Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
BMC Evol Biol ; 20(1): 164, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33308147

RESUMEN

BACKGROUND: Eukaryotic protein-coding genes consist of exons and introns. Exon-intron borders are conserved between species and thus their changes might be observed only on quite long evolutionary distances. One of the rarest types of change, in which intron relocates over a short distance, is called "intron sliding", but the reality of this event has been debated for a long time. The main idea of a search for intron sliding is to use the most accurate genome annotation and genome sequence, as well as high-quality transcriptome data. We applied them in a search for sliding introns in mammals in order to widen knowledge about the presence or absence of such phenomena in this group. RESULTS: We didn't find any significant evidence of intron sliding in the primate group (human, chimpanzee, rhesus macaque, crab-eating macaque, green monkey, marmoset). Only one possible intron sliding event supported by a set of high quality transcriptomes was observed between EIF1AX human and sheep gene orthologs. Also, we checked a list of previously observed intron sliding events in mammals and showed that most likely they are artifacts of genome annotations and are not shown in subsequent annotation versions as well as are not supported by transcriptomic data. CONCLUSIONS: We assume that intron sliding is indeed a very rare evolutionary event if it exists at all. Every case of intron sliding needs a lot of supportive data for detection and confirmation.


Asunto(s)
Evolución Molecular , Intrones/genética , Mamíferos/genética , Animales , Exones/genética , Humanos , Primates/genética , Reproducibilidad de los Resultados , Ovinos/genética , Incertidumbre
2.
Nat Commun ; 15(1): 4632, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951500

RESUMEN

ANKRD11 (Ankyrin Repeat Domain 11) is a chromatin regulator and a causative gene for KBG syndrome, a rare developmental disorder characterized by multiple organ abnormalities, including cardiac defects. However, the role of ANKRD11 in heart development is unknown. The neural crest plays a leading role in embryonic heart development, and its dysfunction is implicated in congenital heart defects. We demonstrate that conditional knockout of Ankrd11 in the murine embryonic neural crest results in persistent truncus arteriosus, ventricular dilation, and impaired ventricular contractility. We further show these defects occur due to aberrant cardiac neural crest cell organization leading to outflow tract septation failure. Lastly, knockout of Ankrd11 in the neural crest leads to impaired expression of various transcription factors, chromatin remodelers and signaling pathways, including mTOR, BMP and TGF-ß in the cardiac neural crest cells. In this work, we identify Ankrd11 as a regulator of neural crest-mediated heart development and function.


Asunto(s)
Cardiopatías Congénitas , Corazón , Ratones Noqueados , Cresta Neural , Proteínas Represoras , Animales , Femenino , Ratones , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Miocardio/metabolismo , Cresta Neural/metabolismo , Cresta Neural/embriología , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transducción de Señal
3.
Nat Commun ; 14(1): 3092, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248239

RESUMEN

In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.


Asunto(s)
Metabolismo Energético , Estudio de Asociación del Genoma Completo , Animales , Humanos , Peso Corporal , Metabolismo Energético/genética , Ferritinas/genética , Riñón , Hombre de Neandertal
4.
Nat Commun ; 13(1): 2901, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614045

RESUMEN

Adrenal glands are the major organs releasing catecholamines and regulating our stress response. The mechanisms balancing generation of adrenergic chromaffin cells and protecting against neuroblastoma tumors are still enigmatic. Here we revealed that serotonin (5HT) controls the numbers of chromaffin cells by acting upon their immediate progenitor "bridge" cells via 5-hydroxytryptamine receptor 3A (HTR3A), and the aggressive HTR3Ahigh human neuroblastoma cell lines reduce proliferation in response to HTR3A-specific agonists. In embryos (in vivo), the physiological increase of 5HT caused a prolongation of the cell cycle in "bridge" progenitors leading to a smaller chromaffin population and changing the balance of hormones and behavioral patterns in adulthood. These behavioral effects and smaller adrenals were mirrored in the progeny of pregnant female mice subjected to experimental stress, suggesting a maternal-fetal link that controls developmental adaptations. Finally, these results corresponded to a size-distribution of adrenals found in wild rodents with different coping strategies.


Asunto(s)
Células Cromafines , Neuroblastoma , Glándulas Suprarrenales/metabolismo , Animales , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Femenino , Ratones , Neuroblastoma/metabolismo , Embarazo , Serotonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA