Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
New Phytol ; 241(1): 197-208, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37921581

RESUMEN

Mutations affecting crossover (CO) frequency and distribution lead to the presence of univalents during meiosis, giving rise to aneuploid gametes and sterility. These mutations may have a different effect after chromosome doubling. The combination of altered ploidy and mutations could be potentially useful to gain new insights into the mechanisms and regulation of meiotic recombination; however, studies using autopolyploid meiotic mutants are scarce. Here, we have analyzed the cytogenetic consequences in colchicine-induced autotetraploids (colchiploids) from different Arabidopsis mutants with an altered CO frequency. We have found that there are three types of mutants: mutants in which chiasma frequency is doubled after chromosome duplication (zip4, mus81), as in the control; mutants in which polyploidy leads to a higher-than-expected increase in chiasma frequency (asy1, mer3, hei10, and mlh3); and mutants in which the rise in chiasma frequency produced by the presence of two extrachromosomal sets is less than doubled (msh5, fancm). In addition, the proportion of class I/class II COs varies after chromosome duplication in the control. The results obtained reveal the potential of colchiploid meiotic mutants for better understanding of the function of key proteins during plant meiosis. This is especially relevant considering that most crops are polyploids.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Duplicación Cromosómica , Cromosomas de las Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación/genética , Poliploidía , Meiosis/genética , Intercambio Genético
2.
Plant Cell ; 33(9): 3104-3119, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34240187

RESUMEN

Structural maintenance of chromosome 5/6 (SMC5/6) complex is a crucial factor for preserving genome stability. Here, we show that mutants for several Arabidopsis (Arabidopsis thaliana) SMC5/6 complex subunits produce triploid offspring. This phenotype is caused by a meiotic defect leading to the production of unreduced male gametes. The SMC5/6 complex mutants show an absence of chromosome segregation during the first and/or the second meiotic division, as well as a partially disorganized microtubule network. Importantly, although the SMC5/6 complex is partly required for the repair of SPO11-induced DNA double-strand breaks, the nonreduction described here is SPO11-independent. The measured high rate of ovule abortion suggests that, if produced, such defects are maternally lethal. Upon fertilization with an unreduced pollen, the unbalanced maternal and paternal genome dosage in the endosperm most likely causes seed abortion observed in several SMC5/6 complex mutants. In conclusion, we describe the function of the SMC5/6 complex in the maintenance of gametophytic ploidy in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Segregación Cromosómica , Polen/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Roturas del ADN de Doble Cadena , Meiosis , Polen/genética
3.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34385313

RESUMEN

The frequency and distribution of meiotic crossovers are tightly controlled; however, variation in this process can be observed both within and between species. Using crosses of two natural Arabidopsis thaliana accessions, Col and Ler, we mapped a crossover modifier locus to semidominant polymorphisms in SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), which encodes a component of the SMC5/6 complex. The sni1 mutant exhibits a modified pattern of recombination across the genome with crossovers elevated in chromosome distal regions but reduced in pericentromeres. Mutations in SNI1 result in reduced crossover interference and can partially restore the fertility of a Class I crossover pathway mutant, which suggests that the protein affects noninterfering crossover repair. Therefore, we tested genetic interactions between SNI1 and both RECQ4 and FANCM DNA helicases, which showed that additional Class II crossovers observed in the sni1 mutant are FANCM independent. Furthermore, genetic analysis of other SMC5/6 mutants confirms the observations of crossover redistribution made for SNI1 The study reveals the importance of the SMC5/6 complex in ensuring the proper progress of meiotic recombination in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Intercambio Genético/fisiología , ADN Helicasas/metabolismo , Variación Genética , Meiosis/fisiología , Proteínas Nucleares/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN Helicasas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/genética , Dominios Proteicos
4.
J Exp Bot ; 73(7): 1926-1933, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35090020

RESUMEN

This Community Resource paper introduces the range of materials developed by the INDEPTH (Impact of Nuclear Domains on Gene Expression and Plant Traits) COST Action made available through the INDEPTH Academy. Recent rapid growth in understanding of the significance of epigenetic controls in plant and crop science has led to a need for shared, high-quality resources, standardization of protocols, and repositories for open access data. The INDEPTH Academy provides a range of masterclass tutorials, standardized protocols, and teaching webinars, together with a rapidly developing repository to support imaging and spatial analysis of the nucleus and deep learning for automated analysis. These resources were developed partly as a response to the COVID-19 pandemic, but also driven by needs and opportunities identified by the INDEPTH community of ~200 researchers in 80 laboratories from 32 countries. This community report outlines the resources produced and how they will be extended beyond the INDEPTH project, but also aims to encourage the wider community to engage with epigenetics and nuclear structure by accessing these resources.


Asunto(s)
COVID-19 , Recursos Comunitarios , Expresión Génica , Humanos , Pandemias , Plantas/genética
5.
Theor Appl Genet ; 135(11): 3987-4003, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35678824

RESUMEN

Crop wild relatives (CWRs) are recognized as the best potential source of traits for crop improvement. However, successful crop improvement using CWR relies on identifying variation in genes controlling desired traits in plant germplasms and subsequently incorporating them into cultivars. Epigenetic diversity may provide an additional layer of variation within CWR and can contribute novel epialleles for key traits for crop improvement. There is emerging evidence that epigenetic variants of functional and/or agronomic importance exist in CWR gene pools. This provides a rationale for the conservation of epigenotypes of interest, thus contributing to agrobiodiversity preservation through conservation and (epi)genetic monitoring. Concepts and techniques of classical and modern breeding should consider integrating recent progress in epigenetics, initially by identifying their association with phenotypic variations and then by assessing their heritability and stability in subsequent generations. New tools available for epigenomic analysis offer the opportunity to capture epigenetic variation and integrate it into advanced (epi)breeding programmes. Advances in -omics have provided new insights into the sources and inheritance of epigenetic variation and enabled the efficient introduction of epi-traits from CWR into crops using epigenetic molecular markers, such as epiQTLs.


Asunto(s)
Agricultura , Biodiversidad , Epigenómica
6.
Proc Natl Acad Sci U S A ; 116(25): 12534-12539, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31164422

RESUMEN

Little is known how patterns of cross-over (CO) numbers and distribution during meiosis are established. Here, we reveal that cyclin-dependent kinase A;1 (CDKA;1), the homolog of human Cdk1 and Cdk2, is a major regulator of meiotic recombination in ArabidopsisArabidopsis plants with reduced CDKA;1 activity experienced a decrease of class I COs, especially lowering recombination rates in centromere-proximal regions. Interestingly, this reduction of type I CO did not affect CO assurance, a mechanism by which each chromosome receives at least one CO, resulting in all chromosomes exhibiting similar genetic lengths in weak loss-of-function cdka;1 mutants. Conversely, an increase of CDKA;1 activity resulted in elevated recombination frequencies. Thus, modulation of CDKA;1 kinase activity affects the number and placement of COs along the chromosome axis in a dose-dependent manner.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Quinasas Ciclina-Dependientes/fisiología , Recombinación Genética , Alelos , Arabidopsis/citología , Proteínas de Arabidopsis/fisiología , Cromosomas de las Plantas , Intercambio Genético , Meiosis
7.
Plant Cell ; 30(2): 415-428, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29352063

RESUMEN

Fanconi anemia (FA) is a human autosomal recessive disorder characterized by chromosomal instability, developmental pathologies, predisposition to cancer, and reduced fertility. So far, 19 genes have been implicated in FA, most of them involved in DNA repair. Some are conserved across higher eukaryotes, including plants. The Arabidopsis thaliana genome encodes a homolog of the Fanconi anemia D2 gene (FANCD2) whose function in DNA repair is not yet fully understood. Here, we provide evidence that AtFANCD2 is required for meiotic homologous recombination. Meiosis is a specialized cell division that ensures reduction of genomic content by half and DNA exchange between homologous chromosomes via crossovers (COs) prior to gamete formation. In plants, a mutation in AtFANCD2 results in a 14% reduction of CO numbers. Genetic analysis demonstrated that AtFANCD2 acts in parallel to both MUTS HOMOLOG4 (AtMSH4), known for its role in promoting interfering COs and MMS AND UV SENSITIVE81 (AtMUS81), known for its role in the formation of noninterfering COs. AtFANCD2 promotes noninterfering COs in a MUS81-independent manner and is therefore part of an uncharted meiotic CO-promoting mechanism, in addition to those described previously.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Reparación del ADN/genética , ADN de Plantas/genética , Recombinación Homóloga/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Meiosis/genética , Mutación
8.
J Exp Bot ; 71(17): 5148-5159, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32589712

RESUMEN

The nuclear envelope delineates the eukaryotic cell nucleus. The membrane system of the nuclear envelope consists of an outer nuclear membrane and an inner nuclear membrane separated by a perinuclear space. It serves as more than just a static barrier, since it regulates the communication between the nucleoplasm and the cytoplasm and provides the anchoring points where chromatin is attached. Fewer nuclear envelope proteins have been identified in plants in comparison with animals and yeasts. Here, we review the current state of knowledge of the nuclear envelope in plants, focusing on its role as a chromatin organizer and regulator of gene expression, as well as on the modifications that it undergoes to be efficiently disassembled and reassembled with each cell division. Advances in knowledge concerning the mitotic role of some nuclear envelope constituents are also presented. In addition, we summarize recent progress on the contribution of the nuclear envelope elements to telomere tethering and chromosome dynamics during the meiotic division in different plant species.


Asunto(s)
Cromatina , Membrana Nuclear , Animales , División Celular , Citoplasma , Telómero
9.
J Exp Bot ; 71(17): 5205-5222, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626285

RESUMEN

Genetic information in the cell nucleus controls organismal development and responses to the environment, and finally ensures its own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organization of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to genome size, ploidy, and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organization and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits.


Asunto(s)
Cromatina , Fitomejoramiento , División Celular , Cromatina/genética , Cromosomas , Interfase
10.
Chromosome Res ; 26(4): 233-241, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30343461

RESUMEN

MicroRNAs (miRNAs) are a class of small (containing about 22 nucleotides) single-stranded non-coding RNAs that regulate gene expression at the post-transcriptional level in plants and animals, being absent from unicellular organisms. They act on diverse key physiological and cellular processes, such as development and tissue differentiation, cell identity, cell cycle progression, and programmed cell death. They are also likely to be involved in a broad spectrum of human diseases. Particularly, this review examines and summarizes work characterizing the function of miRNAs in gametogenesis and fertility. Although numerous studies have elucidated the involvement of reproductive-specific small interfering RNAs (siRNAs) in regulating germ cell development and meiosis, less is known about the role of miRNAs in these processes. We focus on the study of hypomorphic and null alleles of genes encoding components of miRNA biogenesis in both plants (Arabidopsis thaliana) and mammals (Mus musculus). We compare the consequences of the presence of these mutations on male meiosis in both species.


Asunto(s)
Fertilidad/genética , Meiosis/genética , MicroARNs/genética , Animales , Arabidopsis/genética , Regulación de la Expresión Génica/genética , Masculino , Ratones , Mutación
11.
PLoS Genet ; 11(7): e1005301, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26147458

RESUMEN

Chromatin Assembly Factor 1 (CAF-1) is a histone chaperone that assembles acetylated histones H3/H4 onto newly synthesized DNA, allowing the de novo assembly of nucleosomes during replication. CAF-1 is an evolutionary conserved heterotrimeric protein complex. In Arabidopsis, the three CAF-1 subunits are encoded by FAS1, FAS2 and MSI1. Atfas1-4 mutants have reduced fertility due to a decrease in the number of cells that enter meiosis. Interestingly, the number of DNA double-strand breaks (DSBs), measured by scoring the presence of γH2AX, AtRAD51 and AtDMC1 foci, is higher than in wild-type (WT) plants, and meiotic recombination genes such AtCOM1/SAE2, AtBRCA1, AtRAD51 and AtDMC1 are overexpressed. An increase in DSBs in this mutant does not have a significant effect in the mean chiasma frequency at metaphase I, nor a different number of AtMLH1 nor AtMUS81 foci per cell compared to WT at pachytene. Nevertheless, this mutant does show a higher gene conversion (GC) frequency. To examine how an increase in DSBs influences meiotic recombination and synaptonemal complex (SC) formation, we analyzed double mutants defective for AtFAS1 and different homologous recombination (HR) proteins. Most showed significant increases in both the mean number of synapsis initiation points (SIPs) and the total length of AtZYP1 stretches in comparison with the corresponding single mutants. These experiments also provide new insight into the relationships between the recombinases in Arabidopsis, suggesting a prominent role for AtDMC1 versus AtRAD51 in establishing interhomolog interactions. In Arabidopsis an increase in the number of DSBs does not translate to an increase in the number of crossovers (COs) but instead in a higher GC frequency. We discuss different mechanisms to explain these results including the possible existence of CO homeostasis in plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Intercambio Genético/genética , Roturas del ADN de Doble Cadena , Complejo Sinaptonémico/genética , Composición de Base/genética , Proteínas de Ciclo Celular/genética , Emparejamiento Cromosómico/genética , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas/genética , Meiosis/genética , Factores de Empalme de ARN , Recombinasa Rad51/genética , Rec A Recombinasas/genética
12.
Plant J ; 81(2): 329-46, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25412930

RESUMEN

The movement of chromosomes during meiosis involves location of their telomeres at the inner surface of the nuclear envelope. Sad1/UNC-84 (SUN) domain proteins are inner nuclear envelope proteins that are part of complexes linking cytoskeletal elements with the nucleoskeleton, connecting telomeres to the force-generating mechanism in the cytoplasm. These proteins play a conserved role in chromosome dynamics in eukaryotes. Homologues of SUN domain proteins have been identified in several plant species. In Arabidopsis thaliana, two proteins that interact with each other, named AtSUN1 and AtSUN2, have been identified. Immunolocalization using antibodies against AtSUN1 and AtSUN2 proteins revealed that they were associated with the nuclear envelope during meiotic prophase I. Analysis of the double mutant Atsun1-1 Atsun2-2 has revealed severe meiotic defects, namely a delay in the progression of meiosis, absence of full synapsis, the presence of unresolved interlock-like structures, and a reduction in the mean cell chiasma frequency. We propose that in Arabidopsis thaliana, overlapping functions of SUN1 and SUN2 ensure normal meiotic recombination and synapsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Emparejamiento Cromosómico/fisiología , Meiosis/fisiología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Emparejamiento Cromosómico/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
14.
PLoS Genet ; 8(2): e1002507, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22319460

RESUMEN

In this study we have analysed AtASY3, a coiled-coil domain protein that is required for normal meiosis in Arabidopsis. Analysis of an Atasy3-1 mutant reveals that loss of the protein compromises chromosome axis formation and results in reduced numbers of meiotic crossovers (COs). Although the frequency of DNA double-strand breaks (DSBs) appears moderately reduced in Atasy3-1, the main recombination defect is a reduction in the formation of COs. Immunolocalization studies in wild-type meiocytes indicate that the HORMA protein AtASY1, which is related to Hop1 in budding yeast, forms hyper-abundant domains along the chromosomes that are spatially associated with DSBs and early recombination pathway proteins. Loss of AtASY3 disrupts the axial organization of AtASY1. Furthermore we show that the AtASY3 and AtASY1 homologs BoASY3 and BoASY1, from the closely related species Brassica oleracea, are co-immunoprecipitated from meiocyte extracts and that AtASY3 interacts with AtASY1 via residues in its predicted coiled-coil domain. Together our results suggest that AtASY3 is a functional homolog of Red1. Since studies in budding yeast indicate that Red1 and Hop1 play a key role in establishing a bias to favor inter-homolog recombination (IHR), we propose that AtASY3 and AtASY1 may have a similar role in Arabidopsis. Loss of AtASY3 also disrupts synaptonemal complex (SC) formation. In Atasy3-1 the transverse filament protein AtZYP1 forms small patches rather than a continuous SC. The few AtMLH1 foci that remain in Atasy3-1 are found in association with the AtZYP1 patches. This is sufficient to prevent the ectopic recombination observed in the absence of AtZYP1, thus emphasizing that in addition to its structural role the protein is important for CO formation.


Asunto(s)
Arabidopsis/genética , Emparejamiento Cromosómico , Intercambio Genético , Proteínas de Unión al ADN/genética , Meiosis/genética , Complejo Sinaptonémico/genética , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Brassica/genética , Cromosomas de las Plantas/genética , Roturas del ADN de Doble Cadena , Mutación , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Plant J ; 69(6): 921-33, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22066484

RESUMEN

The eukaryotic recombinases RAD51 and DMC1 are essential for DNA strand-exchange between homologous chromosomes during meiosis. RAD51 is also expressed during mitosis, and mediates homologous recombination (HR) between sister chromatids. It has been suggested that DMC1 might be involved in the switch from intersister chromatid recombination in somatic cells to interhomolog meiotic recombination. At meiosis, the Arabidopsis Atrad51 null mutant fails to synapse and has extensive chromosome fragmentation. The Atdmc1 null mutant is also asynaptic, but in this case chromosome fragmentation is absent. Thus in plants, AtDMC1 appears to be indispensable for interhomolog homologous recombination, whereas AtRAD51 seems to be more involved in intersister recombination. In this work, we have studied a new AtRAD51 knock-down mutant, Atrad51-2, which expresses only a small quantity of RAD51 protein. Atrad51-2 mutant plants are sterile and hypersensitive to DNA double-strand break induction, but their vegetative development is apparently normal. The meiotic phenotype of the mutant consists of partial synapsis, an elevated frequency of univalents, a low incidence of chromosome fragmentation and multivalent chromosome associations. Surprisingly, non-homologous chromosomes are involved in 51% of bivalents. The depletion of AtDMC1 in the Atrad51-2 background results in the loss of bivalents and in an increase of chromosome fragmentation. Our results suggest that a critical level of AtRAD51 is required to ensure the fidelity of HR during interchromosomal exchanges. Assuming the existence of asymmetrical DNA strand invasion during the initial steps of recombination, we have developed a working model in which the initial step of strand invasion is mediated by AtDMC1, with AtRAD51 required to check the fidelity of this process.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Recombinación Homóloga , Meiosis , Recombinasa Rad51/metabolismo , Rec A Recombinasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Cisplatino/farmacología , Roturas del ADN de Doble Cadena/efectos de la radiación , ADN de Plantas/genética , ADN de Plantas/metabolismo , Rayos gamma , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Metafase , Modelos Genéticos , Fenotipo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/efectos de la radiación , Recombinasa Rad51/genética , Rec A Recombinasas/genética
16.
Planta ; 238(1): 23-33, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23624938

RESUMEN

Different histone modifications often modify DNA-histone interactions affecting both local and global structure of chromatin, thereby providing a vast potential for functional responses. Most studies have focused on the role of several modifications in gene transcription regulation, being scarce on other aspects of eukaryotic chromosome structure during cell division, mainly in meiosis. To solve this issue we have performed a cytological analysis to determine the chromosomal distribution of several histone H3 modifications throughout all phases of both mitosis and meiosis in different plant species. We have chosen Aegilops sp. and Secale cereale (monocots) and Arabidopsis thaliana (dicots) because they differ in their phylogenetic affiliation as well as in content and distribution of constitutive heterochromatin. In the species analyzed, the patterns of H3 acetylation and methylation were held constant through mitosis, including modifications associated with "open chromatin". Likewise, the immunolabeling patterns of H3 methylation remained invariable throughout meiosis in all cases. On the contrary, there was a total loss of acetylated H3 immunosignals on condensed chromosomes in both meiotic divisions, but only in monocot species. Regarding the phosphorylation of histone H3 at Ser10, present on condensed chromosomes, although we did not observe any difference in the dynamics, we found slight differences between the chromosomal distribution of this modification between Arabidopsis and cereals (Aegilops sp. and rye). Thus far, in plants chromosome condensation throughout cell division appears to be associated with a particular combination of H3 modifications. Moreover, the distribution and dynamics of these modifications seem to be species-specific and even differ between mitosis and meiosis in the same species.


Asunto(s)
Histonas/metabolismo , Meiosis , Plantas/metabolismo , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Lisina/metabolismo , Metilación , Mitosis , Fosforilación , Plantas/genética , Poaceae/genética , Poaceae/metabolismo , Secale/genética , Secale/metabolismo , Serina/metabolismo , Especificidad de la Especie
17.
Front Cell Dev Biol ; 11: 1285695, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111849

RESUMEN

Nuclear Pore Complexes (NPCs) are embedded in the nuclear envelope (NE), regulating macromolecule transport and physically interacting with chromatin. The NE undergoes dramatic breakdown and reformation during plant cell division. In addition, this structure has a specific meiotic function, anchoring and positioning telomeres to facilitate the pairing of homologous chromosomes. To elucidate a possible function of the structural components of the NPCs in meiosis, we have characterized several Arabidopsis lines with mutations in genes encoding nucleoporins belonging to the outer ring complex. Plants defective for either SUPPRESSOR OF AUXIN RESISTANCE1 (SAR1, also called NUP160) or SAR3 (NUP96) present condensation abnormalities and SPO11-dependent chromosome fragmentation in a fraction of meiocytes, which is increased in the double mutant sar1 sar3. We also observed these meiotic defects in mutants deficient in the outer ring complex protein HOS1, but not in mutants affected in other components of this complex. Furthermore, our findings may suggest defects in the structure of NPCs in sar1 and a potential link between the meiotic role of this nucleoporin and a component of the RUBylation pathway. These results provide the first insights in plants into the role of nucleoporins in meiotic chromosome behavior.

18.
PNAS Nexus ; 2(3): pgac302, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36992817

RESUMEN

The chromosome axis plays a crucial role in meiotic recombination. Here, we study the function of ASY1, the Arabidopsis homolog of the yeast chromosome axis-associated component Hop1. Specifically, we characterized cross-over (CO) distribution in female and male meiosis by deep sequencing of the progeny of an allelic series of asy1 mutants. Combining data from nearly 1,000 individual plants, we find that reduced ASY1 functionality leads to genomic instability and sometimes drastic genomic rearrangements. We further observed that COs are less frequent and appear in more distal chromosomal regions in plants with no or reduced ASY1 functionality, consistent with previous analyses. However, our sequencing approach revealed that the reduction in CO number is not as dramatic as suggested by cytological analyses. Analysis of double mutants of asy1 with mutants with three other CO factors, MUS81, MSH4, and MSH5, as well as the determination of foci number of the CO regulator MLH1 demonstrates that the majority of the COs in asy1, similar to the situation in the wildtype (WT), largely belong to the class I, which are subject to interference. However, these COs are redistributed in asy1 mutants and typically appear much closer than in the WT. Hence, ASY1 plays a key role in CO interference that spaces COs along a chromosome. Conversely, since a large proportion of chromosomes do not receive any CO, we conclude that CO assurance, the process that ensures the obligatory assignment of one CO per chromosome, is also affected in asy1 mutants.

19.
Chromosoma ; 120(5): 447-54, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21826413

RESUMEN

Recombination between homologous chromosomes is crucial to ensure their proper segregation during meiosis. This is achieved by regulating the choice of recombination template. In mitotic cells, double-strand break repair with the sister chromatid appears to be preferred, whereas interhomolog recombination is favoured during meiosis. However, in the last year, several studies in yeast have shown the importance of the meiotic recombination between sister chromatids. Although this thinking seems to be new, evidences for sister chromatid exchange during meiosis were obtained more than 50 years ago in non-model organisms. In this mini-review, we comment briefly on the most recent advances in this hot topic and also describe observations which suggest the existence of inter-sister repair during meiotic recombination. For instance, the behaviour of mammalian XY bivalents and that of trivalents in heterozygotes for chromosomal rearrangements are cited as examples. The "rediscovering" of the requirement for the sister template, although it seems to occur at a low frequency, will probably prompt further investigations in organisms other than yeast to understand the complexity of the partner choice during meiosis.


Asunto(s)
Eucariontes/genética , Meiosis , Intercambio de Cromátides Hermanas , Animales , Cromosomas/genética , Cromosomas/metabolismo , Eucariontes/metabolismo , Humanos , Recombinación Genética
20.
Plants (Basel) ; 11(1)2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35009128

RESUMEN

Hybridization and polyploidy have been considered as significant evolutionary forces in adaptation and speciation, especially among plants. Interspecific gene flow generates novel genetic variants adaptable to different environments, but it is also a gene introgression mechanism in crops to increase their agronomical yield. An estimate of 9% of interspecific hybridization has been reported although the frequency varies among taxa. Homoploid hybrid speciation is rare compared to allopolyploidy. Chromosome doubling after hybridization is the result of cellular defects produced mainly during meiosis. Unreduced gametes, which are formed at an average frequency of 2.52% across species, are the result of altered spindle organization or orientation, disturbed kinetochore functioning, abnormal cytokinesis, or loss of any meiotic division. Meiotic changes and their genetic basis, leading to the cytological diploidization of allopolyploids, are just beginning to be understood especially in wheat. However, the nature and mode of action of homoeologous recombination suppressor genes are poorly understood in other allopolyploids. The merger of two independent genomes causes a deep modification of their architecture, gene expression, and molecular interactions leading to the phenotype. We provide an overview of genomic changes and transcriptomic modifications that particularly occur at the early stages of allopolyploid formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA