Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 148(6): 473-486, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37317858

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) are approved for multiple cancers but can result in ICI-associated myocarditis, an infrequent but life-threatening condition. Elevations in cardiac biomarkers, specifically troponin-I (cTnI), troponin-T (cTnT), and creatine kinase (CK), are used for diagnosis. However, the association between temporal elevations of these biomarkers with disease trajectory and outcomes has not been established. METHODS: We analyzed the diagnostic accuracy and prognostic performances of cTnI, cTnT, and CK in patients with ICI myocarditis (n=60) through 1-year follow-up in 2 cardio-oncology units (APHP Sorbonne, Paris, France and Heidelberg, Germany). A total of 1751 (1 cTnT assay type), 920 (4 cTnI assay types), and 1191 CK sampling time points were available. Major adverse cardiomyotoxic events (MACE) were defined as heart failure, ventricular arrhythmia, atrioventricular or sinus block requiring pacemaker, respiratory muscle failure requiring mechanical ventilation, and sudden cardiac death. Diagnostic performance of cTnI and cTnT was also assessed in an international ICI myocarditis registry. RESULTS: Within 72 hours of admission, cTnT, cTnI, and CK were increased compared with upper reference limits (URLs) in 56 of 57 (98%), 37 of 42 ([88%] P=0.03 versus cTnT), and 43 of 57 ([75%] P<0.001 versus cTnT), respectively. This increased rate of positivity for cTnT (93%) versus cTnI ([64%] P<0.001) on admission was confirmed in 87 independent cases from an international registry. In the Franco-German cohort, 24 of 60 (40%) patients developed ≥1 MACE (total, 52; median time to first MACE, 5 [interquartile range, 2-16] days). The highest value of cTnT:URL within the first 72 hours of admission performed best in terms of association with MACE within 90 days (area under the curve, 0.84) than CK:URL (area under the curve, 0.70). A cTnT:URL ≥32 within 72 hours of admission was the best cut-off associated with MACE within 90 days (hazard ratio, 11.1 [95% CI, 3.2-38.0]; P<0.001), after adjustment for age and sex. cTnT was increased in all patients within 72 hours of the first MACE (23 of 23 [100%]), whereas cTnI and CK values were less than the URL in 2 of 19 (11%) and 6 of 22 (27%) of patients (P<0.001), respectively. CONCLUSIONS: cTnT is associated with MACE and is sensitive for diagnosis and surveillance in patients with ICI myocarditis. A cTnT:URL ratio <32 within 72 hours of diagnosis is associated with a subgroup at low risk for MACE. Potential differences in diagnostic and prognostic performances between cTnT and cTnI as a function of the assays used deserve further evaluation in ICI myocarditis.


Asunto(s)
Miocarditis , Humanos , Miocarditis/inducido químicamente , Miocarditis/diagnóstico , Inhibidores de Puntos de Control Inmunológico , Biomarcadores , Creatina Quinasa , Pronóstico , Troponina T
2.
J Neurosci ; 42(16): 3473-3483, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35273082

RESUMEN

Decisions to act while pursuing goals in the presence of danger must be made quickly but safely. Premature decisions risk injury or death, whereas postponing decisions risk goal loss. Here we show how mice resolve these competing demands. Using microstructural behavioral analyses, we identified the spatiotemporal dynamics of approach-avoidance decisions under motivational conflict in male mice. Then we used cognitive modeling to show that these dynamics reflect the speeded decision-making mechanisms used by humans and nonhuman primates, with mice trading off decision speed for safety of choice when danger loomed. Using calcium imaging in paraventricular thalamus and optogenetic inhibition of the prelimbic cortex to paraventricular thalamus pathway, we show that this speed-safety trade off occurs because increases in paraventricular thalamus activity increase decision caution, thereby increasing approach-avoid decision times in the presence of danger. Our findings demonstrate that a discrete brain circuit involving the paraventricular thalamus and its prefrontal input adjusts decision caution during motivational conflict, trading off decision speed for decision safety when danger is close. We identify the corticothalamic pathway as central to cognitive control during decision-making under conflict.SIGNIFICANCE STATEMENT Foraging animals balance the need to seek food and energy against the conflicting needs to avoid injury and predation. This competition is fundamental to survival but rarely has a stable, correct solution. Here we show that approach-avoid decisions under motivational conflict involve strategic adjustments in decision caution controlled via a top-down corticothalamic pathway from the prelimbic cortex to the paraventricular thalamus. We identify a novel corticothalamic mechanism for cognitive control that is applicable across a range of motivated behaviors and mark paraventricular thalamus and its prefrontal cortical input as targets to remediate the deficits in decision caution characteristic of unsafe and impulsive choices.


Asunto(s)
Motivación , Tálamo , Animales , Toma de Decisiones/fisiología , Conducta Impulsiva , Masculino , Ratones , Corteza Prefrontal , Recompensa
3.
J Neurosci ; 41(44): 9223-9234, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34561234

RESUMEN

The basolateral amygdala (BLA) is obligatory for fear learning. This learning is linked to BLA excitatory projection neurons whose activity is regulated by complex networks of inhibitory interneurons, dominated by parvalbumin (PV)-expressing GABAergic neurons. The roles of these GABAergic interneurons in learning to fear and learning not to fear, activity profiles of these interneurons across the course of fear learning, and whether or how these change across the course of learning all remain poorly understood. Here, we used PV cell-type-specific recording and manipulation approaches in male transgenic PV-Cre rats during pavlovian fear conditioning to address these issues. We show that activity of BLA PV neurons during the moments of aversive reinforcement controls fear learning about aversive events, but activity during moments of nonreinforcement does not control fear extinction learning. Furthermore, we show expectation-modulation of BLA PV neurons during fear learning, with greater activity to an unexpected than expected aversive unconditioned stimulus (US). This expectation-modulation was specifically because of BLA PV neuron sensitivity to aversive prediction error. Finally, we show that BLA PV neuron function in fear learning is conserved across these variations in prediction error. We suggest that aversive prediction-error modulation of PV neurons could enable BLA fear-learning circuits to retain selectivity for specific sensory features of aversive USs despite variations in the strength of US inputs, thereby permitting the rapid updating of fear associations when these sensory features change.SIGNIFICANCE STATEMENT The capacity to learn about sources of danger in the environment is essential for survival. This learning depends on complex microcircuitries of inhibitory interneurons in the basolateral amygdala. Here, we show that parvalbumin-positive GABAergic interneurons in the rat basolateral amygdala are important for fear learning during moments of danger, but not for extinction learning during moments of safety, and that the activity of these neurons is modulated by expectation of danger. This may enable fear-learning circuits to retain selectivity for specific aversive events across variations in expectation, permitting the rapid updating of learning when aversive events change.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo , Neuronas GABAérgicas/fisiología , Refuerzo en Psicología , Amígdala del Cerebelo/citología , Animales , Condicionamiento Clásico , Extinción Psicológica , Neuronas GABAérgicas/metabolismo , Masculino , Parvalbúminas/genética , Parvalbúminas/metabolismo , Ratas
4.
Neurobiol Learn Mem ; 193: 107649, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35690341

RESUMEN

Neuroscience techniques, including in vivo recording, have allowed for a great expansion in knowledge; however, this technology may also affect the very phenomena researchers set out to investigate. Including both female and male mice in our associative learning experiments shed light on sex differences on the impact of chronic implantation of tetrodes on learning. While previous research showed intact female mice acquired trace eyeblink conditioning faster than male and ovariectomized females, implantation of chronic microdrive arrays showed sexually dimorphic effects on learning. Microdrive implanted male mice acquired the associative learning paradigm faster than both intact and ovariectomized females. These effects were not due to the weight of the drive alone, as there were no significant sex-differences in learning of animals that received "dummy drive" implants without tetrodes lowered into the brain. Tandem mass tag mass spectrometry and western blot analysis suggest that significant alterations in the MAPK pathway, acute inflammation, and brain derived neurotrophic factor may underlie these observed sex- and surgery-dependent effects on learning.


Asunto(s)
Parpadeo , Condicionamiento Palpebral , Animales , Encéfalo , Condicionamiento Clásico , Femenino , Aprendizaje , Masculino , Ratones , Caracteres Sexuales
5.
Phys Rev Lett ; 129(22): 224801, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36493460

RESUMEN

Many of the most significant advances in accelerator science have been due to improvements in our ability to manipulate beam phase space. Despite steady progress in beam phase-space manipulation over the last several decades, future accelerator applications continue to outpace the ability to manipulate the phase space. This situation is especially pronounced for longitudinal beam phase-space manipulation, and is now getting increased attention. Herein, we report the first experimental demonstration of the double emittance exchange concept, which allows for the control of the longitudinal phase space using relatively simple transverse manipulation techniques. The double emittance exchange beamline enables extensive longitudinal manipulation, including tunable bunch compression, time-energy correlation control, and nonlinearity correction, in a remarkably flexible manner. The demonstration of this new method opens the door for arbitrary longitudinal beam manipulations capable of responding to the ever increasing demands of future accelerator applications.

6.
Curr Cardiol Rep ; 24(5): 597-609, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35201561

RESUMEN

PURPOSE OF REVIEW: Histologic evidence of myocardial inflammatory infiltrate not secondary to an ischemic injury is required by current diagnostic criteria to reach a definite diagnosis of myocarditis. Endomyocardial biopsy (EMB) is therefore often indicated for the diagnosis of myocarditis, although it may lack sufficient sensitivity considering the limited possibility of myocardial sampling. Improving the diagnostic yield and utility of EMB is of high priority in the fields of heart failure cardiology and myocarditis in particular. The aim of the present review is to highlight indications, strengths, and shortcomings of current EMB techniques, and discuss innovations currently being tested in ongoing clinical studies, especially in the setting of acute myocarditis and chronic inflammatory cardiomyopathy. RECENT FINDINGS: EMB provides unique diagnostic elements and prognostic information which can effectively guide the treatment of myocarditis. Issues affecting the diagnostic performance in the setting of acute myocarditis and chronic inflammatory cardiomyopathies will be discussed in this review in the light of recent expert consensus documents on the management of these conditions and on indication to EMB. Recent innovations using electroanatomic mapping (EAM)-guided EMB and fluoroscopic-guided EMB during temporary mechanical circulatory support have improved the utility of the procedure. EMB remains an important diagnostic test whose results need to be interpreted in the context of (1) clinical pre-test probability, (2) timing of sampling, (3) quality of sampling (4) site of sampling, (5) histologic type of myocarditis, and (6) analytic methods that are applied. Herein we will review these caveats as well as perspectives and innovations related to the use of this diagnostic tool.


Asunto(s)
Insuficiencia Cardíaca , Miocarditis , Biopsia/métodos , Cateterismo Cardíaco , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/patología , Humanos , Miocarditis/diagnóstico , Miocarditis/patología , Miocardio/patología
7.
J Neurosci ; 40(4): 880-893, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31818977

RESUMEN

The ventral pallidum (VP) is a key node in the neural circuits controlling relapse to drug seeking. How this role relates to different VP cell types and their projections is poorly understood. Using male rats, we show how different forms of relapse to alcohol-seeking are assembled from VP cell types and their projections to lateral hypothalamus (LH) and ventral tegmental area (VTA). Using RNAScope in situ hybridization to characterize activity of different VP cell types during relapse to alcohol-seeking provoked by renewal (context-induced reinstatement), we found that VP Gad1 and parvalbumin (PV), but not vGlut2, neurons show relapse-associated changes in c-Fos expression. Next, we used retrograde tracing, chemogenetic, and electrophysiological approaches to study the roles of VPGad1 and VPPV neurons in relapse. We show that VPGad1 neurons contribute to contextual control over relapse (renewal), but not to relapse during reacquisition, via projections to LH, where they converge with ventral striatal inputs onto LHGad1 neurons. This convergence of striatopallidal inputs at the level of individual LHGad1 neurons may be critical to balancing propensity for relapse versus abstinence. In contrast, VPPV neurons contribute to relapse during both renewal and reacquisition via projections to VTA. These findings identify a double dissociation in the roles for different VP cell types and their projections in relapse. VPGad1 neurons control relapse during renewal via projections to LH. VPPV neurons control relapse during both renewal and reacquisition via projections to VTA. Targeting these different pathways may provide tailored interventions for different forms of relapse.SIGNIFICANCE STATEMENT Relapse to drug or reward seeking after a period of extinction or abstinence remains a key impediment to successful treatment. The ventral pallidum, located in the ventral basal ganglia, has long been recognized as an obligatory node in a 'final common pathway' for relapse. Yet how this role relates to the considerable VP cellular and circuit heterogeneity is not well understood. We studied the cellular and circuit architecture for VP in relapse control. We show that different forms of relapse have complementary VP cellular and circuit architectures, raising the possibility that targeting these different neural architectures may provide tailored interventions for different forms of relapse.


Asunto(s)
Prosencéfalo Basal/fisiología , Comportamiento de Búsqueda de Drogas/fisiología , Área Hipotalámica Lateral/fisiología , Neuronas/fisiología , Área Tegmental Ventral/fisiología , Animales , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Etanol/administración & dosificación , Masculino , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-Dawley , Recurrencia , Recompensa
8.
J Neurosci ; 40(33): 6409-6427, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32669355

RESUMEN

The mesolimbic dopamine system comprises distinct compartments supporting different functions in learning and motivation. Less well understood is how complex addiction-related behaviors emerge from activity patterns across these compartments. Here we show how different forms of relapse to alcohol-seeking in male rats are assembled from activity across the VTA and the nucleus accumbens. First, we used chemogenetic approaches to show a causal role for VTA TH neurons in two forms of relapse to alcohol-seeking: renewal (context-induced reinstatement) and reacquisition. Then, using gCaMP fiber photometry of VTA TH neurons, we identified medial and lateral VTA TH neuron activity profiles during self-administration, renewal, and reacquisition. Next, we used optogenetic inhibition of VTA TH neurons to show distinct causal roles for VTA subregions in distinct forms of relapse. We then used dLight fiber photometry to measure dopamine binding across the ventral striatum (medial accumbens shell, accumbens core, lateral accumbens shell) and showed complex and heterogeneous profiles of dopamine binding during self-administration and relapse. Finally, we used representational similarity analysis to identify mesolimbic dopamine signatures of self-administration, extinction, and relapse. Our results show that signatures of relapse can be identified from heterogeneous activity profiles across the mesolimbic dopamine system and that these signatures are unique for different forms of relapse.SIGNIFICANCE STATEMENT It is axiomatic that the actions of dopamine are critical to drug addiction. Yet how relapse to drug-seeking is assembled from activity across the mesolimbic dopamine system is poorly understood. Here we show how relapse to alcohol-seeking relates to activity in specific VTA and accumbens compartments, how these change for different forms of relapse, and how relapse-associated activity relates to activity during self-administration and extinction. We report the mesolimbic dopamine activity signatures for relapse and show that these signatures are unique for different forms of relapse.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Comportamiento de Búsqueda de Drogas/fisiología , Etanol/administración & dosificación , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiología , Animales , Conducta Adictiva/fisiopatología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Dopamina/metabolismo , Masculino , Potenciales de la Membrana , Optogenética , Ratas Long-Evans , Recurrencia , Tirosina 3-Monooxigenasa/metabolismo
9.
J Neurophysiol ; 125(5): 1825-1832, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33852819

RESUMEN

Neurons in the lateral septum (LS) integrate glutamatergic synaptic inputs, primarily from hippocampus, and send inhibitory projections to brain regions involved in reward and the generation of motivated behavior. Motivated learning and drugs of abuse have been shown to induce long-term changes in the strength of glutamatergic synapses in the LS, but the cellular mechanisms underlying long-term synaptic modification in the LS are poorly understood. Here, we examined synaptic transmission and long-term depression (LTD) in brain slices prepared from male and female C57BL/6 mice. No sex differences were observed in whole cell patch-clamp recordings of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R)- and N-methyl-d-aspartate receptor (NMDA-R)-mediated currents. Low-frequency stimulation of the fimbria fiber bundle (1 Hz 15 min) induced LTD of the LS field excitatory postsynaptic potential (fEPSP). Induction of LTD was blocked by the NMDA-R antagonist (d)-2-amino-5-phosphonovaleric acid (APV), but not the selective antagonist of GluN2B-containing NMDA-Rs ifenprodil. These results demonstrate the NMDA-R dependence of LTD in the LS. The LS is a sexually dimorphic structure, and sex differences in glutamatergic transmission have been reported in vivo; our results suggest sex differences observed in vivo result from network activity rather than intrinsic differences in glutamatergic transmission.NEW & NOTEWORTHY The lateral septum (LS) integrates information from hippocampus and other regions to provide context-dependent (top down or higher order) regulation of mood and motivated behavior. Learning and drugs of abuse induce long-term changes in the strength of glutamatergic projections to the LS; however, the cellular mechanisms underlying such changes are poorly understood. Here, we demonstrate there are no apparent sex differences in fast excitatory transmission and that long-term synaptic depression in the LS is NMDA-R dependent.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleos Septales/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Núcleos Septales/metabolismo , Caracteres Sexuales
10.
Brain ; 143(6): 1889-1904, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32375177

RESUMEN

Hyperphosphorylation and deposition of tau in the brain characterizes frontotemporal dementia and Alzheimer's disease. Disease-associated mutations in the tau-encoding MAPT gene have enabled the generation of transgenic mouse models that recapitulate aspects of human neurodegenerative diseases, including tau hyperphosphorylation and neurofibrillary tangle formation. Here, we characterized the effects of transgenic P301S mutant human tau expression on neuronal network function in the murine hippocampus. Onset of progressive spatial learning deficits in P301S tau transgenic TAU58/2 mice were paralleled by long-term potentiation deficits and neuronal network aberrations during electrophysiological and EEG recordings. Gene-expression profiling just prior to onset of apparent deficits in TAU58/2 mice revealed a signature of immediate early genes that is consistent with neuronal network hypersynchronicity. We found that the increased immediate early gene activity was confined to neurons harbouring tau pathology, providing a cellular link between aberrant tau and network dysfunction. Taken together, our data suggest that tau pathology drives neuronal network dysfunction through hyperexcitation of individual, pathology-harbouring neurons, thereby contributing to memory deficits.


Asunto(s)
Tauopatías/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Demencia Frontotemporal/genética , Hipocampo/metabolismo , Potenciación a Largo Plazo/genética , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Fosforilación , Tauopatías/fisiopatología
11.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502205

RESUMEN

Tropomyosin (Tpm) has been regarded as the master regulator of actin dynamics. Tpms regulate the binding of the various proteins involved in restructuring actin. The actin cytoskeleton is the predominant cytoskeletal structure in dendritic spines. Its regulation is critical for spine formation and long-term activity-dependent changes in synaptic strength. The Tpm isoform Tpm3.1 is enriched in dendritic spines, but its role in regulating the synapse structure and function is not known. To determine the role of Tpm3.1, we studied the synapse structure and function of cultured hippocampal neurons from transgenic mice overexpressing Tpm3.1. We recorded hippocampal field excitatory postsynaptic potentials (fEPSPs) from brain slices to examine if Tpm3.1 overexpression alters long-term synaptic plasticity. Tpm3.1-overexpressing cultured neurons did not show a significantly altered dendritic spine morphology or synaptic activity. Similarly, we did not observe altered synaptic transmission or plasticity in brain slices. Furthermore, expression of Tpm3.1 at the postsynaptic compartment does not increase the local F-actin levels. The results suggest that although Tpm3.1 localises to dendritic spines in cultured hippocampal neurons, it does not have any apparent impact on dendritic spine morphology or function. This is contrary to the functional role of Tpm3.1 previously observed at the tip of growing neurites, where it increases the F-actin levels and impacts growth cone dynamics.


Asunto(s)
Espinas Dendríticas/fisiología , Potenciales Postsinápticos Excitadores , Hipocampo/fisiología , Neurogénesis , Plasticidad Neuronal , Sinapsis/fisiología , Tropomiosina/metabolismo , Citoesqueleto de Actina , Animales , Células Cultivadas , Femenino , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas , Tropomiosina/genética
12.
Learn Mem ; 27(2): 78-82, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31949039

RESUMEN

The role of awareness in differential delay eyeblink conditioning (EBC) has been a topic of much debate. We tested the idea that awareness is required for differential delay EBC when two cues are perceptually similar. The present study manipulated frequencies of auditory conditioned stimuli (CS) to vary CS similarity in three groups of participants. Our findings indicate that awareness was not necessary for differential delay EBC when two tones are easily discriminable, awareness was also not needed for relatively similar tones but may facilitate earlier conditioning, and awareness alone was not sufficient for differential delay EBC.


Asunto(s)
Percepción Auditiva/fisiología , Concienciación/fisiología , Parpadeo/fisiología , Condicionamiento Clásico/fisiología , Condicionamiento Palpebral/fisiología , Discriminación en Psicología/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
13.
J Biol Chem ; 294(11): 3822-3823, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30877261

RESUMEN

The development of genetically engineered proteins that can control cell excitability with light have revolutionized our understanding of the nervous system. The most widely used of these optogenetic tools is the light-gated ion channel, channelrhodopsin 2 (ChR2). A new study by Cho et al. describes the development of ChR2 variants with improved photocurrents and more selective ion permeability using an automated multifaceted fluorescence-based screening. This methodological framework holds promise not only in refining features of ChR2, but also for other proteins in which fluorescence phenotyping is possible.


Asunto(s)
Luz , Optogenética , Channelrhodopsins , Canales Iónicos
14.
Intern Med J ; 50(4): 440-444, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31111636

RESUMEN

BACKGROUND: Activity-based funding (ABF) is a means of healthcare reimbursement, where hospitals are allocated funding based on the number and mix of clinical activity. The ABF model is based solely on Australian refined diagnosis-related group (AR-DRG) classifications of hospital encounters. Each AR-DRG is allocated a weighted activity unit (WAU) translating to cost value to determine ongoing funding allocations for each hospital annually. AIM: We explored cost consequences of AR-DRG coding variances within our Medical Oncology department over a 6-month period. METHODS: All inpatient encounters for medical oncology from 1 January to 30 June 2014 were identified and paired with actual AR-DRG coding sheets submitted by the hospital coders. Inpatient charts were manually reviewed by a Medical Oncology Registrar to capture any changes or additional AR-DRGs, which were subsequently evaluated for total WAU value variance. Applying 1 WAU = $4676 as per the 2014 Queensland model, cost consequences were calculated. RESULTS: A total of 116 encounters was identified for 72 patients. Of 116 patients, 95 (81%) had additional diagnoses captured, leading to an AR-DRG and WAU change in 26 encounters. The total reimbursement variance for this period was $143 404.07. Cost consequences resulted from: (i) use of abbreviations in clinical notes unable to be coded; and (ii) diagnoses not documented despite treatment delivered as per medication charts. CONCLUSION: Clinical note documentation ultimately determines the future funding of our healthcare system. Appropriate communication and education of medical staff and hospital coders are vital to ensure precise documentation and accurate AR-DRG coding for optimal and appropriate reimbursement in this funding model.


Asunto(s)
Grupos Diagnósticos Relacionados , Australia/epidemiología , Documentación , Humanos , Queensland
15.
J Ind Microbiol Biotechnol ; 47(12): 1059-1073, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33175241

RESUMEN

Tetanus is a fatal disease caused by Clostridium tetani infections. To prevent infections, a toxoid vaccine, developed almost a century ago, is routinely used in humans and animals. The vaccine is listed in the World Health Organisation list of Essential Medicines and can be produced and administered very cheaply in the developing world for less than one US Dollar per dose. Recent developments in both analytical tools and frameworks for systems biology provide industry with an opportunity to gain a deeper understanding of the parameters that determine C. tetani virulence and physiological behaviour in bioreactors. Here, we compared a traditional fermentation process with a fermentation medium supplemented with five heavily consumed amino acids. The experiment demonstrated that amino acid catabolism plays a key role in the virulence of C. tetani. The addition of the five amino acids favoured growth, decreased toxin production and changed C. tetani morphology. Using time-course transcriptomics, we created a "fermentation map", which shows that the tetanus toxin transcriptional regulator BotR, P21 and the tetanus toxin gene was downregulated. Moreover, this in-depth analysis revealed potential genes that might be involved in C. tetani virulence regulation. We observed differential expression of genes related to cell separation, surface/cell adhesion, pyrimidine biosynthesis and salvage, flagellar motility, and prophage genes. Overall, the fermentation map shows that, mediated by free amino acid concentrations, virulence in C. tetani is regulated at the transcriptional level and affects a plethora of metabolic functions.


Asunto(s)
Aminoácidos , Clostridium tetani , Aminoácidos/metabolismo , Animales , Clostridium tetani/genética , Clostridium tetani/metabolismo , Clostridium tetani/patogenicidad , Humanos , Toxina Tetánica/biosíntesis , Toxina Tetánica/genética , Transcriptoma
16.
J Neurosci ; 38(12): 3001-3012, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29079689

RESUMEN

BLA neurons serve a well-accepted role in fear conditioning and fear extinction. However, the specific learning processes related to their activity at different times during learning remain poorly understood. We addressed this using behavioral tasks isolating distinct aspects of fear learning in male rats. We show that brief optogenetic inhibition of BLA neurons around moments of aversive reinforcement or nonreinforcement causes reductions in the salience of conditioned stimuli, rendering these stimuli less able to be learned about and less able to control fear or safety behaviors. This salience reduction was stimulus-specific, long-lasting, and specific to learning about, or responding to, the same aversive outcome, precisely the goals of therapeutic interventions in human anxiety disorders. Our findings identify a core learning process disrupted by brief BLA optogenetic inhibition. They show that a primary function of the unconditioned stimulus-evoked activity of BLA neurons is to maintain the salience of conditioned stimuli that precede it. This maintenance of salience is a necessary precursor for these stimuli to gain and maintain control over fear and safety behavior.SIGNIFICANCE STATEMENT The amygdala is essential for learning to fear and learning to reduce fear. However, the specific roles served by activity of different amygdala neurons at different times during learning is poorly understood. We used behavioral tasks isolating distinct aspects of learning in rats to show that brief optogenetic inhibition of BLA neurons around moments of reinforcement or nonreinforcement disrupts maintenance of conditioned stimulus salience. This causes a stimulus-specific and long-lasting deficit in the ability of the conditioned stimulus to be learned about or control fear responses. These consequences are the precisely goals of therapeutic interventions in human anxiety disorders. Our findings identify a core learning process disrupted by brief BLA optogenetic inhibition.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Miedo/fisiología , Aprendizaje/fisiología , Neuronas/fisiología , Animales , Condicionamiento Clásico , Masculino , Ratas , Ratas Sprague-Dawley
17.
Phys Rev Lett ; 123(5): 057402, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31491320

RESUMEN

We demonstrate, theoretically and experimentally, that a traveling electric charge passing from one photonic crystal into another generates edge waves-electromagnetic modes with frequencies inside the common photonic band gap localized at the interface-via a process of transition edge-wave radiation (TER). A simple and intuitive expression for the TER spectral density is derived and then applied to a specific structure: two interfacing photonic topological insulators with opposite spin-Chern indices. We show that TER breaks the time-reversal symmetry and enables valley- and spin-polarized generation of topologically protected edge waves propagating in one or both directions along the interface. Experimental measurements at the Argonne Wakefield Accelerator Facility are consistent with the excitation and localization of the edge waves. The concept of TER paves the way for novel particle accelerators and detectors.

18.
Phys Rev Lett ; 122(1): 014801, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31012710

RESUMEN

We present the first demonstration of high-power, reversed-Cherenkov wakefield radiation by electron bunches passing through a metamaterial structure. The structure supports a fundamental transverse magnetic mode with a negative group velocity leading to reversed-Cherenkov radiation, which was clearly verified in the experiments. Single 45 nC electron bunches of 65 MeV traversing the structure generated up to 25 MW in 2 ns pulses at 11.4 GHz, in excellent agreement with theory. Two bunches of 85 nC with appropriate temporal spacing generated up to 80 MW by coherent wakefield superposition, the highest rf power that metamaterial structures ever experienced without damage. These results demonstrate the unique features of metamaterial structures that are very attractive for future high-gradient wakefield accelerators, including two-beam and collinear accelerators. Advantages include the high shunt impedance for high-power generation and high-gradient acceleration, the simple and rugged structure, and a large parameter space for optimization.

19.
Mol Cell Neurosci ; 88: 201-211, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29427776

RESUMEN

Hyperphosphorylation of tau is one of the main hallmarks for Alzheimer's disease (AD) and many other tauopathies. Norepinephrine (NE), a stress-related hormone and 17-ß-estradiol (E2) thought to influence tau phosphorylation (p-tau) and AD pathology. The controversy around the impact of NE and E2 requires further clarification. Moreover, the combination effect of physiological and psychological stress and estrogen alteration during menopause, which affect p-tau, has not been addressed. Exposure to E2 is believed to reduce NE release, however, the link between these two hormones and AD at cellular level was also remained unknown. Here, we examined whether NE and E2 treatment of differentiated SH-SY5Y cells affected tau phosphorylation. The involvement of adenosine monophosphate kinase protein kinase (AMPK) and target of Rapamycin (mTOR) as the possible mechanisms, underlying this effect was also investigated. Subsequent to SH-SY5Y differentiation to mature neurons, we treated the cells with NE, E2 and NE plus E2 in presence and absence of Compound C and Rapamycin. Cell viability was not affected by our treatment while our Western blot and immunofluorescent findings showed that exposure to NE and E2 separately, and in combination enhanced p-tau (Ser396) and (Ser262)/tau but not (Ser202/Thr205)/tau. Blocking AMPK by Compound C reduced p-tau (Ser396) and (Ser262), while GSK-3ß and PP2A activities were remained unchanged. We also found that blocking mTOR by Rapamycin did not change increased p-tau (Ser396) and (Ser262) due to NE + E2 treatment. Collectively, our results suggested that tau hyperphosphorylation due to exposure to NE/E2 was mediated by AMPK, the main energy regulator of cells during stress with no significant involvement of mTOR, GSK-3ß and PP2A.


Asunto(s)
Adenilato Quinasa/metabolismo , Diferenciación Celular/efectos de los fármacos , Norepinefrina/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas tau/efectos de los fármacos , Adenosina Monofosfato/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Estradiol/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas tau/metabolismo
20.
BMC Cell Biol ; 19(1): 7, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921218

RESUMEN

BACKGROUND: Cellular energy failure in high metabolic rate organs is one of the underlying causes for many disorders such as neurodegenerative diseases, cardiomyopathies, liver and renal failures. In the past decade, numerous studies have discovered the cellular axis of LKB1/AMPK/mTOR as an essential modulator of cell homeostasis in response to energy stress. Through regulating adaptive mechanisms, this axis adjusts the energy availability to its demand by a systematized control on metabolism. Energy stress, however, could be sensed at different levels in various tissues, leading to applying different strategies in response to hypoxic insults. METHODS: Here the immediate strategies of high metabolic rate organs to time-dependent short episodes of ischaemia were studied by using a rat model (n = 6/group) of cardiac arrest (CA) (15 and 30 s, 1, 2, 4 and 8 min CA). Using western blot analysis, we examined the responses of LKB1/AMPK/mTOR pathway in brain, heart, liver and kidney from 15 s up to 8 min of global ischaemia. The ratio of ADP/ATP was assessed in all ischemic and control groups, using ApoSENSOR bioluminescent assay kit. RESULTS: Brain, followed by kidney showed the early dephosphorylation response in AMPK (Thr172) and LKB1 (Ser431); in the absence of ATP decline (ADP/ATP elevation). Dephosphorylation of AMPK was followed by rephosphorylation and hyperphosphorylation, which was associated with a significant ATP decline. While heart's activity of AMPK and LKB1 remained at the same level during short episodes of ischaemia, liver's LKB1 was dephosphorylated after 2 min. AMPK response to ischaemia in liver was mainly based on an early alternative and a late constant hyperphosphorylation. No significant changes was observed in mTOR activity in all groups. CONCLUSION: Together our results suggest that early AMPK dephosphorylation followed by late hyperphosphorylation is the strategy of brain and kidney in response to ischaemia. While the liver seemed to get benefit of its AMPK system in early ischameia, possibly to stabilize ATP, the level of LKB1/AMPK activity in heart remained unchanged in short ischaemic episodes up to 8 min. Further researches must be conducted to elucidate the molecular mechanism underlying LKB1/AMPK response to oxygen supply.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Paro Cardíaco/metabolismo , Paro Cardíaco/patología , Isquemia/metabolismo , Especificidad de Órganos , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/irrigación sanguínea , Encéfalo/patología , Modelos Animales de Enfermedad , Electrocardiografía , Isquemia/patología , Riñón/irrigación sanguínea , Riñón/patología , Hígado/irrigación sanguínea , Hígado/patología , Miocardio/patología , Fosforilación , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA