Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(29): e2204527119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858325

RESUMEN

Mice with insulin receptor (IR)-deficient astrocytes (GFAP-IR knockout [KO] mice) show blunted responses to insulin and reduced brain glucose uptake, whereas IR-deficient astrocytes show disturbed mitochondrial responses to glucose. While exploring the functional impact of disturbed mitochondrial function in astrocytes, we observed that GFAP-IR KO mice show uncoupling of brain blood flow with glucose uptake. Since IR-deficient astrocytes show higher levels of reactive oxidant species (ROS), this leads to stimulation of hypoxia-inducible factor-1α and, consequently, of the vascular endothelial growth factor angiogenic pathway. Indeed, GFAP-IR KO mice show disturbed brain vascularity and blood flow that is normalized by treatment with the antioxidant N-acetylcysteine (NAC). NAC ameliorated high ROS levels, normalized angiogenic signaling and mitochondrial function in IR-deficient astrocytes, and normalized neurovascular coupling in GFAP-IR KO mice. Our results indicate that by modulating glucose uptake and angiogenesis, insulin receptors in astrocytes participate in neurovascular coupling.


Asunto(s)
Astrocitos , Encéfalo , Insulina , Neovascularización Fisiológica , Acoplamiento Neurovascular , Animales , Astrocitos/metabolismo , Encéfalo/irrigación sanguínea , Proteína Ácida Fibrilar de la Glía/genética , Glucosa/metabolismo , Insulina/metabolismo , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Receptor de Insulina/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Mol Psychiatry ; 26(11): 6411-6426, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34002021

RESUMEN

Several psychiatric, neurologic and neurodegenerative disorders present increased brain ventricles volume, being hydrocephalus the disease with the major manifestation of ventriculomegaly caused by the accumulation of high amounts of cerebrospinal fluid (CSF). The molecules and pathomechanisms underlying cerebral ventricular enlargement are widely unknown. Kinase D interacting substrate of 220 kDa (KIDINS220) gene has been recently associated with schizophrenia and with a novel syndrome characterized by spastic paraplegia, intellectual disability, nystagmus and obesity (SINO syndrome), diseases frequently occurring with ventriculomegaly. Here we show that Kidins220, a transmembrane protein effector of various key neuronal signalling pathways, is a critical regulator of CSF homeostasis. We observe that both KIDINS220 and the water channel aquaporin-4 (AQP4) are markedly downregulated at the ventricular ependymal lining of idiopathic normal pressure hydrocephalus (iNPH) patients. We also find that Kidins220 deficient mice develop ventriculomegaly accompanied by water dyshomeostasis and loss of AQP4 in the brain ventricular ependymal layer and astrocytes. Kidins220 is a known cargo of the SNX27-retromer, a complex that redirects endocytosed plasma membrane proteins (cargos) back to the cell surface, thus avoiding their targeting to lysosomes for degradation. Mechanistically, we show that AQP4 is a novel cargo of the SNX27-retromer and that Kidins220 deficiency promotes a striking and unexpected downregulation of the SNX27-retromer that results in AQP4 lysosomal degradation. Accordingly, SNX27 silencing decreases AQP4 levels in wild-type astrocytes whereas SNX27 overexpression restores AQP4 content in Kidins220 deficient astrocytes. Together our data suggest that the KIDINS220-SNX27-retromer-AQP4 pathway is involved in human ventriculomegaly and open novel therapeutic perspectives.


Asunto(s)
Hidrocefalia , Animales , Acuaporina 4/genética , Acuaporina 4/metabolismo , Epéndimo/metabolismo , Humanos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nexinas de Clasificación/genética
3.
Cell Death Dis ; 14(8): 500, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542079

RESUMEN

In the adult mammalian brain, neural stem cells (NSCs) located in highly restricted niches sustain the generation of new neurons that integrate into existing circuits. A reduction in adult neurogenesis is linked to ageing and neurodegeneration, whereas dysregulation of proliferation and survival of NSCs have been hypothesized to be at the origin of glioma. Thus, unravelling the molecular underpinnings of the regulated activation that NSCs must undergo to proliferate and generate new progeny is of considerable relevance. Current research has identified cues promoting or restraining NSCs activation. Yet, whether NSCs depend on external signals to survive or if intrinsic factors establish a threshold for sustaining their viability remains elusive, even if this knowledge could involve potential for devising novel therapeutic strategies. Kidins220 (Kinase D-interacting substrate of 220 kDa) is an essential effector of crucial pathways for neuronal survival and differentiation. It is dramatically altered in cancer and in neurological and neurodegenerative disorders, emerging as a regulatory molecule with important functions in human disease. Herein, we discover severe neurogenic deficits and hippocampal-based spatial memory defects accompanied by increased neuroblast death and high loss of newly formed neurons in Kidins220 deficient mice. Mechanistically, we demonstrate that Kidins220-dependent activation of AKT in response to EGF restraints GSK3 activity preventing NSCs apoptosis. We also show that NSCs with Kidins220 can survive with lower concentrations of EGF than the ones lacking this molecule. Hence, Kidins220 levels set a molecular threshold for survival in response to mitogens, allowing adult NSCs growth and expansion. Our study identifies Kidins220 as a key player for sensing the availability of growth factors to sustain adult neurogenesis, uncovering a molecular link that may help paving the way towards neurorepair.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Adulto , Animales , Humanos , Ratones , Células Madre Adultas/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Hipocampo/metabolismo , Mamíferos , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo
4.
Sci Transl Med ; 13(613): eabe7104, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34586830

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifying treatments are not yet available. Although gene-silencing therapies are currently being tested, further molecular mechanisms must be explored to identify druggable targets for HD. Cytoplasmic polyadenylation element binding proteins 1 to 4 (CPEB1 to CPEB4) are RNA binding proteins that repress or activate translation of CPE-containing transcripts by shortening or elongating their poly(A) tail. Here, we found increased CPEB1 and decreased CPEB4 protein in the striatum of patients and mouse models with HD. This correlated with a reprogramming of polyadenylation in 17.3% of the transcriptome, markedly affecting neurodegeneration-associated genes including PSEN1, MAPT, SNCA, LRRK2, PINK1, DJ1, SOD1, TARDBP, FUS, and HTT and suggesting a new molecular mechanism in neurodegenerative disease etiology. We found decreased protein content of top deadenylated transcripts, including striatal atrophy­linked genes not previously related to HD, such as KTN1 and the easily druggable SLC19A3 (the ThTr2 thiamine transporter). Mutations in SLC19A3 cause biotin-thiamine­responsive basal ganglia disease (BTBGD), a striatal disorder that can be treated with a combination of biotin and thiamine. Similar to patients with BTBGD, patients with HD demonstrated decreased thiamine in the cerebrospinal fluid. Furthermore, patients and mice with HD showed decreased striatal concentrations of thiamine pyrophosphate (TPP), the metabolically active form of thiamine. High-dose biotin and thiamine treatment prevented TPP deficiency in HD mice and attenuated the radiological, neuropathological, and motor HD-like phenotypes, revealing an easily implementable therapy that might benefit patients with HD.


Asunto(s)
Enfermedad de Huntington , Poliadenilación , Factores de Transcripción/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Proteínas de Transporte de Membrana , Transcriptoma
5.
Brain Pathol ; 30(1): 120-136, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31264746

RESUMEN

Huntington's disease (HD) is an inherited progressive neurodegenerative disease characterized by brain atrophy particularly in the striatum that produces motor impairment, and cognitive and psychiatric disturbances. Multiple pathogenic mechanisms have been proposed including dysfunctions in neurotrophic support and calpain-overactivation, among others. Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is an essential mediator of neurotrophin signaling. In adult brain, Kidins220 presents two main isoforms that differ in their carboxy-terminal length and critical protein-protein interaction domains. These variants are generated through alternative terminal exon splicing of the conventional exon 32 (Kidins220-C32) and the recently identified exon 33 (Kidins220-C33). The lack of domains encoded by exon 32 involved in key neuronal functions, including those controlling neurotrophin pathways, pointed to Kidins220-C33 as a form detrimental for neurons. However, the functional role of Kidins220-C33 in neurodegeneration or other pathologies, including HD, has not been explored. In the present work, we discover an unexpected selective downregulation of Kidins220-C33, in the striatum of HD patients, as well as in the R6/1 HD mouse model starting at early symptomatic stages. These changes are C33-specific as Kidins220-C32 variant remains unchanged. We also find the early decrease in Kidins220-C33 levels takes place in neurons, suggesting an unanticipated neuroprotective role for this isoform. Finally, using ex vivo assays and primary neurons, we demonstrate that Kidins220-C33 is downregulated by mechanisms that depend on the activation of the protease calpain. Altogether, these results strongly suggest that calpain-mediated Kidins220-C33 proteolysis modulates onset and/or progression of HD.


Asunto(s)
Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Adulto , Anciano , Empalme Alternativo , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Exones/genética , Femenino , Hipocampo/metabolismo , Humanos , Enfermedad de Huntington/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Unión Proteica , Isoformas de Proteínas/genética , Transducción de Señal
6.
Cell Death Dis ; 10(7): 535, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296845

RESUMEN

Excitotoxic neuronal death induced by high concentrations of glutamate is a pathological event common to multiple acute or chronic neurodegenerative diseases. Excitotoxicity is mediated through overactivation of the N-Methyl-D-aspartate type of ionotropic glutamate receptors (NMDARs). Physiological stimulation of NMDARs triggers their endocytosis from the neuronal surface, inducing synaptic activity and survival. However almost nothing is known about the internalization of overactivated NMDARs and their interacting proteins, and how this endocytic process is connected with neuronal death has been poorly explored. Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is a component of NMDAR complexes essential for neuronal viability by the control of ERK activation. Here we have investigated Kidins220 endocytosis induced by NMDAR overstimulation and the participation of this internalization step in the molecular mechanisms of excitotoxicity. We show that excitotoxicity induces Kidins220 and GluN1 traffic to the Golgi apparatus (GA) before Kidins220 is degraded by the protease calpain. We also find that excitotoxicity triggers an early activation of Rap1-GTPase followed by its inactivation. Kidins220 excitotoxic endocytosis and subsequent calpain-mediated downregulation governs this late inactivation of Rap1 that is associated to decreases in ERK activity preceding neuronal death. Furthermore, we identify the molecular mechanisms involved in the excitotoxic shutoff of Kidins220/Rap1/ERK prosurvival cascade that depends on calpain processing of Rap1-activation complexes. Our data fit in a model where Kidins220 targeting to the GA during early excitotoxicity would facilitate Rap1 activation and subsequent stimulation of ERK. At later times, activation of Golgi-associated calpain, would promote the degradation of GA-targeted Kidins220 and two additional components of the specific Rap1 activation complex, PDZ-GEF1, and S-SCAM. In this way, late excitotoxicity would turn off Rap1/ERK cascade and compromise neuronal survival.


Asunto(s)
Calpaína/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Fosfoproteínas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Animales , Calpaína/antagonistas & inhibidores , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Células Cultivadas , Endocitosis/efectos de los fármacos , Endocitosis/genética , Endosomas/metabolismo , Ácido Glutámico/metabolismo , Aparato de Golgi/efectos de los fármacos , Proteínas de la Membrana/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/ultraestructura , Fosfoproteínas/genética , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/genética , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión al GTP rap1/antagonistas & inhibidores , Proteínas de Unión al GTP rap1/genética
7.
Nat Commun ; 9(1): 473, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382840

RESUMEN

The original version of this Article contained an error in the spelling of the author Álvaro Sebastián-Serrano, which was incorrectly given as Álvaro Sebastián Serrano. This has now been corrected in both the PDF and HTML versions of the Article.

8.
Nat Commun ; 8(1): 2275, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273751

RESUMEN

Excitotoxicity, a critical process in neurodegeneration, induces oxidative stress and neuronal death through mechanisms largely unknown. Since oxidative stress activates protein kinase D1 (PKD1) in tumor cells, we investigated the effect of excitotoxicity on neuronal PKD1 activity. Unexpectedly, we find that excitotoxicity provokes an early inactivation of PKD1 through a dephosphorylation-dependent mechanism mediated by protein phosphatase-1 (PP1) and dual specificity phosphatase-1 (DUSP1). This step turns off the IKK/NF-κB/SOD2 antioxidant pathway. Neuronal PKD1 inactivation by pharmacological inhibition or lentiviral silencing in vitro, or by genetic inactivation in neurons in vivo, strongly enhances excitotoxic neuronal death. In contrast, expression of an active dephosphorylation-resistant PKD1 mutant potentiates the IKK/NF-κB/SOD2 oxidative stress detoxification pathway and confers neuroprotection from in vitro and in vivo excitotoxicity. Our results indicate that PKD1 inactivation underlies excitotoxicity-induced neuronal death and suggest that PKD1 inactivation may be critical for the accumulation of oxidation-induced neuronal damage during aging and in neurodegenerative disorders.


Asunto(s)
Muerte Celular , Neuronas/metabolismo , Neuroprotección , Estrés Oxidativo , Proteína Quinasa C/metabolismo , Animales , Fosfatasa 1 de Especificidad Dual/metabolismo , Quinasa I-kappa B/metabolismo , Técnicas In Vitro , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Fosforilación , Proteína Fosfatasa 1/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo
9.
Diabetes ; 66(1): 64-74, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27999108

RESUMEN

Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes.


Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Animales , Transporte Biológico/fisiología , Transportador de Glucosa de Tipo 1/metabolismo , Glucógeno/metabolismo , Inmunoensayo , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ácido Láctico/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Plásmidos , Reacción en Cadena de la Polimerasa , Tomografía de Emisión de Positrones
10.
PLoS One ; 9(4): e95191, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24740233

RESUMEN

Neuronal Nitric Oxide Synthase (nNOS) is the biosynthetic enzyme responsible for nitric oxide (·NO) production in muscles and in the nervous system. This constitutive enzyme, unlike its endothelial and inducible counterparts, presents an N-terminal PDZ domain known to display a preference for PDZ-binding motifs bearing acidic residues at -2 position. In a previous work, we discovered that the C-terminal end of two members of protein kinase D family (PKD1 and PKD2) constitutes a PDZ-ligand. PKD1 has been shown to regulate multiple cellular processes and, when activated, becomes autophosphorylated at Ser 916, a residue located at -2 position of its PDZ-binding motif. Since nNOS and PKD are spatially enriched in postsynaptic densities and dendrites, the main objective of our study was to determine whether PKD1 activation could result in a direct interaction with nNOS through their respective PDZ-ligand and PDZ domain, and to analyze the functional consequences of this interaction. Herein we demonstrate that PKD1 associates with nNOS in neurons and in transfected cells, and that kinase activation enhances PKD1-nNOS co-immunoprecipitation and subcellular colocalization. However, transfection of mammalian cells with PKD1 mutants and yeast two hybrid assays showed that the association of these two enzymes does not depend on PKD1 PDZ-ligand but its pleckstrin homology domain. Furthermore, this domain was able to pull-down nNOS from brain extracts and bind to purified nNOS, indicating that it mediates a direct PKD1-nNOS interaction. In addition, using mass spectrometry we demonstrate that PKD1 specifically phosphorylates nNOS in the activatory residue Ser 1412, and that this phosphorylation increases nNOS activity and ·NO production in living cells. In conclusion, these novel findings reveal a crucial role of PKD1 in the regulation of nNOS activation and synthesis of ·NO, a mediator involved in physiological neuronal signaling or neurotoxicity under pathological conditions such as ischemic stroke or neurodegeneration.


Asunto(s)
Corteza Cerebral/metabolismo , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Proteína Quinasa C/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Corteza Cerebral/citología , Chlorocebus aethiops , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Neuronas/citología , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico Sintasa de Tipo I/genética , Células PC12 , Fosforilación , Cultivo Primario de Células , Unión Proteica , Proteína Quinasa C/química , Proteína Quinasa C/genética , Estructura Terciaria de Proteína , Ratas , Ratas Wistar , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA