Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Genet ; 13(4): e1006739, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28422960

RESUMEN

Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics approaches are, however, limited by the large number of new variations found in each newly sequenced genome, and often do not provide direct mechanistic insight. Here we demonstrate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation analysis, performed in silico, can predict the abundance, metabolic stability, and function of proteins inside living cells. As a model system, we selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than inherent loss of function, and accordingly our in silico modeling data accurately identifies disease-causing mutations and outperforms the traditionally used genetic disease predictors. Thus, in conclusion, in silico biophysical modeling should be considered for making genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Proteínas de Unión al ADN/genética , Proteína 2 Homóloga a MutS/genética , Pliegue de Proteína , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Simulación por Computador , Proteínas de Unión al ADN/química , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inestabilidad de Microsatélites , Proteína 2 Homóloga a MutS/química , Mutación Missense/genética , Conformación Proteica
2.
PLoS Genet ; 10(1): e1004140, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24497846

RESUMEN

Cells are regularly exposed to stress conditions that may lead to protein misfolding. To cope with this challenge, molecular chaperones selectively target structurally perturbed proteins for degradation via the ubiquitin-proteasome pathway. In mammals the co-chaperone BAG-1 plays an important role in this system. BAG-1 has two orthologues, Bag101 and Bag102, in the fission yeast Schizosaccharomyces pombe. We show that both Bag101 and Bag102 interact with 26S proteasomes and Hsp70. By epistasis mapping we identify a mutant in the conserved kinetochore component Spc7 (Spc105/Blinkin) as a target for a quality control system that also involves, Hsp70, Bag102, the 26S proteasome, Ubc4 and the ubiquitin-ligases Ubr11 and San1. Accordingly, chromosome missegregation of spc7 mutant strains is alleviated by mutation of components in this pathway. In addition, we isolated a dominant negative version of the deubiquitylating enzyme, Ubp3, as a suppressor of the spc7-23 phenotype, suggesting that the proteasome-associated Ubp3 is required for this degradation system. Finally, our data suggest that the identified pathway is also involved in quality control of other kinetochore components and therefore likely to be a common degradation mechanism to ensure nuclear protein homeostasis and genome integrity.


Asunto(s)
Inestabilidad Genómica , Cinetocoros , Chaperonas Moleculares/genética , Proteolisis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética
3.
J Biol Chem ; 290(34): 21141-21153, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26152728

RESUMEN

A mutation, L166P, in the cytosolic protein, PARK7/DJ-1, causes protein misfolding and is linked to Parkinson disease. Here, we identify the fission yeast protein Sdj1 as the orthologue of DJ-1 and calculate by in silico saturation mutagenesis the effects of point mutants on its structural stability. We also map the degradation pathways for Sdj1-L169P, the fission yeast orthologue of the disease-causing DJ-1 L166P protein. Sdj1-L169P forms inclusions, which are enriched for the Hsp104 disaggregase. Hsp104 and Hsp70-type chaperones are required for efficient degradation of Sdj1-L169P. This also depends on the ribosome-associated E3 ligase Ltn1 and its co-factor Rqc1. Although Hsp104 is absolutely required for proteasomal degradation of Sdj1-L169P aggregates, the degradation of already aggregated Sdj1-L169P occurs independently of Ltn1 and Rqc1. Thus, our data point to soluble Sdj1-L169P being targeted early by Ltn1 and Rqc1. The fraction of Sdj1-L169P that escapes this first inspection then forms aggregates that are subsequently cleared via an Hsp104- and proteasome-dependent pathway.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Coenzimas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Oncogénicas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Coenzimas/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Proteína Desglicasa DJ-1 , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteolisis , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Ubiquitina-Proteína Ligasas/genética
4.
BMC Cell Biol ; 15: 31, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25078495

RESUMEN

BACKGROUND: In mammalian cells, ASPL is involved in insulin-stimulated redistribution of the glucose transporter GLUT4 and assembly of the Golgi apparatus. Its putative yeast orthologue, Ubx4, is important for proteasome localization, endoplasmic reticulum-associated protein degradation (ERAD), and UV-induced degradation of RNA polymerase. RESULTS: Here, we show that ASPL is a cofactor of the hexameric ATPase complex, known as p97 or VCP in mammals and Cdc48 in yeast. In addition, ASPL interacts in vitro with NSF, another hexameric ATPase complex. ASPL localizes to the ER membrane. The central area in ASPL, containing both a SHP box and a UBX domain, is required for binding to the p97 N-domain. Knock-down of ASPL does not impair degradation of misfolded secretory proteins via the ERAD pathway. Deletion of UBX4 in yeast causes cycloheximide sensitivity, while ubx4 cdc48-3 double mutations cause proteasome mislocalization. ASPL alleviates these defects, but not the impaired ERAD. CONCLUSIONS: In conclusion, ASPL and Ubx4 are homologous proteins with only partially overlapping functions. Both interact with p97/Cdc48, but while Ubx4 is important for ERAD, ASPL appears not to share this function.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/análisis , Proteínas Portadoras/análisis , Proteínas Portadoras/genética , Eliminación de Gen , Técnicas de Inactivación de Genes , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mutación , Proteínas Nucleares/análisis , Proteínas de Fusión Oncogénica/análisis , Proteínas de Fusión Oncogénica/genética , Complejo de la Endopetidasa Proteasomal/análisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética
5.
Nucleic Acids Res ; 40(2): 837-46, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21965533

RESUMEN

Deadenylation is the first and rate-limiting step during turnover of mRNAs in eukaryotes. In the yeast, Saccharomyces cerevisiae, two distinct 3'-5' exonucleases, Pop2p and Ccr4p, have been identified within the Ccr4-NOT deadenylase complex, belonging to the DEDD and Exonuclease-Endonuclease-Phosphatase (EEP) families, respectively. Ngl3p has been identified as a new member of the EEP family of exonucleases based on sequence homology, but its activity and biological roles are presently unknown. Here, we show using in vitro deadenylation assays on defined RNA species mimicking poly-A containing mRNAs that yeast Ngl3p is a functional 3'-5' exonuclease most active at slightly acidic conditions. We further show that the enzyme depends on divalent metal ions for activity and possesses specificity towards poly-A RNA similar to what has been observed for cellular deadenylases. The results suggest that Ngl3p is naturally involved in processing of poly-adenylated RNA and provide insights into the mechanistic variations observed among the redundant set of EEP enzymes found in yeast and higher eukaryotes.


Asunto(s)
Exorribonucleasas/metabolismo , Poli A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Exorribonucleasas/genética , Eliminación de Gen , Conformación de Ácido Nucleico , Poli G/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato
6.
Cell Stress Chaperones ; 22(1): 143-154, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27966061

RESUMEN

As a result of exposure to stress conditions, mutations, or defects during synthesis, cellular proteins are prone to misfold. To cope with such partially denatured proteins, cells mount a regulated transcriptional response involving the Hsf1 transcription factor, which drives the synthesis of molecular chaperones and other stress-relieving proteins. Here, we show that the fission yeast Schizosaccharomyces pombe orthologues of human BAG-1, Bag101, and Bag102, are Hsp70 co-chaperones that associate with 26S proteasomes. Only a subgroup of Hsp70-type chaperones, including Ssa1, Ssa2, and Sks2, binds Bag101 and Bag102 and key residues in the Hsp70 ATPase domains, required for interaction with Bag101 and Bag102, were identified. In humans, BAG-1 overexpression is typically observed in cancers. Overexpression of bag101 and bag102 in fission yeast leads to a strong growth defect caused by triggering Hsp70 to release and activate the Hsf1 transcription factor. Accordingly, the bag101-linked growth defect is alleviated in strains containing a reduced amount of Hsf1 but aggravated in hsp70 deletion strains. In conclusion, we propose that the fission yeast UBL/BAG proteins release Hsf1 from Hsp70, leading to constitutive Hsf1 activation and growth defects.


Asunto(s)
Factores de Transcripción del Choque Térmico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Análisis de Componente Principal , Complejo de la Endopetidasa Proteasomal/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Methods Mol Biol ; 1449: 421-39, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27613054

RESUMEN

The ubiquitin-proteasome system is the major pathway for intracellular protein degradation in eukaryotic cells. Due to the large number of genes dedicated to the ubiquitin-proteasome system, mapping degradation pathways for short lived proteins is a daunting task, in particular in mammalian cells that are not genetically tractable as, for instance, a yeast model system. Here, we describe a method relying on high-throughput cellular imaging of cells transfected with a targeted siRNA library to screen for components involved in degradation of a protein of interest. This method is a rapid and cost-effective tool which is also highly applicable for other studies on gene function.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Interferente Pequeño/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/genética
8.
Biomolecules ; 4(3): 646-61, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25010148

RESUMEN

In their natural environment, cells are regularly exposed to various stress conditions that may lead to protein misfolding, but also in the absence of stress, misfolded proteins occur as the result of mutations or failures during protein synthesis. Since such partially denatured proteins are prone to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system. The degradation of misfolded proteins is clearly compartmentalized, so unique degradation pathways exist for misfolded proteins depending on whether their subcellular localization is ER/secretory, mitochondrial, cytosolic or nuclear. Recent studies, mainly in yeast, have shown that the nucleus appears to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Animales , Humanos , Proteínas Nucleares/química , Pliegue de Proteína
9.
PLoS One ; 7(11): e50548, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209776

RESUMEN

In eukaryotic cells an uncleavable ubiquitin moiety conjugated to the N-terminus of a protein signals the degradation of the fusion protein via the proteasome-dependent ubiquitin fusion degradation (UFD) pathway. In yeast the molecular mechanism of the UFD pathway has been well characterized. Recently the human E3 ubiquitin-protein ligase TRIP12 was connected with the UFD pathway, but little is otherwise known about this system in mammalian cells. In the present work, we utilized high-throughput imaging on cells transfected with a targeted siRNA library to identify components involved in degradation of the UFD substrate Ub(G76V)-YFP. The most significant hits from the screen were the E3 ubiquitin-protein ligase HUWE1, as well as PSMD7 and PSMD14 that encode proteasome subunits. Accordingly, knock down of HUWE1 led to an increase in the steady state level and a retarded degradation of the UFD substrate. Knock down of HUWE1 also led to a stabilization of the physiological UFD substrate UBB(+1). Precipitation experiments revealed that HUWE1 is associated with both the Ub(G76V)-YFP substrate and the 26S proteasome, indicating that it functions late in the UFD pathway. Double knock down of HUWE1 and TRIP12 resulted in an additive stabilization of the substrate, suggesting that HUWE1 and TRIP12 function in parallel during UFD. However, even when both HUWE1 and TRIP12 are downregulated, ubiquitylation of the UFD substrate was still apparent, revealing functional redundancy between HUWE1, TRIP12 and yet other ubiquitin-protein ligases.


Asunto(s)
Proteínas Portadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Western Blotting , Proteínas Portadoras/genética , Línea Celular Tumoral , Electroforesis , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Supresoras de Tumor , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética
10.
Antioxid Redox Signal ; 15(8): 2265-99, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21314436

RESUMEN

In their natural environments, cells are regularly exposed to oxidizing conditions that may lead to protein misfolding. If such misfolded proteins are allowed to linger, they may form insoluble aggregates and pose a serious threat to the cell. Accumulation of misfolded, oxidatively damaged proteins is characteristic of many diseases and during aging. To counter the adverse effects of oxidative stress, cells can initiate an antioxidative response in an attempt to repair the damage, or rapidly channel the damaged proteins for degradation by the ubiquitin-proteasome system (UPS). Recent studies have shown that elements of the oxidative stress response and the UPS are linked on many levels. To manage the extra burden of misfolded proteins, the UPS is induced by oxidative stress, and special proteasome subtypes protect cells against oxidative damage. In addition, the proteasome is directly associated with a thioredoxin and other cofactors that may adjust the particle's response during an oxidative challenge. Here, we give an overview of the UPS and a detailed description of the degradation of oxidized proteins and of the crosstalk between oxidative stress and protein degradation in health and disease.


Asunto(s)
Estrés Oxidativo/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Oxidación-Reducción , Estrés Oxidativo/genética , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA