , Aves/fisiología , Metabolismo Energético/fisiología , Alas de Animales/fisiologíaRESUMEN
Embryo survival in birds depends on a controlled transfer of water vapour and respiratory gases through the eggshell, and this exchange is critically sensitive to the surrounding physical environment. As birds breed in most terrestrial habitats worldwide, we proposed that variation in eggshell conductance has evolved to optimize embryonic development under different breeding conditions. This is the first study to take a broad-scale macro-ecological view of avian eggshell conductance, encompassing all key avian taxonomic groups, to assess how life history and climate influence the evolution of this trait. Using whole eggs spanning a wide phylogenetic diversity of birds, we determine that body mass, temperature seasonality and whether both parents attend the nest are the main determinants of eggshell conductance. Birds breeding at high latitudes, where seasonal temperature fluctuations are greatest, will benefit from lower eggshell conductance to combat temporary periods of suspended embryo growth and prevent dehydration during prolonged incubation. The nest microclimate is more consistent in species where parents take turns incubating their clutch, resulting in lower eggshell conductance. This study highlights the remarkable functional qualities of eggshells and their importance for embryo survival in extreme climates.
Asunto(s)
Cáscara de Huevo , Comportamiento de Nidificación , Animales , Aves , Clima , FilogeniaRESUMEN
Movement of the embryo is essential for musculoskeletal development in vertebrates, yet little is known about whether, and why, species vary. Avian brood parasites exhibit feats of strength in early life as adaptations to exploit the hosts that rear them. We hypothesized that an increase in embryonic movement could allow brood parasites to develop the required musculature for these demands. We measured embryo movement across incubation for multiple brood-parasitic and non-parasitic bird species. Using a phylogenetically controlled analysis, we found that brood parasites exhibited significantly increased muscular movement during incubation compared to non-parasites. This suggests that increased embryo movement may facilitate the development of the stronger musculoskeletal system required for the demanding tasks undertaken by young brood parasites.
Asunto(s)
Parásitos , Adaptación Fisiológica , Animales , Evolución Biológica , Aves/parasitología , Interacciones Huésped-Parásitos , Comportamiento de Nidificación , ReproducciónRESUMEN
Dominance hierarchies confer benefits to group members by decreasing the incidences of physical conflict, but may result in certain lower ranked individuals consistently missing out on access to resources. Here, we report a linear dominance hierarchy remaining stable over time in a closed population of birds. We show that this stability can be disrupted, however, by the artificial mass loading of birds that typically comprise the bottom 50% of the hierarchy. Mass loading causes these low-ranked birds to immediately become more aggressive and rise-up the dominance hierarchy; however, this effect was only evident in males and was absent in females. Removal of the artificial mass causes the hierarchy to return to its previous structure. This interruption of a stable hierarchy implies a strong direct link between body mass and social behaviour and suggests that an individual's personality can be altered by the artificial manipulation of body mass.
Asunto(s)
Columbidae , Predominio Social , Agresión , Animales , Femenino , Jerarquia Social , Humanos , Masculino , Conducta Social , Medio SocialRESUMEN
Many species travel in highly organized groups. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals in the assemblage. The distinctive V formation of bird flocks has long intrigued researchers and continues to attract both scientific and popular attention. The well-held belief is that such aggregations give an energetic benefit for those birds that are flying behind and to one side of another bird through using the regions of upwash generated by the wings of the preceding bird, although a definitive account of the aerodynamic implications of these formations has remained elusive. Here we show that individuals of northern bald ibises (Geronticus eremita) flying in a V flock position themselves in aerodynamically optimum positions, in that they agree with theoretical aerodynamic predictions. Furthermore, we demonstrate that birds show wingtip path coherence when flying in V positions, flapping spatially in phase and thus enabling upwash capture to be maximized throughout the entire flap cycle. In contrast, when birds fly immediately behind another bird--in a streamwise position--there is no wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially reduce the adverse effects of downwash for the following bird. These aerodynamic accomplishments were previously not thought possible for birds because of the complex flight dynamics and sensory feedback that would be required to perform such a feat. We conclude that the intricate mechanisms involved in V formation flight indicate awareness of the spatial wake structures of nearby flock-mates, and remarkable ability either to sense or predict it. We suggest that birds in V formation have phasing strategies to cope with the dynamic wakes produced by flapping wings.
Asunto(s)
Aves/fisiología , Vuelo Animal/fisiología , Procesos de Grupo , Movimiento/fisiología , Alas de Animales/fisiología , Animales , Fenómenos Biomecánicos , Modelos BiológicosRESUMEN
Birds which fly in coordinated cluster-flocks can benefit through the formation of group-level structures and patterns which can deter predators by visual confusion. Though unlike V-formation flight, cluster-flocking increases the energetic cost of flight, particularly in denser flocks. Cluster formations therefore provide a unique opportunity to investigate trade-offs between increased work rate (e.g. higher flap frequency) and other benefits of flocking. As part of a routine 9-km training flight release, a flock of six homing pigeons (Columba livia) with 5 Hz GPS and 200 Hz accelerometer biologgers attached flew an alternative trajectory totalling 177 km and 256 min of flight. We provide the first evidence that during a long-duration flight, pigeons' pairwise and group-level distances increased (i.e. group structure changed), while flap frequency decreased over time. This implies that as birds tire during long-duration flight, the ultimate functions of cluster-flocking-primarily anti-predator benefits-are overridden by the proximate costs of flying close to conspecifics.
Asunto(s)
Columbidae/fisiología , Vuelo Animal/fisiología , Animales , Conducta Animal/fisiología , Metabolismo Energético/fisiología , Densidad de Población , Factores de TiempoRESUMEN
Waterfowl undergo an annual simultaneous flight-feather moult that renders them flightless for the duration of the regrowth of the flight feathers. In the wild, this period of flightlessness could restrict the capacity of moulting birds to forage and escape predation. Selection might therefore favour a short moult, but feather growth is constrained and presumably energetically demanding. We therefore tested the hypothesis that for birds that undergo a simultaneous flight-feather moult, this would be the period in the annual cycle with the highest minimum daily heart rates, reflecting these increased energetic demands. Implantable heart rate data loggers were used to record year-round heart rate in six wild barnacle geese (Branta leucopsis), a species that undergoes a simultaneous flight-feather moult. The mean minimum daily heart rate was calculated for each individual bird over an 11-month period, and the annual cycle was divided into seasons based on the life-history of the birds. Mean minimum daily heart rate varied significantly between seasons and was significantly elevated during wing moult, to 200 ± 32 beats min-1, compared to all other seasons of the annual cycle, including both the spring and autumn migrations. The increase in minimum daily heart rate during moult is likely due to feather synthesis, thermoregulation and the reallocation of minerals and protein.
Asunto(s)
Plumas/crecimiento & desarrollo , Gansos/fisiología , Frecuencia Cardíaca , Muda , Animales , Femenino , Vuelo Animal , Gansos/crecimiento & desarrollo , Masculino , NoruegaRESUMEN
One conspicuous feature of several larger bird species is their annual migration in V-shaped or echelon formation. When birds are flying in these formations, energy savings can be achieved by using the aerodynamic up-wash produced by the preceding bird. As the leading bird in a formation cannot profit from this up-wash, a social dilemma arises around the question of who is going to fly in front? To investigate how this dilemma is solved, we studied the flight behavior of a flock of juvenile Northern bald ibis (Geronticus eremita) during a human-guided autumn migration. We could show that the amount of time a bird is leading a formation is strongly correlated with the time it can itself profit from flying in the wake of another bird. On the dyadic level, birds match the time they spend in the wake of each other by frequent pairwise switches of the leading position. Taken together, these results suggest that bald ibis cooperate by directly taking turns in leading a formation. On the proximate level, we propose that it is mainly the high number of iterations and the immediacy of reciprocation opportunities that favor direct reciprocation. Finally, we found evidence that the animals' propensity to reciprocate in leading has a substantial influence on the size and cohesion of the flight formations.
Asunto(s)
Migración Animal , Aves/fisiología , Vuelo Animal , AnimalesRESUMEN
Mechanisms of avian navigation have received considerable attention, but whether different navigational strategies are accompanied by different flight characteristics is unknown. Managing energy expenditure is critical for survival; therefore, understanding how flight characteristics, and hence energy allocation, potentially change with birds' familiarity with a navigational task could provide key insights into the costs of orientation. We addressed this question by examining changes in the wingbeat characteristics and airspeed of homing pigeons (Columba livia) as they learned a homing task. Twenty-one pigeons were released 20 times individually either 3.85 or 7.06â km from home. Birds were equipped with 5â Hz GPS trackers and 200â Hz tri-axial accelerometers. We found that, as the birds' route efficiency increased during the first six releases, their median peak-to-peak dorsal body (DB) acceleration and median DB amplitude also increased. This, in turn, led to higher airspeeds, suggesting that birds fly slower when traversing unfamiliar terrain. By contrast, after route efficiency stabilised, birds exhibited increasing wingbeat frequencies, which did not result in further increases in speed. Overall, higher wind support was also associated with lower wingbeat frequencies and increased DB amplitude. Our study suggests that the cost of early flights from an unfamiliar location may be higher than subsequent flights because of both inefficient routes (increased distance) and lower airspeeds (increased time). Furthermore, the results indicate, for the first time, that birds modulate their wingbeat characteristics as a function of navigational knowledge, and suggest that flight characteristics may be used as 'signatures' of birds' route familiarity.
Asunto(s)
Columbidae/fisiología , Vuelo Animal , Fenómenos de Retorno al Lugar Habitual , Reconocimiento en Psicología , Animales , Aprendizaje , Distribución Aleatoria , Navegación EspacialRESUMEN
Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (G(H2O)) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell G(H2O) and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in G(H2O) has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between G(H2O) and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher G(H2O) than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher G(H2O) than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's λ) was intermediate in magnitude, suggesting that differences observed in the G(H2O) are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher G(H2O) to overcome this constraint and still achieve optimal water loss during incubation. We also suggest that eggs laid in cup nests and burrows may require a higher G(H2O) to overcome the increased humidity as a result from the confined nest microclimate lacking air movements through the nest. Taken together, these comparative data imply that species-specific levels of gas exchange across avian eggshells are variable and evolve in response to ecological and physical variation resulting from parental and nesting behaviours.
Asunto(s)
Aves/genética , Aves/fisiología , Cáscara de Huevo/fisiología , Comportamiento de Nidificación/fisiología , Animales , Filogenia , Especificidad de la EspecieRESUMEN
A vast array of challenging environments are inhabited by mammals, such as living in confined spaces where oxygen levels are likely to be low. Species can exhibit adaptations in basal metabolic rate (BMR) to exploit such unique niches. In this study we use 801 species to determine the relationship between BMR and burrow use in mammals. We included pre-existing data for mammalian BMR and 16 life history traits. Overall, mammalian BMR is dictated primarily by environmental ambient temperature. There were no significant differences in BMR of terrestrial, semi-fossorial and fossorial mammals, suggesting that species occupying a subterranean niche do not exhibit baseline metabolic costs on account of their burrowing lifestyle. Fossorial mammals likely show instantaneous metabolic responses to low oxygen in tunnels, rather than exhibit adaptive long-term responses in their BMR.
Asunto(s)
Metabolismo Basal , Mamíferos , Animales , Mamíferos/metabolismo , Ecosistema , Temperatura , Oxígeno/metabolismoRESUMEN
Morphological adaptation is the change in the form of an organism that benefits the individual in its current habitat. Mole-rats (family Bathyergidae), despite being subterranean, are impacted by both local and broad-scale environmental conditions that occur above ground. Common mole-rats (Cryptomys hottentotus hottentotus) present an ideal mammalian model system for the study of morphological variation in response to ecology, as this species is found along an aridity gradient and thus can be sampled from geographically non-overlapping populations of the same species along an environmental longitudinal cline. Using the mass of five internal organs, ten skeletal measurements and 3D morphometric analyses of skulls, we assessed the morphology of wild non-breeding individuals from five common mole-rat populations in South Africa. We found that the body mass and mean relative mass of the spleen and kidneys in arid populations was larger, and individuals from arid regions possessed shorter legs and larger inter-shoulder widths compared to individuals from mesic regions. Additionally, arid populations demonstrated greater skull depth, and shape change of features such as angular processes of the lower jaw than mesic individuals, indicating that these distinct geographic populations show differences corresponding to the aridity gradient, potentially in response to environmental factors such as the variation in food sources found between different habitats, in addition to different soil compositions found in the different regions. Arid populations potentially require a stronger jaw and neck musculature associated with mastication to chew xeric-adapted plants and to dig through hard soil types, whereas mesic populations excavate through soft, looser soil and may make use of their front limbs to aid the movement of soils when digging. Aridity influences the morphology of this species and could indicate the impact of environmental changes on speciation and mammalian skull morphology.