Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(3): 457-466.e4, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995482

RESUMEN

Recent surveillance has revealed the emergence of the SARS-CoV-2 Omicron variant (BA.1/B.1.1.529) harboring up to 36 mutations in spike protein, the target of neutralizing antibodies. Given its potential to escape vaccine-induced humoral immunity, we measured the neutralization potency of sera from 88 mRNA-1273, 111 BNT162b, and 40 Ad26.COV2.S vaccine recipients against wild-type, Delta, and Omicron SARS-CoV-2 pseudoviruses. We included individuals that received their primary series recently (<3 months), distantly (6-12 months), or an additional "booster" dose, while accounting for prior SARS-CoV-2 infection. Remarkably, neutralization of Omicron was undetectable in most vaccinees. However, individuals boosted with mRNA vaccines exhibited potent neutralization of Omicron, only 4-6-fold lower than wild type, suggesting enhanced cross-reactivity of neutralizing antibody responses. In addition, we find that Omicron pseudovirus infects more efficiently than other variants tested. Overall, this study highlights the importance of additional mRNA doses to broaden neutralizing antibody responses against highly divergent SARS-CoV-2 variants.

2.
Cell ; 184(9): 2372-2383.e9, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33743213

RESUMEN

Vaccination elicits immune responses capable of potently neutralizing SARS-CoV-2. However, ongoing surveillance has revealed the emergence of variants harboring mutations in spike, the main target of neutralizing antibodies. To understand the impact of these variants, we evaluated the neutralization potency of 99 individuals that received one or two doses of either BNT162b2 or mRNA-1273 vaccines against pseudoviruses representing 10 globally circulating strains of SARS-CoV-2. Five of the 10 pseudoviruses, harboring receptor-binding domain mutations, including K417N/T, E484K, and N501Y, were highly resistant to neutralization. Cross-neutralization of B.1.351 variants was comparable to SARS-CoV and bat-derived WIV1-CoV, suggesting that a relatively small number of mutations can mediate potent escape from vaccine responses. While the clinical impact of neutralization resistance remains uncertain, these results highlight the potential for variants to escape from neutralizing humoral immunity and emphasize the need to develop broadly protective interventions against the evolving pandemic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Inmunidad Humoral , SARS-CoV-2/inmunología , Vacuna BNT162 , COVID-19/sangre , COVID-19/inmunología , COVID-19/virología , Células HEK293 , Humanos , Mutación/genética , Curva ROC , SARS-CoV-2/genética
4.
Trends Immunol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38876831

RESUMEN

Immunotherapies have revolutionized the treatment of certain cancers, but challenges remain in overcoming immunotherapy resistance. Research shows that metabolic modulation of the tumor microenvironment can enhance antitumor immunity. Here, we discuss recent preclinical and clinical evidence for the efficacy of combining metabolic modifiers with immunotherapies. While this combination holds great promise, a few key areas must be addressed, which include identifying the effects of metabolic modifiers on immune cell metabolism, the putative biomarkers of therapeutic efficacy, the efficacy of modifiers on tumors harboring metabolic heterogeneity, and the potential development of resistance due to tumor reliance on alternative metabolic pathways. We propose solutions to these problems and posit that assessing these parameters is crucial for considering the potential of metabolic modifiers in sensitizing tumors to immunotherapies.

5.
FASEB J ; 38(13): e23796, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38967302

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an orphan neurodegenerative disease. Immune system dysregulation plays an essential role in ALS onset and progression. Our preclinical studies have shown that the administration of exogenous allogeneic B cells improves outcomes in murine models of skin and brain injury through a process termed pligodraxis, in which B cells adopt an immunoregulatory and neuroprotective phenotype in an injured environment. Here, we investigated the effects of B-cell therapy in the SOD1G93A mouse preclinical model of ALS and in a person living with ALS. Purified splenic mature naïve B cells from haploidentical donor mice were administered intravenously in SOD1G93A mice for a total of 10 weekly doses. For the clinical study in a person with advanced ALS, IgA gammopathy of unclear significance, and B lymphopenia, CD19+ B cells were positively selected from a healthy haploidentical donor and infused intravenously twice, at a 60-day interval. Repeated intravenous B-cell administration was safe and significantly delayed disease onset, extended survival, reduced cellular apoptosis, and decreased astrogliosis in SOD1G93A mice. Repeated B-cell infusion in a person with ALS was safe and did not appear to generate a clinically evident inflammatory response. An improvement of 5 points on the ALSFRS-R scale was observed after the first infusion. Levels of inflammatory markers showed persistent reduction post-infusion. This represents a first demonstration of the efficacy of haploidentical B-cell infusion in the SOD1G93A mouse and the safety and feasibility of using purified haploidentical B lymphocytes as a cell-based therapeutic strategy for a person with ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Linfocitos B , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/inmunología , Animales , Ratones , Humanos , Linfocitos B/inmunología , Modelos Animales de Enfermedad , Ratones Transgénicos , Masculino , Femenino , Ratones Endogámicos C57BL , Inmunomodulación , Persona de Mediana Edad
6.
J Neuroinflammation ; 20(1): 133, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259118

RESUMEN

Traumatic brain injury (TBI) remains a major cause of death and severe disability worldwide. We found previously that treatment with exogenous naïve B cells was associated with structural and functional neuroprotection after TBI. Here, we used a mouse model of unilateral controlled cortical contusion TBI to investigate cellular mechanisms of immunomodulation associated with intraparenchymal delivery of mature naïve B lymphocytes at the time of injury. Exogenous B cells showed a complex time-dependent response in the injury microenvironment, including significantly increased expression of IL-10, IL-35, and TGFß, but also IL-2, IL-6, and TNFα. After 10 days in situ, B cell subsets expressing IL-10 or TGFß dominated. Immune infiltration into the injury predominantly comprised myeloid cells, and B cell treatment did not alter overall numbers of infiltrating cells. In the presence of B cells, significantly more infiltrating myeloid cells produced IL-10, TGFß, and IL-35, and fewer produced TNFα, interferon-γ and IL-6 as compared to controls, up to 2 months post-TBI. B cell treatment significantly increased the proportion of CD206+ infiltrating monocytes/macrophages and reduced the relative proportion of activated microglia starting at 4 days and up to 2 months post-injury. Ablation of peripheral monocytes with clodronate liposomes showed that infiltrating peripheral monocytes/macrophages are required for inducing the regulatory phenotype in exogenous B cells. Reciprocally, B cells specifically reduced the expression of inflammatory cytokines in infiltrating Ly6C+ monocytes/macrophages. These data support the hypothesis that peripheral myeloid cells, particularly infiltrating monocyte/macrophages, are key mediators of the neuroprotective immunomodulatory effects observed after B cell treatment.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Fármacos Neuroprotectores , Ratones , Animales , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Neuroprotección , Interleucina-6/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Células Mieloides/metabolismo , Inmunomodulación , Fármacos Neuroprotectores/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Linfocitos B/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo
7.
Xenotransplantation ; 30(6): e12826, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37712342

RESUMEN

Replacement of insulin-producing pancreatic beta-cells by islet transplantation offers a functional cure for type-1 diabetes (T1D). We recently demonstrated that a clinical grade alginate micro-encapsulant incorporating the immune-repellent chemokine and pro-survival factor CXCL12 could protect and sustain the integrity and function of autologous islets in healthy non-human primates (NHPs) without systemic immune suppression. In this pilot study, we examined the impact of the CXCL12 micro encapsulant on the function and inflammatory and immune responses of xenogeneic islets transplanted into the omental tissue bilayer sac (OB; n = 4) and diabetic (n = 1) NHPs. Changes in the expression of cytokines after implantation were limited to 2-6-fold changes in blood, most of which did not persist over the first 4 weeks after implantation. Flow cytometry of PBMCs following transplantation showed minimal changes in IFNγ or TNFα expression on xenoantigen-specific CD4+  or CD8+  T cells compared to unstimulated cells, and these occurred mainly in the first 4 weeks. Microbeads were readily retrievable for assessment at day 90 and day 180 and at retrieval were without microscopic signs of degradation or foreign body responses (FBR). In vitro and immunohistochemistry studies of explanted microbeads indicated the presence of functional xenogeneic islets at day 30 post transplantation in all biopsied NHPs. These results from a small pilot study revealed that CXCL12-microencapsulated xenogeneic islets abrogate inflammatory and adaptive immune responses to the xenograft. This work paves the way toward future larger scale studies of the transplantation of alginate microbeads with CXCL12 and porcine or human stem cell-derived beta cells or allogeneic islets into diabetic NHPs without systemic immunosuppression.


Asunto(s)
Diabetes Mellitus , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Alginatos , Quimiocina CXCL12 , Supervivencia de Injerto , Terapia de Inmunosupresión/métodos , Trasplante de Islotes Pancreáticos/métodos , Proyectos Piloto , Primates , Porcinos , Trasplante Heterólogo/métodos
8.
J Infect Dis ; 226(7): 1231-1236, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35325158

RESUMEN

Allergic symptoms after messenger RNA (mRNA) coronavirus disease 2019 (COVID-19) vaccines occur in up to 2% of recipients. Compared to nonallergic controls (n = 18), individuals with immediate allergic reactions to mRNA COVID-19 vaccines (n = 8) mounted lower immunoglobulin G1 (IgG1) to multiple antigenic targets in severe acute respiratory syndrome coronavirus 2 spike following vaccination, with significantly lower IgG1 to full-length spike (P = .04). Individuals with immediate allergic reactions to mRNA COVID-19 vaccines bound Fcγ receptors similarly to nonallergic controls. Although there was a trend toward an overall reduction in opsonophagocytic function in individuals with immediate allergic reactions compared to nonallergic controls, allergic patients produced functional antibodies exhibiting a high ratio of opsonophagocytic function to IgG1 titer.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Hipersensibilidad , Vacuna nCoV-2019 mRNA-1273 , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Humanos , Inmunidad Humoral , Inmunoglobulina G , ARN Mensajero , SARS-CoV-2 , Vacunación
9.
J Infect Dis ; 225(7): 1141-1150, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34888672

RESUMEN

BACKGROUND: Understanding immunogenicity and effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is critical to guide rational use. METHODS: We compared the immunogenicity of mRNA-1273, BNT-162b2, and Ad26.COV2.S in healthy ambulatory adults. We performed an inverse-variance meta-analysis of population-level effectiveness from public health reports in > 40 million individuals. RESULTS: A single dose of either mRNA vaccine yielded comparable antibody and neutralization titers to convalescent individuals. Ad26.COV2.S yielded lower antibody concentrations and frequently undetectable neutralization titers. Bulk and cytotoxic T-cell responses were higher in mRNA1273 and BNT162b2 than Ad26.COV2.S recipients. Regardless of vaccine, <50% of vaccinees demonstrated CD8+ T-cell responses. Antibody concentrations and neutralization titers increased comparably after the first dose of either vaccine, and further in recipients of a second dose. Prior infection was associated with high antibody concentrations and neutralization even after a single dose and regardless of vaccine. Neutralization of Beta, Gamma, and Delta strains were poorer regardless of vaccine. In meta-analysis, relative to mRNA1273 the effectiveness of BNT162b2 was lower against infection and hospitalization, and Ad26COV2.S was lower against infection, hospitalization, and death. CONCLUSIONS: Variation in the immunogenicity correlates with variable effectiveness of the 3 vaccines deployed in the United States.


Asunto(s)
Ad26COVS1 , COVID-19 , Vacuna nCoV-2019 mRNA-1273 , Adulto , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunogenicidad Vacunal , SARS-CoV-2/genética , Vacunas Sintéticas , Vacunas de ARNm
10.
FASEB J ; 35(12): e22019, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34792819

RESUMEN

Exogenously applied mature naïve B220+ /CD19+ /IgM+ /IgD+ B cells are strongly protective in the context of tissue injury. However, the mechanisms by which B cells detect tissue injury and aid repair remain elusive. Here, we show in distinct models of skin and brain injury that MyD88-dependent toll-like receptor (TLR) signaling through TLR2/6 and TLR4 is essential for the protective benefit of B cells in vivo, while B cell-specific deletion of MyD88 abrogated this effect. The B cell response to injury was multi-modal with simultaneous production of both regulatory cytokines, such as IL-10, IL-35, and transforming growth factor beta (TGFß), and inflammatory cytokines, such as tumor necrosis factor alpha (TNFα), IL-6, and interferon gamma. Cytometry analysis showed that this response was time and environment-dependent in vivo, with 20%-30% of applied B cells adopting an immune modulatory phenotype with high co-expression of anti- and pro-inflammatory cytokines after 18-48 h at the injury site. B cell treatment reduced the expression of TNFα and increased IL-10 and TGFß in infiltrating immune cells and fibroblasts at the injury site. Proteomic analysis further showed that B cells have a complex time-dependent homeostatic effect on the injured microenvironment, reducing the expression of inflammation-associated proteins, and increasing proteins associated with proliferation, tissue remodeling, and protection from oxidative stress. These findings chart and validate a first mechanistic understanding of the effects of B cells as an immunomodulatory cell therapy in the context of tissue injury.


Asunto(s)
Linfocitos B/fisiología , Lesiones Encefálicas/prevención & control , Citocinas/metabolismo , Factor 88 de Diferenciación Mieloide/fisiología , Piel/inmunología , Cicatrización de Heridas , Animales , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Interleucina-10/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Transducción de Señal , Piel/lesiones , Piel/metabolismo , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
FASEB J ; 34(5): 6027-6037, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32350928

RESUMEN

There are currently no proven or approved treatments for coronavirus disease 2019 (COVID-19). Early anecdotal reports and limited in vitro data led to the significant uptake of hydroxychloroquine (HCQ), and to lesser extent chloroquine (CQ), for many patients with this disease. As an increasing number of patients with COVID-19 are treated with these agents and more evidence accumulates, there continues to be no high-quality clinical data showing a clear benefit of these agents for this disease. Moreover, these agents have the potential to cause harm, including a broad range of adverse events including serious cardiac side effects when combined with other agents. In addition, the known and potent immunomodulatory effects of these agents which support their use in the treatment of auto-immune conditions, and provided a component in the original rationale for their use in patients with COVID-19, may, in fact, undermine their utility in the context of the treatment of this respiratory viral infection. Specifically, the impact of HCQ on cytokine production and suppression of antigen presentation may have immunologic consequences that hamper innate and adaptive antiviral immune responses for patients with COVID-19. Similarly, the reported in vitro inhibition of viral proliferation is largely derived from the blockade of viral fusion that initiates infection rather than the direct inhibition of viral replication as seen with nucleoside/tide analogs in other viral infections. Given these facts and the growing uncertainty about these agents for the treatment of COVID-19, it is clear that at the very least thoughtful planning and data collection from randomized clinical trials are needed to understand what if any role these agents may have in this disease. In this article, we review the datasets that support or detract from the use of these agents for the treatment of COVID-19 and render a data informed opinion that they should only be used with caution and in the context of carefully thought out clinical trials, or on a case-by-case basis after rigorous consideration of the risks and benefits of this therapeutic approach.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Hidroxicloroquina/efectos adversos , Hidroxicloroquina/uso terapéutico , Neumonía Viral/tratamiento farmacológico , COVID-19 , Conjuntos de Datos como Asunto/normas , Corazón/efectos de los fármacos , Humanos , Hidroxicloroquina/farmacología , Inmunidad Innata/efectos de los fármacos , Pandemias , Ensayos Clínicos Controlados Aleatorios como Asunto/normas
12.
FASEB J ; 34(10): 13877-13884, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32856766

RESUMEN

The diagnosis of COVID-19 requires integration of clinical and laboratory data. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic assays play a central role in diagnosis and have fixed technical performance metrics. Interpretation becomes challenging because the clinical sensitivity changes as the virus clears and the immune response emerges. Our goal was to examine the clinical sensitivity of two most common SARS-CoV-2 diagnostic test modalities, polymerase chain reaction (PCR) and serology, over the disease course to provide insight into their clinical interpretation in patients presenting to the hospital. We conducted a single-center, retrospective study. To derive clinical sensitivity of PCR, we identified 209 PCR-positive SARS-CoV-2 patients with multiple PCR test results (624 total PCR tests) and calculated daily sensitivity from date of symptom onset or first positive test. Clinical sensitivity of PCR decreased with days post symptom onset with >90% clinical sensitivity during the first 5 days after symptom onset, 70%-71% from Days 9 to 11, and 30% at Day 21. To calculate daily clinical sensitivity by serology, we utilized 157 PCR-positive patients with a total of 197 specimens tested by enzyme-linked immunosorbent assay for IgM, IgG, and IgA anti-SARS-CoV-2 antibodies. In contrast to PCR, serological sensitivity increased with days post symptom onset with >50% of patients seropositive by at least one antibody isotype after Day 7, >80% after Day 12, and 100% by Day 21. Taken together, PCR and serology are complimentary modalities that require time-dependent interpretation. Superimposition of sensitivities over time indicate that serology can function as a reliable diagnostic aid indicating recent or prior infection.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , Prueba Serológica para COVID-19 , COVID-19/diagnóstico , SARS-CoV-2 , Anticuerpos Antivirales/sangre , COVID-19/sangre , Femenino , Hospitales , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Sensibilidad y Especificidad
13.
J Infect Dis ; 222(12): 1955-1959, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32906151

RESUMEN

SARS-CoV-2 antibody testing allows quantitative determination of disease prevalence, which is especially important in high-risk communities. We performed anonymized convenience sampling of 200 currently asymptomatic residents of Chelsea, the epicenter of COVID-19 illness in Massachusetts, by BioMedomics SARS-CoV-2 combined IgM-IgG point-of-care lateral flow immunoassay. The seroprevalence was 31.5% (17.5% IgM+IgG+, 9.0% IgM+IgG-, and 5.0% IgM-IgG+). Of the 200 participants, 50.5% reported no symptoms in the preceding 4 weeks, of which 24.8% (25/101) were seropositive, and 60% of these were IgM+IgG-. These data are the highest seroprevalence rates observed to date and highlight the significant burden of asymptomatic infection.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , Sistemas de Atención de Punto , Adulto , Especificidad de Anticuerpos , COVID-19/epidemiología , COVID-19/virología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoensayo , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Massachusetts/epidemiología , Persona de Mediana Edad , Análisis Multivariante , Análisis de Regresión , Estudios Seroepidemiológicos
14.
FASEB J ; 33(5): 6596-6608, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30802149

RESUMEN

Blockade of immune-checkpoint programmed cell death protein 1 (PD-1) or programmed cell death ligand 1 can enhance effector T-cell responses. However, the lack of response in many patients to checkpoint-inhibitor therapies emphasizes the need for combination immunotherapies to pursue maximal antitumor efficacy. We have previously demonstrated that antagonism of C-X-C chemokine receptor type 4 (CXCR4) by plerixafor (AMD3100) can decrease regulatory T (Treg)-cell intratumoral infiltration. Therefore, a combination of these 2 therapies might increase antitumor effects. Here, we evaluated the antitumor efficacy of AMD3100 and anti-PD-1 (αPD-1) antibody alone or in combination in an immunocompetent syngeneic mouse model of ovarian cancer. We found that AMD3100, a highly specific CXCR4 antagonist, directly down-regulated the expression of both C-X-C motif chemokine 12 (CXCL12) and CXCR4 in vitro and in vivo in tumor cells. AMD3100 and αPD-1 significantly inhibited tumor growth and prolonged the survival of tumor-bearing mice when given as monotherapy. Combination of these 2 agents significantly enhanced antitumor effects compared with single-agent administration. Benefits of tumor control and animal survival were associated with immunomodulation mediated by these 2 agents, which were characterized by increased effector T-cell infiltration, increased effector T-cell function, and increased memory T cells in tumor microenvironment. Intratumoral Treg cells were decreased, and conversion of Treg cells into T helper cells was increased by AMD3100 treatment. Intratumoral myeloid-derived suppressor cells were decreased by the combined treatment, which was associated with decreased IL-10 and IL-6 in the ascites. Also, the combination therapy decreased suppressive leukocytes and facilitated M2-to-M1 macrophage polarization in the tumor. These results suggest that AMD3100 could be used to target the CXCR4-CXCL12 axis to inhibit tumor growth and prevent multifaceted immunosuppression alone or in combination with αPD-1 in ovarian cancer, which could be clinically relevant to patients with this disease.-Zeng, Y., Li, B., Liang, Y., Reeves, P. M., Qu, X., Ran, C., Liu, Q., Callahan, M. V., Sluder, A. E., Gelfand, J. A., Chen, H., Poznansky, M. C. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment.


Asunto(s)
Antígeno B7-H1 , Quimiocina CXCL12 , Compuestos Heterocíclicos/farmacología , Tolerancia Inmunológica/efectos de los fármacos , Proteínas de Neoplasias , Neoplasias Ováricas , Receptor de Muerte Celular Programada 1 , Receptores CXCR4 , Transducción de Señal , Microambiente Tumoral , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Bencilaminas , Línea Celular Tumoral , Quimiocina CXCL12/antagonistas & inhibidores , Quimiocina CXCL12/inmunología , Ciclamas , Femenino , Ratones , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/inmunología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
15.
FASEB J ; 33(2): 3074-3081, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30192655

RESUMEN

Many vaccines require adjuvants to enhance immunogenicity, but there are few safe and effective intradermal (i.d.) adjuvants. Murine studies have validated the potency of laser illumination of skin as an adjuvant for i.d. vaccination with advantages over traditional adjuvants. We report a pilot clinical trial of low-power, continuous-wave, near-infrared laser adjuvant treatment, representing the first human trial of the safety, tolerability, and cutaneous immune cell trafficking changes produced by the laser adjuvant. In this trial we demonstrated a maximum tolerable energy dose of 300 J/cm2 to a spot on the lower back. The irradiated spot was biopsied 4 h later, as was a control spot. Paired biopsies were submitted for histomorphologic and immunohistochemical evaluation in a blinded fashion as well as quantitative PCR analysis for chemokines and cytokines. Similar to prior murine studies, highly significant reductions in CD1a+ Langerhans cells in the dermis and CD11c+ dermal dendritic cells were observed, corresponding to the increased migratory activity of these cells; changes in the epidermis were not significant. There was no evidence of skin damage. The laser adjuvant is a safe, well-tolerated adjuvant for i.d. vaccination in humans and results in significant cutaneous immune cell trafficking.-Gelfand, J. A., Nazarian, R. M., Kashiwagi, S., Brauns, T., Martin, B., Kimizuka, Y., Korek, S., Botvinick, E., Elkins, K., Thomas, L., Locascio, J., Parry, B., Kelly, K. M., Poznansky, M. C. A pilot clinical trial of a near-infrared laser vaccine adjuvant: safety, tolerability, and cutaneous immune cell trafficking.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Células Dendríticas/inmunología , Rayos Láser , Piel/inmunología , Vacunas/administración & dosificación , Adolescente , Adulto , Células Cultivadas , Células Dendríticas/efectos de la radiación , Femenino , Humanos , Inyecciones Intradérmicas , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Proyectos Piloto , Piel/efectos de la radiación , Vacunación , Vacunas/inmunología , Adulto Joven
16.
Pharmacol Res ; 159: 105010, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32544428

RESUMEN

AMD3100 (plerixafor), a CXCR4 antagonist, has opened a variety of avenues for potential therapeutic approaches in different refractory diseases. The CXCL12/CXCR4 axis and its signaling pathways are involved in diverse disorders including HIV-1 infection, tumor development, non-Hodgkin lymphoma, multiple myeloma, WHIM Syndrome, and so on. The mechanisms of action of AMD3100 may relate to mobilizing hematopoietic stem cells, blocking infection of X4 HIV-1, increasing circulating neutrophils, lymphocytes and monocytes, reducing myeloid-derived suppressor cells, and enhancing cytotoxic T-cell infiltration in tumors. Here, we first revisit the pharmacological discovery of AMD3100. We then review monotherapy of AMD3100 and combination use of AMD3100 with other agents in various diseases. Among those, we highlight the perspective of AMD3100 as an immunomodulator to regulate immune responses particularly in the tumor microenvironment and synergize with other therapeutics. All the pre-clinical studies support the clinical testing of the monotherapy and combination therapies with AMD3100 and further development for use in humans.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Antineoplásicos/uso terapéutico , Bencilaminas/uso terapéutico , Ciclamas/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Receptores CXCR4/antagonistas & inhibidores , Animales , Fármacos Anti-VIH/efectos adversos , Antineoplásicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Bencilaminas/efectos adversos , Ciclamas/efectos adversos , Contaminación de Medicamentos , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Enfermedades de Inmunodeficiencia Primaria/tratamiento farmacológico , Enfermedades de Inmunodeficiencia Primaria/inmunología , Enfermedades de Inmunodeficiencia Primaria/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal , Microambiente Tumoral , Verrugas/tratamiento farmacológico , Verrugas/inmunología , Verrugas/metabolismo
17.
Xenotransplantation ; 27(4): e12577, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31903659

RESUMEN

BACKGROUND: Our goal was to identify clinically relevant immunotherapies that synergize with microencapsulation to protect adult porcine islet (API) xenografts in diabetic NOD mice. We have shown previously that dual costimulatory blockade (CTLA4-Ig plus anti-CD154 mAb) combined with encapsulation protects APIs long-term in NOD mice. Since no anti-CD154 mAbs currently are approved for use in humans, we tested the efficacy of other targeted immunosuppression regimens that might be used for diabetic patients receiving encapsulated islets. METHODS: Microencapsulated APIs were transplanted i.p. in diabetic NOD mice given either no immunosuppression or combinations immunosuppressive reagents. Graft function was monitored by blood glucose levels, i.p. glucose tolerance tests, and histology. Mechanisms of rejection were investigated by phenotyping host peritoneal cells and measuring graft site cytokine and chemokine levels. RESULTS: New immunosuppressive therapies were compared to CTLA4-Ig plus anti-CD154 mAb, used here as a control. The most effective was triple treatment with CTLA4-Ig, anti-CD154 mAb, and intracapsular CXCL12, and the next most effective was a non-depleting anti-CD4 mAb (YTS177.9) plus intracapsular CXCL12. Three additional regimens (CTLA4-Ig plus YTS177.9, YTS177.9 alone, and anti-OX40-Ligand mAb alone) significantly prolonged encapsulated API function. Dual treatment with CTLA4-Ig plus anti-CD40 mAb was as effective as CTLA4-Ig plus anti-CD154 mAb. Five other monotherapies and three combination therapies did not augment encapsulated API survival. Most peritoneal cytokines and chemokines were either absent or minimal. At necropsy, the capsules were intact, not fibrosed, and clean when function was maintained, but were coated with host cells if rejection had occurred. CONCLUSIONS: Multiple different immunotherapies which specifically inhibit CD4+ T cells, modulate T-cell trafficking, or interfere with antigen presentation can substitute for anti-CD154 mAb to prolong encapsulated islet xenograft function in diabetic NOD mice.


Asunto(s)
Diabetes Mellitus Experimental , Terapia de Inmunosupresión/métodos , Trasplante de Islotes Pancreáticos , Trasplante Heterólogo , Animales , Ligando de CD40 , Diabetes Mellitus Experimental/cirugía , Rechazo de Injerto , Supervivencia de Injerto , Xenoinjertos , Ratones , Ratones Endogámicos NOD , Porcinos
18.
J Immunol ; 201(12): 3587-3603, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30420435

RESUMEN

The treatment of skin with a low-power continuous-wave (CW) near-infrared (NIR) laser prior to vaccination is an emerging strategy to augment the immune response to intradermal vaccine, potentially substituting for chemical adjuvant, which has been linked to adverse effects of vaccines. This approach proved to be low cost, simple, small, and readily translatable compared with the previously explored pulsed-wave medical lasers. However, little is known on the mode of laser-tissue interaction eliciting the adjuvant effect. In this study, we sought to identify the pathways leading to the immunological events by examining the alteration of responses resulting from genetic ablation of innate subsets including mast cells and specific dendritic cell populations in an established model of intradermal vaccination and analyzing functional changes of skin microcirculation upon the CW NIR laser treatment in mice. We found that a CW NIR laser transiently stimulates mast cells via generation of reactive oxygen species, establishes an immunostimulatory milieu in the exposed tissue, and provides migration cues for dermal CD103+ dendritic cells without inducing prolonged inflammation, ultimately augmenting the adaptive immune response. These results indicate that use of an NIR laser with distinct wavelength and power is a safe and effective tool to reproducibly modulate innate programs in skin. These mechanistic findings would accelerate the clinical translation of this technology and warrant further explorations into the broader application of NIR lasers to the treatment of immune-related skin diseases.


Asunto(s)
Células Dendríticas/inmunología , Terapia por Láser/métodos , Mastocitos/inmunología , Piel/inmunología , Vacunas/inmunología , Inmunidad Adaptativa , Adyuvantes Inmunológicos , Animales , Movimiento Celular , Células Cultivadas , Femenino , Inmunidad Innata , Inmunización , Rayos Infrarrojos , Ratones , Ratones Endogámicos C57BL , Exposición a la Radiación , Especies Reactivas de Oxígeno/metabolismo , Piel/efectos de la radiación
19.
Infect Immun ; 87(10)2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31331958

RESUMEN

Infection with Coxiella burnetii, the causative agent of Q fever, can result in life-threatening persistent infection. Reactogenicity hinders worldwide implementation of the only licensed human Q fever vaccine. We previously demonstrated long-lived immunoreactivity in individuals with past symptomatic and asymptomatic Coxiella infection (convalescents) to promiscuous HLA class II C. burnetii epitopes, providing the basis for a novel T-cell targeted subunit vaccine. In this study, we investigated in a cohort of 22 individuals treated for persistent infection (chronic Q fever) whether they recognize the same set of epitopes or distinct epitopes that could be candidates for a therapeutic vaccine or aid in the diagnosis of persistent infection. In cultured enzyme-linked immunosorbent spot (ELISpot) assays, individuals with chronic Q fever showed strong class II epitope-specific responses that were largely overlapping with the peptide repertoire identified previously for convalescents. Five additional peptides were recognized more frequently by chronic subjects, but there was no combination of epitopes uniquely recognized by or nonreactive in subjects with chronic Q fever. Consistent with more recent/prolonged exposure, we found, however, stronger ex vivo responses by direct ELISpot to both whole-cell C. burnetii and individual peptides in chronic patients than in convalescents. In conclusion, we have validated and expanded a previously published set of candidate epitopes for a novel T-cell targeted subunit Q fever vaccine in treated patients with chronic Q fever and demonstrated that they successfully mounted a T-cell response comparable to that of convalescents. Finally, we demonstrated that individuals treated for chronic Q fever mount a broader ex vivo response to class II epitopes than convalescents, which could be explored for diagnostic purposes.


Asunto(s)
Anticuerpos Antibacterianos/biosíntesis , Antígenos Bacterianos/inmunología , Coxiella burnetii/inmunología , Epítopos de Linfocito T/inmunología , Fiebre Q/inmunología , Anciano , Antibacterianos/uso terapéutico , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Vacunas Bacterianas/química , Vacunas Bacterianas/inmunología , Enfermedad Crónica , Convalecencia , Coxiella burnetii/patogenicidad , Ensayo de Immunospot Ligado a Enzimas , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Femenino , Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Prueba de Histocompatibilidad , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Masculino , Persona de Mediana Edad , Péptidos/genética , Péptidos/inmunología , Fiebre Q/tratamiento farmacológico , Fiebre Q/genética , Fiebre Q/prevención & control , Linfocitos T/inmunología , Linfocitos T/microbiología
20.
Am J Transplant ; 19(7): 1930-1940, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30748094

RESUMEN

Pancreatic ß-cell replacement by islet transplantation for the treatment of type 1 diabetes (T1D) is currently limited by donor tissue scarcity and the requirement for lifelong immunosuppression. The advent of in vitro differentiation protocols for generating functional ß-like cells from human pluripotent stem cells, also referred to as SC-ß cells, could eliminate these obstacles. To avoid the need for immunosuppression, alginate-microencapsulation is widely investigated as a safe path to ß-cell replacement. Nonetheless, inflammatory foreign body responses leading to pericapsular fibrotic overgrowth often causes microencapsulated islet-cell death and graft failure. Here we used a novel approach to evade the pericapsular fibrotic response to alginate-microencapsulated SC-ß cells; an immunomodulatory chemokine, CXCL12, was incorporated into clinical grade sodium alginate to microencapsulate SC-ß cells. CXCL12 enhanced glucose-stimulated insulin secretion activity of SC-ß cells and induced expression of genes associated with ß-cell function in vitro. SC-ß cells co-encapsulated with CXCL12 showed enhanced insulin secretion in diabetic mice and accelerated the normalization of hyperglycemia. Additionally, SC-ß cells co-encapsulated with CXCL12 evaded the pericapsular fibrotic response, resulting in long-term functional competence and glycemic correction (>150 days) without systemic immunosuppression in immunocompetent C57BL/6 mice. These findings lay the groundwork for further preclinical translation of this approach into large animal models of T1D.


Asunto(s)
Alginatos/química , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Supervivencia de Injerto , Células Secretoras de Insulina/citología , Trasplante de Islotes Pancreáticos/métodos , Células Madre/citología , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Femenino , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA