Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8017): 660-665, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839955

RESUMEN

The capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO2 concentrations depends on soil nutrient availability1,2. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO2 (refs. 3-6), but uncertainty about ecosystem P cycling and its CO2 response represents a crucial bottleneck for mechanistic prediction of the land C sink under climate change7. Here, by compiling the first comprehensive P budget for a P-limited mature forest exposed to elevated CO2, we show a high likelihood that P captured by soil microorganisms constrains ecosystem P recycling and availability for plant uptake. Trees used P efficiently, but microbial pre-emption of mineralized soil P seemed to limit the capacity of trees for increased P uptake and assimilation under elevated CO2 and, therefore, their capacity to sequester extra C. Plant strategies to stimulate microbial P cycling and plant P uptake, such as increasing rhizosphere C release to soil, will probably be necessary for P-limited forests to increase C capture into new biomass. Our results identify the key mechanisms by which P availability limits CO2 fertilization of tree growth and will guide the development of Earth system models to predict future long-term C storage.


Asunto(s)
Biomasa , Dióxido de Carbono , Secuestro de Carbono , Bosques , Fósforo , Microbiología del Suelo , Suelo , Árboles , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Fósforo/metabolismo , Árboles/metabolismo , Árboles/crecimiento & desarrollo , Árboles/microbiología , Suelo/química , Rizosfera
2.
Proc Natl Acad Sci U S A ; 121(4): e2309881120, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38190514

RESUMEN

Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.


Asunto(s)
Sequías , Ecosistema , Pradera , Ciclo del Carbono , Cambio Climático , Proteínas Tirosina Quinasas Receptoras
3.
Nature ; 580(7802): 227-231, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269351

RESUMEN

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Bosques , Árboles/metabolismo , Biomasa , Eucalyptus/crecimiento & desarrollo , Eucalyptus/metabolismo , Calentamiento Global/prevención & control , Modelos Biológicos , Nueva Gales del Sur , Fotosíntesis , Suelo/química , Árboles/crecimiento & desarrollo
4.
J Exp Bot ; 75(3): 760-771, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37891011

RESUMEN

Biological nitrogen fixation (BNF) provides a globally important input of nitrogen (N); its quantification is critical but technically challenging. Leaf reflectance spectroscopy offers a more rapid approach than traditional techniques to measure plant N concentration ([N]) and isotopes (δ15N). Here we present a novel method for rapidly and inexpensively quantifying BNF using optical spectroscopy. We measured plant [N], δ15N, and the amount of N derived from atmospheric fixation (Ndfa) following the standard traditional methodology using isotope ratio mass spectrometry (IRMS) from tissues grown under controlled conditions and taken from field experiments. Using the same tissues, we predicted the same three parameters using optical spectroscopy. By comparing the optical spectroscopy-derived results with traditional measurements (i.e. IRMS), the amount of Ndfa predicted by optical spectroscopy was highly comparable to IRMS-based quantification, with R2 being 0.90 (slope=0.90) and 0.94 (slope=1.02) (root mean square error for predicting legume δ15N was 0.38 and 0.43) for legumes grown in glasshouse and field, respectively. This novel application of optical spectroscopy facilitates BNF studies because it is rapid, scalable, low cost, and complementary to existing technologies. Moreover, the proposed method successfully captures the dynamic response of BNF to climate changes such as warming and drought.


Asunto(s)
Fabaceae , Fijación del Nitrógeno , Isótopos de Nitrógeno/análisis , Nitrógeno , Plantas , Análisis Espectral
5.
Mol Ecol ; 32(1): 229-243, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34779067

RESUMEN

Symbiotic fungi mediate important energy and nutrient transfers in terrestrial ecosystems. Environmental change can lead to shifts in communities of symbiotic fungi, but the consequences of these shifts for nutrient dynamics among symbiotic partners are poorly understood. Here, we assessed variation in carbon (C), nitrogen (N) and phosphorus (P) in tissues of arbuscular mycorrhizal (AM) fungi and a host plant (Medicago sativa) in response to experimental warming and drought. We linked compositional shifts in AM fungal communities in roots and soil to variation in hyphal chemistry by using high-throughput DNA sequencing and joint species distribution modelling. Compared to plants, AM hyphae was 43% lower in (C) and 24% lower in (N) but more than nine times higher in (P), with significantly lower C:N, C:P and N:P ratios. Warming and drought resulted in increases in (P) and reduced C:P and N:P ratios in all tissues, indicating fungal P accumulation was exacerbated by climate-associated stress. Warming and drought modified the composition of AM fungal communities, and many of the AM fungal genera that were linked to shifts in mycelial chemistry were also negatively impacted by climate variation. Our study offers a unified framework to link climate change, fungal community composition, and community-level functional traits. Thus, our study provides insight into how environmental change can alter ecosystem functions via the promotion or reduction of fungal taxa with different stoichiometric characteristics and responses.


Asunto(s)
Micobioma , Micorrizas , Ecosistema , Micobioma/genética , Sequías , Raíces de Plantas/microbiología , Suelo/química , Plantas/microbiología , Microbiología del Suelo , Hongos/genética
6.
J Exp Bot ; 74(6): 2127-2145, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36640126

RESUMEN

Sustaining grassland production in a changing climate requires an understanding of plant adaptation strategies, including trait plasticity under warmer and drier conditions. However, our knowledge to date disproportionately relies on aboveground responses, despite the importance of belowground traits in maintaining aboveground growth, especially in grazed systems. We subjected a perennial pasture grass, Festuca arundinacea, to year-round warming (+3 °C) and cool-season drought (60% rainfall reduction) in a factorial field experiment to test the hypotheses that: (i) drought and warming increase carbon allocation belowground and shift root traits towards greater resource acquisition and (ii) increased belowground carbon reserves support post-drought aboveground recovery. Drought and warming reduced plant production and biomass allocation belowground. Drought increased specific root length and reduced root diameter in warmed plots but increased root starch concentrations under ambient temperature. Higher diameter and soluble sugar concentrations of roots and starch storage in crowns explained aboveground production under climate extremes. However, the lack of association between post-drought aboveground biomass and belowground carbon and nitrogen reserves contrasted with our predictions. These findings demonstrate that root trait plasticity and belowground carbon reserves play a key role in aboveground production during climate stress, helping predict pasture responses and inform management decisions under future climates.


Asunto(s)
Carbono , Pradera , Poaceae , Sequías , Biomasa , Almidón , Ecosistema
7.
Ecol Lett ; 25(12): 2699-2712, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36278303

RESUMEN

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.


Asunto(s)
Ecosistema , Pradera , Biomasa , Biodiversidad , Plantas
8.
Plant Cell Environ ; 45(8): 2271-2291, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35419849

RESUMEN

Carbon allocation determines plant growth, fitness and reproductive success. However, climate warming and drought impacts on carbon allocation patterns in grasses are not well known, particularly following grazing or clipping. A widespread C3 pasture grass, Festuca arundinacea, was grown at 26 and 30°C in controlled environment chambers and subjected to drought (65% reduction relative to well-watered controls). Leaf, root and whole-plant carbon fluxes were measured and linked to growth before and after clipping. Both drought and warming reduced gross primary production and plant biomass. Drought reduced net leaf photosynthesis but increased the leaf respiratory fraction of assimilated carbon. Warming increased root respiration but did not affect either net leaf photosynthesis or leaf respiration. There was no evidence of thermal acclimation. Moreover, root respiratory carbon loss was amplified in the combined drought and warming treatment and, in addition to a negative carbon balance aboveground, explained an enhanced reduction in plant biomass. Plant regrowth following clipping was strongly suppressed by drought, reflecting increased tiller mortality and exacerbated respiratory carbon loss. These findings emphasize the importance of considering carbon allocation patterns in response to grazing or clipping and interactions with climatic factors for sustainable pasture production in a future climate.


Asunto(s)
Sequías , Poaceae , Biomasa , Carbono , Ciclo del Carbono , Dióxido de Carbono , Ecosistema , Hojas de la Planta/fisiología , Plantas
9.
Plant Cell Environ ; 45(6): 1631-1646, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319101

RESUMEN

Determining the relationship between reductions in stomatal conductance (gs ) and leaf water transport during dehydration is key to understanding plant drought responses. While numerous studies have analysed the hydraulic function of woody species, minimal research has been conducted on grasses. Here, we sought to characterize hydraulic vulnerability in five widely-occurring pasture grasses (including both C3 and C4 grasses) and determine whether reductions in gs and leaf hydraulic conductance (Kleaf ) during dehydration could be attributed to xylem embolism. Using the optical vulnerability (OV) technique, we found that all species were highly resistant to xylem embolism when compared to other herbaceous angiosperms, with 50% xylem embolism (PX50 ) occurring at xylem pressures ranging from -4.4 to -6.1 MPa. We observed similar reductions in gs and Kleaf under mild water stress for all species, occurring well before PX50 . The onset of xylem embolism (PX12 ) occurred consistently after stomatal closure and 90% reduction of Kleaf . Our results suggest that factors other than xylem embolism are responsible for the majority of reductions in gs and Kleaf during drought and reductions in the productivity of pasture species under moderate drought may not be driven by embolism.


Asunto(s)
Sequías , Embolia , Deshidratación , Hojas de la Planta/fisiología , Poaceae , Xilema/fisiología
10.
Glob Chang Biol ; 28(8): 2678-2688, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35038782

RESUMEN

Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.


Asunto(s)
Pradera , Herbivoria , Biodiversidad , Ecosistema , Nutrientes
11.
New Phytol ; 232(3): 1238-1249, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34346089

RESUMEN

Though it is well established that species composition affects ecosystem function, the way in which species combine to control overall ecosystem functioning is still debated. In experimental mesocosms, we planted three functionally distinct dry-heath species in varying proportions and measured multiple ecosystem properties related to nutrient cycling and carbon storage (hereafter functions). Overall ecosystem functioning was described as the main axes of variation in ecosystem functioning (functional space) and the proportion of ecosystem functions at high levels; for example, fast carbon and nutrient cycling (cluster-based multifunctionality). The first functional space axis, related to nitrogen availability, was driven by plant species abundance, particularly that of legumes, which strongly affected many individual functions. The second, related to total plant biomass and woodiness, was mostly driven by the abundance of dwarf shrubs. Similarly, cluster-based multifunctionality was related to the initial abundance of all species, but particularly the legume. Interactions between species also affected ecosystem multifunctionality, but these effects were smaller in magnitude. These results indicate that species interactions could play a secondary role to species abundance and identity in driving the overall ecosystem functioning of heathlands, but also that axes of variation in functional space are clearly linked to plant functional composition.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Carbono , Plantas , Suelo
12.
Glob Chang Biol ; 26(12): 7173-7185, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32786128

RESUMEN

Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin ), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net Nmin . Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.


Asunto(s)
Nitrógeno , Suelo , Animales , Ecosistema , Fertilización , Pradera , Herbivoria , Humanos , Nitrógeno/análisis
13.
Glob Chang Biol ; 26(8): 4572-4582, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32520438

RESUMEN

Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.


Asunto(s)
Ecosistema , Pradera , Carbono , Nitrógeno/análisis , Nutrientes , Suelo
14.
Mol Ecol ; 27(8): 2152-2163, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29443420

RESUMEN

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterized arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


Asunto(s)
Pradera , Micorrizas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Microbiología del Suelo , Australia , Cambio Climático , Ecosistema , Micobioma/fisiología , Fenotipo , Fósforo/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Lluvia , Árboles
15.
Glob Chang Biol ; 24(7): 2818-2827, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29505170

RESUMEN

The effects of short-term drought on soil microbial communities remain largely unexplored, particularly at large scales and under field conditions. We used seven experimental sites from two continents (North America and Australia) to evaluate the impacts of imposed extreme drought on the abundance, community composition, richness, and function of soil bacterial and fungal communities. The sites encompassed different grassland ecosystems spanning a wide range of climatic and soil properties. Drought significantly altered the community composition of soil bacteria and, to a lesser extent, fungi in grasslands from two continents. The magnitude of the fungal community change was directly proportional to the precipitation gradient. This greater fungal sensitivity to drought at more mesic sites contrasts with the generally observed pattern of greater drought sensitivity of plant communities in more arid grasslands, suggesting that plant and microbial communities may respond differently along precipitation gradients. Actinobateria, and Chloroflexi, bacterial phyla typically dominant in dry environments, increased their relative abundance in response to drought, whereas Glomeromycetes, a fungal class regarded as widely symbiotic, decreased in relative abundance. The response of Chlamydiae and Tenericutes, two phyla of mostly pathogenic species, decreased and increased along the precipitation gradient, respectively. Soil enzyme activity consistently increased under drought, a response that was attributed to drought-induced changes in microbial community structure rather than to changes in abundance and diversity. Our results provide evidence that drought has a widespread effect on the assembly of microbial communities, one of the major drivers of soil function in terrestrial ecosystems. Such responses may have important implications for the provision of key ecosystem services, including nutrient cycling, and may result in the weakening of plant-microbial interactions and a greater incidence of certain soil-borne diseases.


Asunto(s)
Bacterias/clasificación , Sequías , Hongos/clasificación , Pradera , Microbiología del Suelo , Australia , Microbiota , América del Norte , Suelo/química
16.
Oecologia ; 188(3): 777-789, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30099604

RESUMEN

Predicted increases in extreme weather are likely to alter the interactions between organisms within ecosystems. Whilst many studies have investigated the impacts of climate change on aboveground plant-insect interactions, those belowground remain relatively unexplored. Root herbivores can be the dominant taxa in grasslands, potentially altering plant community dynamics. To better predict the impact of climate change on grasslands, we subjected four Australian pasture grasses (Cynodon dactylon, Paspalum dilatatum, Microlaena stipoides and Lolium perenne) to contrasting rainfall regimes [a press drought (i.e. sustained, moderate water stress), a pulse drought (water stress followed by periodic, infrequent deluge event) and a well-watered control], with and without root herbivores; a manual root cutting treatment was also included for comparison. Plant growth, rooting strategy, phenology and biochemistry were measured to evaluate above and belowground treatment responses. Watering treatments had a larger effect on plant productivity than root damage treatments: press drought and pulse drought treatments reduced biomass by 58% and 47%, respectively. Root herbivore damage effects were species dependent and were not always equivalent to root cutting. The combination of pulse drought and root herbivory resulted in increased root:shoot ratios for both P. dilatatum and L. perenne, as well as decreased biomass and delayed flowering time for P. dilatatum. Plant biomass responses to root damage were greatest under well-watered conditions; however, root damage also delayed or prevented investment in reproduction in at least one species. Our findings highlight the important role of soil-dwelling invertebrates for forecasting growth responses of grassland communities to future rainfall regime changes.


Asunto(s)
Sequías , Herbivoria , Animales , Australia , Biomasa , Ecosistema , Poaceae
17.
Glob Chang Biol ; 22(4): 1628-43, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26546164

RESUMEN

Free-air CO2 enrichment (FACE) experiments have demonstrated increased plant productivity in response to elevated (e)CO2, with the magnitude of responses related to soil nutrient status. Whilst understanding nutrient constraints on productivity responses to eCO2 is crucial for predicting carbon uptake and storage, very little is known about how eCO2 affects nutrient cycling in phosphorus (P)-limited ecosystems. Our study investigates eCO2 effects on soil N and P dynamics at the EucFACE experiment in Western Sydney over an 18-month period. Three ambient and three eCO2 (+150 ppm) FACE rings were installed in a P-limited, mature Cumberland Plain Eucalyptus woodland. Levels of plant accessible nutrients, evaluated using ion exchange resins, were increased under eCO2, compared to ambient, for nitrate (+93%), ammonium (+12%) and phosphate (+54%). There was a strong seasonality to responses, particularly for phosphate, resulting in a relatively greater stimulation in available P, compared to N, under eCO2 in spring and summer. eCO2 was also associated with faster nutrient turnover rates in the first six months of the experiment, with higher N (+175%) and P (+211%) mineralization rates compared to ambient rings, although this difference did not persist. Seasonally dependant effects of eCO2 were seen for concentrations of dissolved organic carbon in soil solution (+31%), and there was also a reduction in bulk soil pH (-0.18 units) observed under eCO2. These results demonstrate that CO2 fertilization increases nutrient availability - particularly for phosphate - in P-limited soils, likely via increased plant belowground investment in labile carbon and associated enhancement of microbial turnover of organic matter and mobilization of chemically bound P. Early evidence suggests that there is the potential for the observed increases in P availability to support increased ecosystem C-accumulation under future predicted CO2 concentrations.


Asunto(s)
Dióxido de Carbono/análisis , Eucalyptus , Nitrógeno/análisis , Fósforo/análisis , Suelo/química , Ecosistema , Bosques , Concentración de Iones de Hidrógeno , Resinas de Intercambio Iónico , Membranas Artificiales , Nueva Gales del Sur , Estaciones del Año
18.
Glob Chang Biol ; 22(8): 2834-51, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26946185

RESUMEN

The response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca ), particularly under nutrient-limited conditions, is a major uncertainty in Earth System models. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodland presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. We applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experiments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercomparison. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutrient uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.


Asunto(s)
Dióxido de Carbono/metabolismo , Ecosistema , Eucalyptus/metabolismo , Ciclo del Carbono , Cambio Climático , Bosques , Fotosíntesis , Agua
19.
Ambio ; 44(2): 131-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24845194

RESUMEN

Plant and soil bio(chemical) indicators are increasingly used to provide information on N deposition inputs and effects in a wide range of ecosystem types. However, many factors, including climate and site management history, have the potential to influence bioindicator relationships with N due to nutrient export and changing vegetation nutrient demands. We surveyed 33 heathlands in England, along a gradient of background N deposition (7.2-24.5 kg ha(-1) year(-1)), using Calluna vulgaris growth phase as a proxy for time since last management. Our survey confirmed soil nutrient accumulation with increasing time since management. Foliar N and phosphorus (P) concentrations in pioneer- and mature-phase vegetation significantly increased with N deposition. Significant interactions between climate and N deposition were also evident with, for example, higher foliar P concentrations in pioneer-phase vegetation at sites with higher temperatures and N deposition rates. Although oxidized N appeared more significant than reduced N, overall there were more, stronger relationships with total N deposition; suggesting efforts to control all emissions of N (i.e., both oxidized and reduced forms) will have ecological benefits.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Calluna/metabolismo , Monitoreo del Ambiente , Nitrógeno/metabolismo , Contaminantes del Suelo/metabolismo , Calluna/crecimiento & desarrollo , Ecosistema , Inglaterra , Fósforo/metabolismo , Hojas de la Planta/metabolismo
20.
Oecologia ; 176(4): 1173-85, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25224801

RESUMEN

Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15% winter rainfall and -30% summer rainfall) or ambient climate, achieving +15% winter rainfall and -39% summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha(-1) year(-1)) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.


Asunto(s)
Artrópodos , Biodiversidad , Cambio Climático , Pradera , Nitrógeno/metabolismo , Poaceae/fisiología , Lluvia , Animales , Biomasa , Clima , Inglaterra , Fertilizantes , Herbivoria , Fósforo/metabolismo , Poaceae/crecimiento & desarrollo , Estaciones del Año , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA