Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Rev Mol Cell Biol ; 23(12): 797-816, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35589852

RESUMEN

Phosphoinositides are signalling lipids derived from phosphatidylinositol, a ubiquitous phospholipid in the cytoplasmic leaflet of eukaryotic membranes. Initially discovered for their roles in cell signalling, phosphoinositides are now widely recognized as key integrators of membrane dynamics that broadly impact on all aspects of cell physiology and on disease. The past decade has witnessed a vast expansion of our knowledge of phosphoinositide biology. On the endocytic and exocytic routes, phosphoinositides direct the inward and outward flow of membrane as vesicular traffic is coupled to the conversion of phosphoinositides. Moreover, recent findings on the roles of phosphoinositides in autophagy and the endolysosomal system challenge our view of lysosome biology. The non-vesicular exchange of lipids, ions and metabolites at membrane contact sites in between organelles has also been found to depend on phosphoinositides. Here we review our current understanding of how phosphoinositides shape and direct membrane dynamics to impact on cell physiology, and provide an overview of emerging concepts in phosphoinositide regulation.


Asunto(s)
Endosomas , Fosfatidilinositoles , Fosfatidilinositoles/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Transducción de Señal , Lisosomas/metabolismo
2.
Nat Rev Mol Cell Biol ; 20(9): 515-534, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31110302

RESUMEN

PI3Ks are a family of lipid kinases that phosphorylate intracellular inositol lipids to regulate signalling and intracellular vesicular traffic. Mammals have eight isoforms of PI3K, divided into three classes. The class I PI3Ks generate 3-phosphoinositide lipids, which directly activate signal transduction pathways. In addition to being frequently genetically activated in cancer, similar mutations in class I PI3Ks have now also been found in a human non-malignant overgrowth syndrome and a primary immune disorder that predisposes to lymphoma. The class II and class III PI3Ks are regulators of membrane traffic along the endocytic route, in endosomal recycling and autophagy, with an often indirect effect on cell signalling. Here, we summarize current knowledge of the different PI3K classes and isoforms, focusing on recently uncovered biological functions and the mechanisms by which these kinases are activated. Deeper insight into the PI3K isoforms will undoubtedly continue to contribute to a better understanding of fundamental cell biological processes and, ultimately, of human disease.


Asunto(s)
Endosomas/metabolismo , Linfoma/enzimología , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Animales , Transporte Biológico Activo , Endocitosis , Humanos , Isoenzimas/metabolismo , Linfoma/patología
3.
Proc Natl Acad Sci U S A ; 119(40): e2202236119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161941

RESUMEN

X-linked centronuclear myopathy (XLCNM) is a severe human disease without existing therapies caused by mutations in the phosphoinositide 3-phosphatase MTM1. Loss of MTM1 function is associated with muscle fiber defects characterized by impaired localization of ß-integrins and other components of focal adhesions. Here we show that defective focal adhesions and reduced active ß-integrin surface levels in a cellular model of XLCNM are rescued by loss of phosphatidylinositiol 3-kinase C2ß (PI3KC2ß) function. Inactivation of the Mtm1 gene impaired myoblast differentiation into myotubes and resulted in reduced surface levels of active ß1-integrins as well as corresponding defects in focal adhesions. These phenotypes were rescued by concomitant genetic loss of Pik3c2b or pharmacological inhibition of PI3KC2ß activity. We further demonstrate that a hitherto unknown role of PI3KC2ß in the endocytic trafficking of active ß1-integrins rather than rescue of phosphatidylinositol 3-phosphate levels underlies the ability of Pik3c2b to act as a genetic modifier of cellular XLCNM phenotypes. Our findings reveal a crucial antagonistic function of MTM1 and PI3KC2ß in the control of active ß-integrin surface levels, thereby providing a molecular mechanism for the adhesion and myofiber defects observed in XLCNM. They further suggest specific pharmacological inhibition of PI3KC2ß catalysis as a viable treatment option for XLCNM patients.


Asunto(s)
Miopatías Estructurales Congénitas , Fosfatidilinositol 3-Quinasa , Humanos , Integrinas/genética , Músculo Esquelético , Miopatías Estructurales Congénitas/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética
4.
Nature ; 525(7569): 404-8, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26302298

RESUMEN

The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane. Previous studies have described the architecture of dynamin dimers, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot-Marie-Tooth neuropathy and centronuclear myopathy, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction.


Asunto(s)
Dinaminas/antagonistas & inhibidores , Dinaminas/química , Multimerización de Proteína , Enfermedad de Charcot-Marie-Tooth , Cristalografía por Rayos X , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Cadenas de Markov , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Miopatías Estructurales Congénitas , Nucleótidos , Multimerización de Proteína/genética , Relación Estructura-Actividad
5.
Nature ; 499(7457): 233-7, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23823722

RESUMEN

Phosphoinositides serve crucial roles in cell physiology, ranging from cell signalling to membrane traffic. Among the seven eukaryotic phosphoinositides the best studied species is phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), which is concentrated at the plasma membrane where, among other functions, it is required for the nucleation of endocytic clathrin-coated pits. No phosphatidylinositol other than PI(4,5)P2 has been implicated in clathrin-mediated endocytosis, whereas the subsequent endosomal stages of the endocytic pathway are dominated by phosphatidylinositol-3-phosphates(PI(3)P). How phosphatidylinositol conversion from PI(4,5)P2-positive endocytic intermediates to PI(3)P-containing endosomes is achieved is unclear. Here we show that formation of phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2) by class II phosphatidylinositol-3-kinase C2α (PI(3)K C2α) spatiotemporally controls clathrin-mediated endocytosis. Depletion of PI(3,4)P2 or PI(3)K C2α impairs the maturation of late-stage clathrin-coated pits before fission. Timed formation of PI(3,4)P2 by PI(3)K C2α is required for selective enrichment of the BAR domain protein SNX9 at late-stage endocytic intermediates. These findings provide a mechanistic framework for the role of PI(3,4)P2 in endocytosis and unravel a novel discrete function of PI(3,4)P2 in a central cell physiological process.


Asunto(s)
Endocitosis , Fosfatos de Fosfatidilinositol/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Células HEK293 , Células HeLa , Humanos , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/metabolismo , Nexinas de Clasificación/metabolismo , Factores de Tiempo
6.
Hum Mol Genet ; 25(17): 3836-3848, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27466194

RESUMEN

Dominant or recessive mutations in the progressive ankylosis gene ANKH have been linked to familial chondrocalcinosis (CCAL2), craniometaphyseal dysplasia (CMD), mental retardation, deafness and ankylosis syndrome (MRDA). The function of the encoded membrane protein ANK in cellular compartments other than the plasma membrane is unknown. Here, we show that ANK localizes to the trans-Golgi network (TGN), clathrin-coated vesicles and the plasma membrane. ANK functionally interacts with clathrin and clathrin associated adaptor protein (AP) complexes as loss of either protein causes ANK dispersion from the TGN to cytoplasmic endosome-like puncta. Consistent with its subcellular localization, loss of ANK results in reduced formation of tubular membrane carriers from the TGN, perinuclear accumulation of early endosomes and impaired transferrin endocytosis. Our data indicate that clathrin/AP-mediated cycling of ANK between the TGN, endosomes, and the cell surface regulates membrane traffic at the TGN/endosomal interface. These findings suggest that dysfunction of Golgi-endosomal membrane traffic may contribute to ANKH-associated pathologies.


Asunto(s)
Membrana Celular/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Red trans-Golgi/metabolismo , Clatrina/metabolismo , Endocitosis , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Transferrina/metabolismo
8.
Nature ; 477(7366): 556-60, 2011 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-21927000

RESUMEN

Dynamin is a mechanochemical GTPase that oligomerizes around the neck of clathrin-coated pits and catalyses vesicle scission in a GTP-hydrolysis-dependent manner. The molecular details of oligomerization and the mechanism of the mechanochemical coupling are currently unknown. Here we present the crystal structure of human dynamin 1 in the nucleotide-free state with a four-domain architecture comprising the GTPase domain, the bundle signalling element, the stalk and the pleckstrin homology domain. Dynamin 1 oligomerized in the crystals via the stalks, which assemble in a criss-cross fashion. The stalks further interact via conserved surfaces with the pleckstrin homology domain and the bundle signalling element of the neighbouring dynamin molecule. This intricate domain interaction rationalizes a number of disease-related mutations in dynamin 2 and suggests a structural model for the mechanochemical coupling that reconciles previous models of dynamin function.


Asunto(s)
Dinamina I/química , Nucleótidos , Cristalografía por Rayos X , Dinamina I/metabolismo , Dinamina II/genética , Dinamina II/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hidrólisis , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Transferrina/metabolismo
9.
Biochim Biophys Acta ; 1851(6): 794-804, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25264171

RESUMEN

The internalization and subsequent endosomal trafficking of proteins and membrane along the endocytic pathway is a fundamental cellular process. Over the last two decades, this pathway has emerged to be subject to extensive regulation by phosphoinositides (PIs), phosphorylated derivatives of the minor membrane phospholipid phosphatidylinositol. Clathrin-mediated endocytosis (CME) is the endocytic mechanism characterized in most detail. It now represents a prime example of a process spatiotemporally organized by the interplay of PI metabolizing enzymes. The most abundant PI, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], serves as a denominator of plasma membrane identity and together with cargo proteins is instrumental for the initiation of clathrin-coated pit (CCP) formation. During later stages of the process, the generation of phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2] and the dephosphorylation of PI(4,5)P2regulate CCP maturation and vesicle uncoating. Here we provide an overview of the mechanisms by which PIs are made and consumed to regulate CME and other endocytic pathways and how conversion of PIs en route to endosomes may be accomplished. Mutations in PI converting enzymes are linked to multiple diseases ranging from mental retardation and neurodegeneration, to inherited muscle and kidney disorders suggesting that the tight control of PI levels along the endocytic pathway plays a critical role in cell physiology. This article is part of a Special Issue entitled Phosphoinositides.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Clatrina/metabolismo , Endocitosis/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Clatrina/genética , Vesículas Cubiertas por Clatrina/química , Vesículas Cubiertas por Clatrina/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/química , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Endosomas/química , Endosomas/metabolismo , Regulación de la Expresión Génica , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal
10.
Dev Cell ; 57(14): 1694-1711.e7, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35809565

RESUMEN

Focal adhesions are multifunctional organelles that couple cell-matrix adhesion to cytoskeletal force transmission and signaling and to steer cell migration and collective cell behavior. Whereas proteomic changes at focal adhesions are well understood, little is known about signaling lipids in focal adhesion dynamics. Through the characterization of cells from mice with a kinase-inactivating point mutation in the class II PI3K-C2ß, we find that generation of the phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2) membrane lipid promotes focal adhesion disassembly in response to changing environmental conditions. We show that reduced growth factor signaling sensed by protein kinase N, an mTORC2 target and effector of RhoA, synergizes with the adhesion disassembly factor DEPDC1B to induce local synthesis of PtdIns(3,4)P2 by PI3K-C2ß. PtdIns(3,4)P2 then promotes turnover of RhoA-dependent stress fibers by recruiting the PtdIns(3,4)P2-dependent RhoA-GTPase-activating protein ARAP3. Our findings uncover a pathway by which cessation of growth factor signaling facilitates cell-matrix adhesion disassembly via a phosphoinositide lipid switch.


Asunto(s)
Adhesiones Focales , Fosfatidilinositoles , Animales , Adhesión Celular , Adhesiones Focales/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Proteómica
11.
Nat Commun ; 8: 15873, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28627515

RESUMEN

Clathrin-mediated endocytosis (CME) involves membrane-associated scaffolds of the bin-amphiphysin-rvs (BAR) domain protein family as well as the GTPase dynamin, and is accompanied and perhaps triggered by changes in local lipid composition. How protein recruitment, scaffold assembly and membrane deformation is spatiotemporally controlled and coupled to fission is poorly understood. We show by computational modelling and super-resolution imaging that phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] synthesis within the clathrin-coated area of endocytic intermediates triggers selective recruitment of the PX-BAR domain protein SNX9, as a result of complex interactions of endocytic proteins competing for phospholipids. The specific architecture induces positioning of SNX9 at the invagination neck where its self-assembly regulates membrane constriction, thereby providing a template for dynamin fission. These data explain how lipid conversion at endocytic pits couples local membrane constriction to fission. Our work demonstrates how computational modelling and super-resolution imaging can be combined to unravel function and mechanisms of complex cellular processes.


Asunto(s)
Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Nexinas de Clasificación/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Sitios de Unión , Células COS , Membrana Celular/química , Chlorocebus aethiops , Vesículas Cubiertas por Clatrina/metabolismo , Dinaminas/metabolismo , Células HeLa , Humanos , Modelos Teóricos , Proteínas Nucleares/metabolismo , Fosfolípidos/metabolismo , Dominios Proteicos , Nexinas de Clasificación/química , Nexinas de Clasificación/genética , Resonancia por Plasmón de Superficie , Factores de Transcripción/metabolismo
12.
Cell Rep ; 13(9): 1881-94, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26655903

RESUMEN

In contrast to the class I phosphoinositide 3-kinases (PI3Ks), the organismal roles of the kinase activity of the class II PI3Ks are less clear. Here, we report that class II PI3K-C2ß kinase-dead mice are viable and healthy but display an unanticipated enhanced insulin sensitivity and glucose tolerance, as well as protection against high-fat-diet-induced liver steatosis. Despite having a broad tissue distribution, systemic PI3K-C2ß inhibition selectively enhances insulin signaling only in metabolic tissues. In a primary hepatocyte model, basal PI3P lipid levels are reduced by 60% upon PI3K-C2ß inhibition. This results in an expansion of the very early APPL1-positive endosomal compartment and altered insulin receptor trafficking, correlating with an amplification of insulin-induced, class I PI3K-dependent Akt signaling, without impacting MAPK activity. These data reveal PI3K-C2ß as a critical regulator of endosomal trafficking, specifically in insulin signaling, and identify PI3K-C2ß as a potential drug target for insulin sensitization.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Insulina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autofagia , Glucemia/análisis , Células Cultivadas , Fosfatidilinositol 3-Quinasas Clase II/genética , Dieta Alta en Grasa , Endosomas/metabolismo , Hígado Graso/metabolismo , Hígado Graso/patología , Técnicas de Sustitución del Gen , Hepatocitos/citología , Hepatocitos/metabolismo , Insulina/sangre , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
13.
Dev Cell ; 28(6): 647-58, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24697898

RESUMEN

Multiple phosphatidylinositol (PtdIns) 3-kinases (PI3Ks) can produce PtdIns3P to control endocytic trafficking, but whether enzyme specialization occurs in defined subcellular locations is unclear. Here, we report that PI3K-C2α is enriched in the pericentriolar recycling endocytic compartment (PRE) at the base of the primary cilium, where it regulates production of a specific pool of PtdIns3P. Loss of PI3K-C2α-derived PtdIns3P leads to mislocalization of PRE markers such as TfR and Rab11, reduces Rab11 activation, and blocks accumulation of Rab8 at the primary cilium. These changes in turn cause defects in primary cilium elongation, Smo ciliary translocation, and Sonic Hedgehog (Shh) signaling and ultimately impair embryonic development. Selective reconstitution of PtdIns3P levels in cells lacking PI3K-C2α rescues Rab11 activation, primary cilium length, and Shh pathway induction. Thus, PI3K-C2α regulates the formation of a PtdIns3P pool at the PRE required for Rab11 and Shh pathway activation.


Asunto(s)
Movimiento Celular/fisiología , Cilios/fisiología , Endosomas/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Immunoblotting , Inmunoprecipitación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transporte de Proteínas , ARN Interferente Pequeño/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Transferrina/metabolismo , Transducción de Señal , Receptor Smoothened
14.
Prog Mol Biol Transl Sci ; 117: 411-43, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23663977

RESUMEN

Proteins of the dynamin superfamily are mechanochemical GTPases, which mediate nucleotide-dependent membrane remodeling events. The founding member dynamin is recruited to the neck of clathrin-coated endocytic vesicles where it oligomerizes into helical filaments. Nucleotide-hydrolysis-induced conformational changes in the oligomer catalyze scission of the vesicle neck. Here, we review recent insights into structure, function, and oligomerization of dynamin superfamily proteins and their roles in human diseases. We describe in detail the molecular mechanisms how dynamin oligomerizes at membranes and introduce a model how oligomerization is linked to membrane fission. Finally, we discuss molecular mechanisms how mutations in dynamin could lead to the congenital diseases, Centronuclear Myopathy and Charcot-Marie Tooth disease.


Asunto(s)
Enfermedad , Dinaminas/metabolismo , Salud , Animales , Enfermedad/genética , Dinaminas/química , Dinaminas/genética , Humanos , Modelos Moleculares , Mutación/genética , Multimerización de Proteína
15.
Curr Biol ; 23(21): 2185-90, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24206846

RESUMEN

Endosomal membrane traffic serves crucial roles in cell physiology, signaling, and development. Sorting between endosomes and the trans-Golgi network (TGN) is regulated among other factors by the adaptor AP-1, an essential component of multicellular organisms. Membrane recruitment of AP-1 requires phosphatidylinositol 4-phosphate [PI(4)P], though the precise mechanisms and PI4 kinase isozyme (or isozymes) involved in generation of this PI(4)P pool remain unclear. The Wnt pathway is a major developmental signaling cascade and depends on endosomal sorting in Wnt-sending cells. Whether TGN/endosomal sorting modulates signaling downstream of Frizzled (Fz) receptors in Wnt-receiving cells is unknown. Here, we identify PI4-kinase type 2ß (PI4K2ß) as a regulator of TGN/endosomal sorting and Wnt signaling. PI4K2ß and AP-1 interact directly and are required for efficient sorting between endosomes and the TGN. Zebrafish embryos depleted of PI4K2ß or AP-1 lack pectoral fins due to defective Wnt signaling. Rescue experiments demonstrate requirements for PI4K2ß-AP-1 complex formation and PI4K2ß-mediated PI(4)P synthesis. Furthermore, PI4K2ß binds to the Fz-associated component Dishevelled (Dvl) and regulates endosomal recycling of Fz receptors and Wnt target gene expression. These data reveal an evolutionarily conserved role for PI4K2ß and AP-1 in coupling phosphoinositide metabolism to AP-1-mediated sorting and Wnt signaling.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Factor de Transcripción AP-1/genética , Vía de Señalización Wnt , Proteínas de Pez Cebra/genética , Animales , Línea Celular , Endosomas/metabolismo , Receptores Frizzled/metabolismo , Humanos , Ratones , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transporte de Proteínas , Ratas , Factor de Transcripción AP-1/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo , Red trans-Golgi/metabolismo
16.
Structure ; 20(10): 1621-8, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23063009

RESUMEN

Dynamin is a multidomain mechanochemical guanine triphosphatase that catalyzes membrane scission, most notably of clathrin-coated endocytic vesicles. A number of recent publications have provided structural and mechanistic insights into the formation of helical dynamin filaments assembled by dynamic interactions of multiple domains within dynamin. As a prerequisite for membrane scission, this oligomer undergoes nucleotide-triggered large scale dynamic rearrangements. Here, we review these structural findings and discuss how the architecture of dynamin is poised for the assembly into right-handed helical filaments. Based on these data, we propose a structure-based model for dynamin-mediated scission of membranes.


Asunto(s)
Dinaminas/química , Animales , Dominio Catalítico , Estructuras de la Membrana Celular/metabolismo , Estructuras de la Membrana Celular/fisiología , Dinaminas/fisiología , Endocitosis , Humanos , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA