Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(6): 1436-1447.e12, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150620

RESUMEN

Circadian rhythms control organismal physiology throughout the day. At the cellular level, clock regulation is established by a self-sustained Bmal1-dependent transcriptional oscillator network. However, it is still unclear how different tissues achieve a synchronized rhythmic physiology. That is, do they respond independently to environmental signals, or require interactions with each other to do so? We show that unexpectedly, light synchronizes the Bmal1-dependent circadian machinery in single tissues in the absence of Bmal1 in all other tissues. Strikingly, light-driven tissue autonomous clocks occur without rhythmic feeding behavior and are lost in constant darkness. Importantly, tissue-autonomous Bmal1 partially sustains homeostasis in otherwise arrhythmic and prematurely aging animals. Our results therefore support a two-branched model for the daily synchronization of tissues: an autonomous response branch, whereby light entrains circadian clocks without any commitment of other Bmal1-dependent clocks, and a memory branch using other Bmal1-dependent clocks to "remember" time in the absence of external cues.


Asunto(s)
Factores de Transcripción ARNTL/fisiología , Relojes Circadianos/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Conducta Alimentaria/fisiología , Femenino , Homeostasis , Luz , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Especificidad de Órganos/fisiología , Fotoperiodo , Núcleo Supraquiasmático/metabolismo
2.
Cell ; 175(6): 1575-1590.e22, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415840

RESUMEN

During aging, stromal functions are thought to be impaired, but little is known whether this stems from changes of fibroblasts. Using population- and single-cell transcriptomics, as well as long-term lineage tracing, we studied whether murine dermal fibroblasts are altered during physiological aging under different dietary regimes that affect longevity. We show that the identity of old fibroblasts becomes undefined, with the fibroblast states present in young skin no longer clearly demarcated. In addition, old fibroblasts not only reduce the expression of genes involved in the formation of the extracellular matrix, but also gain adipogenic traits, paradoxically becoming more similar to neonatal pro-adipogenic fibroblasts. These alterations are sensitive to systemic metabolic changes: long-term caloric restriction reversibly prevents them, whereas a high-fat diet potentiates them. Our results therefore highlight loss of cell identity and the acquisition of adipogenic traits as a mechanism underlying cellular aging, which is influenced by systemic metabolism.


Asunto(s)
Adipogénesis , Senescencia Celular , Fibroblastos/metabolismo , Envejecimiento de la Piel , Animales , Restricción Calórica , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Ratones , Ratones Transgénicos
4.
Nature ; 599(7885): 485-490, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759321

RESUMEN

Fatty acid uptake and altered metabolism constitute hallmarks of metastasis1,2, yet evidence of the underlying biology, as well as whether all dietary fatty acids are prometastatic, is lacking. Here we show that dietary palmitic acid (PA), but not oleic acid or linoleic acid, promotes metastasis in oral carcinomas and melanoma in mice. Tumours from mice that were fed a short-term palm-oil-rich diet (PA), or tumour cells that were briefly exposed to PA in vitro, remained highly metastatic even after being serially transplanted (without further exposure to high levels of PA). This PA-induced prometastatic memory requires the fatty acid transporter CD36 and is associated with the stable deposition of histone H3 lysine 4 trimethylation by the methyltransferase Set1A (as part of the COMPASS complex (Set1A/COMPASS)). Bulk, single-cell and positional RNA-sequencing analyses indicate that genes with this prometastatic memory predominantly relate to a neural signature that stimulates intratumoural Schwann cells and innervation, two parameters that are strongly correlated with metastasis but are aetiologically poorly understood3,4. Mechanistically, tumour-associated Schwann cells secrete a specialized proregenerative extracellular matrix, the ablation of which inhibits metastasis initiation. Both the PA-induced memory of this proneural signature and its long-term boost in metastasis require the transcription factor EGR2 and the glial-cell-stimulating peptide galanin. In summary, we provide evidence that a dietary metabolite induces stable transcriptional and chromatin changes that lead to a long-term stimulation of metastasis, and that this is related to a proregenerative state of tumour-activated Schwann cells.


Asunto(s)
Grasas de la Dieta/farmacología , Metástasis de la Neoplasia , Ácido Palmítico/farmacología , Células de Schwann/efectos de los fármacos , Animales , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Grasas de la Dieta/administración & dosificación , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Femenino , Galanina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Masculino , Ratones , Ácido Palmítico/administración & dosificación , Células de Schwann/metabolismo
5.
Hum Mol Genet ; 29(21): 3554-3565, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33219378

RESUMEN

The glycogenin knockout mouse is a model of Glycogen Storage Disease type XV. These animals show high perinatal mortality (90%) due to respiratory failure. The lungs of glycogenin-deficient embryos and P0 mice have a lower glycogen content than that of wild-type counterparts. Embryonic lungs were found to have decreased levels of mature surfactant proteins SP-B and SP-C, together with incomplete processing of precursors. Furthermore, non-surviving pups showed collapsed sacculi, which may be linked to a significantly reduced amount of surfactant proteins. A similar pattern was observed in glycogen synthase1-deficient mice, which are devoid of glycogen in the lungs and are also affected by high perinatal mortality due to atelectasis. These results indicate that glycogen availability is a key factor for the burst of surfactant production required to ensure correct lung expansion at the establishment of air breathing. Our findings confirm that glycogen deficiency in lungs can cause respiratory distress syndrome and suggest that mutations in glycogenin and glycogen synthase 1 genes may underlie cases of idiopathic neonatal death.


Asunto(s)
Glucosiltransferasas/fisiología , Glucógeno Sintasa/fisiología , Glicoproteínas/fisiología , Surfactantes Pulmonares/metabolismo , Síndrome de Dificultad Respiratoria/patología , Animales , Animales Recién Nacidos , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/metabolismo
6.
Nature ; 541(7635): 41-45, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27974793

RESUMEN

The fact that the identity of the cells that initiate metastasis in most human cancers is unknown hampers the development of antimetastatic therapies. Here we describe a subpopulation of CD44bright cells in human oral carcinomas that do not overexpress mesenchymal genes, are slow-cycling, express high levels of the fatty acid receptor CD36 and lipid metabolism genes, and are unique in their ability to initiate metastasis. Palmitic acid or a high-fat diet specifically boosts the metastatic potential of CD36+ metastasis-initiating cells in a CD36-dependent manner. The use of neutralizing antibodies to block CD36 causes almost complete inhibition of metastasis in immunodeficient or immunocompetent orthotopic mouse models of human oral cancer, with no side effects. Clinically, the presence of CD36+ metastasis-initiating cells correlates with a poor prognosis for numerous types of carcinomas, and inhibition of CD36 also impairs metastasis, at least in human melanoma- and breast cancer-derived tumours. Together, our results indicate that metastasis-initiating cells particularly rely on dietary lipids to promote metastasis.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Antígenos CD36/antagonistas & inhibidores , Neoplasias de la Boca/patología , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/prevención & control , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Antígenos CD36/genética , Antígenos CD36/inmunología , Antígenos CD36/metabolismo , Proliferación Celular , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Receptores de Hialuranos/metabolismo , Metabolismo de los Lípidos/genética , Metástasis Linfática/genética , Metástasis Linfática/patología , Masculino , Ratones , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Células Madre Neoplásicas/metabolismo , Ácido Palmítico/administración & dosificación , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Penetrancia , Pronóstico , Transcriptoma , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Development ; 146(8)2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30936178

RESUMEN

GEMC1 and MCIDAS are geminin family proteins that transcriptionally activate E2F4/5-target genes during multiciliogenesis, including Foxj1 and Ccno Male mice that lacked Gemc1, Mcidas or Ccno were found to be infertile, but the origin of this defect has remained unclear. Here, we show that all three genes are necessary for the generation of functional multiciliated cells in the efferent ducts that are required for spermatozoa to enter the epididymis. In mice that are mutant for Gemc1, Mcidas or Ccno, we observed a similar spectrum of phenotypes, including thinning of the seminiferous tubule epithelia, dilation of the rete testes, sperm agglutinations in the efferent ducts and lack of spermatozoa in the epididymis (azoospermia). These data suggest that defective efferent duct development is the dominant cause of male infertility in these mouse models, and this likely extends to individuals with the ciliopathy reduced generation of multiple motile cilia with mutations in MCIDAS and CCNO.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , ADN Glicosilasas/deficiencia , Conductos Eyaculadores/metabolismo , Conductos Eyaculadores/patología , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Proteínas Nucleares/deficiencia , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , ADN Glicosilasas/genética , Epidídimo/metabolismo , Epidídimo/patología , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Mutantes , Proteínas Nucleares/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Testículo/metabolismo , Testículo/patología
8.
Neurobiol Dis ; 147: 105173, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33171226

RESUMEN

Lafora disease (LD) is a fatal adolescence-onset neurodegenerative condition. The hallmark of LD is the accumulation of aberrant glycogen aggregates called Lafora bodies (LBs) in the brain and other tissues. Impeding glycogen synthesis from early embryonic stages by genetic suppression of glycogen synthase (MGS) in an animal model of LD prevents LB formation and ultimately the pathological manifestations of LD thereby indicating that LBs are responsible for the pathophysiology of the disease. However, it is not clear whether eliminating glycogen synthesis in an adult animal after LBs have already formed would halt or reverse the progression of LD. Herein we generated a mouse model of LD with inducible MGS suppression. We evaluated the effect of MGS suppression at different time points on LB accumulation as well as on the appearance of neuroinflammation, a pathologic trait of LD models. In the skeletal muscle, MGS suppression in adult LD mice blocked the formation of new LBs and reduced the number of glycogen aggregates. In the brain, early but not late MGS suppression halted the accumulation of LBs. However, the neuroinflammatory response was still present, as shown by the levels of reactive astrocytes, microglia and inflammatory cytokines. Our results confirm that MGS as a promising therapeutic target for LD and highlight the importance of an early diagnosis for effective treatment of the disease.


Asunto(s)
Encéfalo/patología , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Enfermedad de Lafora/patología , Músculo Esquelético/patología , Animales , Modelos Animales de Enfermedad , Glucógeno/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
9.
Pulm Pharmacol Ther ; 43: 60-67, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28087469

RESUMEN

BACKGROUND AND PURPOSE: The Janus Kinase (JAK) family mediates the cytokine receptor-induced signalling pathways involved in inflammatory processes. The activation of the signal transducers and activators of transcription (STATs) by JAK kinases is a key point in these pathways. Four JAK proteins, JAK1, JAK2, JAK3 and tyrosine kinase 2 (Tyk2) associate with the intracellular domains of surface cytokine receptors are phosphorylating STATs and modulating gene expression. The aim of this study was to explore the role of JAK inhibition in an acute model of inhaled lipopolysaccharide (LPS)-induced airway inflammation in rats through evaluating the effects of tofacitinib, a marketed pan-JAK inhibitor. Specifically, some pulmonary inflammation parameters were studied and the lung STAT3 phosphorylation was assessed as a target engagement marker of JAK inhibition in the model. EXPERIMENTAL APPROACH: Rats were exposed to an aerosol of LPS (0.1 mg/ml) or phosphate-buffered saline (PBS) during 40 min. Bronchoalveolar lavage fluid (BALF) and lung samples were collected 4 h after PBS or LPS exposure. Neutrophils in BALF were counted and a panel of cytokines were measured in BALF. Phosphorylation of STAT3 was studied in lung homogenates by ELISA and localization of phospho-STAT3 (pSTAT3) in lung tissue was also evaluated by immunohistochemistry. In order to assess the effect of JAK inhibition, tofacitinib was administered 1 h before challenge at doses of 3, 10 and 30 mg/kg p.o. KEY RESULTS: Inhaled LPS challenge induced an augment of neutrophils and cytokines in the BALF as well as an increase in pSTAT3 expression in the lungs. Tofacitinib by oral route inhibited the LPS-induced airway neutrophilia, the levels of some cytokines in the BALF and the phosphorylation of STAT3 in the lung tissue. CONCLUSIONS AND IMPLICATIONS: In summary, this study shows that JAK inhibition ameliorates inhaled LPS-induced airway inflammation in rats, suggesting that at least JAK/STAT3 signalling is involved in the establishment of the pulmonary neutrophilia induced by LPS. JAKs inhibitors should be further investigated as a potential therapy for respiratory inflammatory diseases.


Asunto(s)
Inflamación/tratamiento farmacológico , Neutrófilos/metabolismo , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Animales , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/patología , Quinasas Janus/antagonistas & inhibidores , Lipopolisacáridos/administración & dosificación , Pulmón/metabolismo , Masculino , Fosforilación/efectos de los fármacos , Neumonía/tratamiento farmacológico , Neumonía/patología , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Biomarkers ; 22(5): 461-469, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27978773

RESUMEN

CONTEXT: There is an ongoing search for specific and translational biomarkers of drug-induced liver injury (DILI). MicroRNA-122 (miR-122) has previously shown potential as a sensitive, specific, and translational biomarker of DILI in both rodent, and human studies. OBJECTIVE: To build on previous work within the field, we examined biomarker kinetics in a rat model of acetaminophen (APAP)-induced liver injury to confirm the sensitivity, and specificity of miR-122 and glutamate dehydrogenase (GLDH). MATERIALS AND METHODS: qRT-PCR and a standard enzymatic assay were used for biomarker analysis. RESULTS: Both miR-122 and GLDH were demonstrated to be more readily-detectable biomarkers of APAP-DILI than alanine aminotransferase (ALT). Peak levels for all biomarkers were detected at 2 days after APAP. At day 3, miR-122 had returned to baseline; however, other biomarkers remained elevated between 3 and 4 days. We were also able to demonstrate that, although miR-122 is present in greater quantities in exosome-free form, both exosome-bound and non-vesicle bound miR-122 are released in a similar profile throughout the course of DILI. DISCUSSION AND CONCLUSIONS: Together, this study demonstrates that both GLDH and miR-122 could be used during preclinical drug-development as complementary biomarkers to ALT to increase the chance of early detection of hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Acetaminofén , Alanina Transaminasa , Animales , Biomarcadores/sangre , Diagnóstico Precoz , Glutamato Deshidrogenasa/sangre , MicroARNs/sangre , Farmacocinética , Ratas , Sensibilidad y Especificidad
11.
Clin Sci (Lond) ; 129(12): 1001-10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26275723

RESUMEN

Fibrotic lung diseases, such as idiopathic pulmonary fibrosis, are associated with spontaneous dry cough and hypersensitivity to tussive agents. Understanding the pathophysiology driving enhanced cough may help us to define better therapies for patients. We hypothesized that lung fibrosis induced by intratracheal bleomycin would exacerbate the cough reflex induced by tussive agents in guinea pigs. Disease progression in the lungs was characterized at days 1, 7, 14, 21 and 28 after bleomycin administration. Inflammatory and fibrotic markers, as well as neurotrophin levels, were assessed in bronchoalveolar lavage fluid and/or lung tissue. Cough sensitivity to citric acid, capsaicin and allylisothiocyanate was evaluated in conscious animals at days 14 and 21 after bleomycin administration. Pulmonary lesions evolved from an early inflammatory phase (from day 1 to day 7) to a fibrotic stage (between days 14 and 28). Fibrosis was related to increased levels of matrix metalloproteinase-2 in bronchoalveolar lavage fluid (day 21: saline, 0.26 ng/ml; bleomycin, 0.49 ng/ml). At day 14, we also observed increased cough reflexes to citric acid (163%), capsaicin (125%) and allylisothiocyanate (178%). Cough exacerbation persisted, but at a lower extent, by day 21 for capsaicin (100%) and allylisothiocyanate (54%). Moreover, bronchoalveolar lavage fluid concentrations of brain-derived neurotrophic factor, suggested to induce nerve remodelling in chronic cough, were also enhanced (day 1: saline, 14.21 pg/ml; bleomycin, 30.09 pg/ml). In summary, our model of bleomycin-induced cough exacerbation may be a valuable tool to investigate cough hypersensitivity and develop antitussive therapies for fibrotic lung diseases.


Asunto(s)
Bleomicina , Tos/fisiopatología , Pulmón/inervación , Fibrosis Pulmonar/fisiopatología , Reflejo Anormal , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Líquido del Lavado Bronquioalveolar/química , Capsaicina , Ácido Cítrico , Tos/inducido químicamente , Tos/genética , Tos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica , Cobayas , Canales Iónicos/genética , Canales Iónicos/metabolismo , Isotiocianatos , Pulmón/metabolismo , Pulmón/patología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Factores de Tiempo
12.
Clin Sci (Lond) ; 129(11): 973-87, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26245201

RESUMEN

RNA viruses are a major cause of respiratory infections and are known to exacerbate asthma and other respiratory diseases. Our aim was to test the ability of poly(I:C) (polyinosinic:polycytidylic acid), a viral surrogate, to elicit exacerbation in a model of severe asthma driven by HDM (house dust mite) in FCA (Freund's complete adjuvant). Poly(I:C) was administered intranasally around the HDM challenge in FCA-HDM-sensitized animals. Changes in AHR (airway hyperresponsiveness), BALF (bronchoalveolar lavage fluid) inflammatory infiltrate, HDM-specific immunoglobulins and cytokine/chemokine release were evaluated at different points after the challenge. The effect of oral dexamethasone was also assessed. Exacerbation was achieved when poly(I:C) was administered 24 h before the HDM challenge and was characterized by enhanced AHR and an increase in the numbers of neutrophils, macrophages and lymphocytes in the BALF. Th1, Th2 and Th17 cytokines were also elevated at different time points after the challenge. Peribronchial and alveolar inflammation in lung tissue were also augmented. AHR and inflammatory infiltration showed reduced sensitivity to dexamethasone treatment. We have set up a model that mimics key aspects of viral exacerbation in a corticosteroid-refractory asthmatic phenotype which could be used to evaluate new therapies for this condition.


Asunto(s)
Corticoesteroides/farmacología , Asma/inducido químicamente , Hiperreactividad Bronquial/inducido químicamente , Dexametasona/farmacología , Resistencia a Medicamentos , Pulmón/efectos de los fármacos , Poli I-C/toxicidad , Animales , Antígenos Dermatofagoides , Proteínas de Artrópodos , Asma/tratamiento farmacológico , Asma/inmunología , Asma/metabolismo , Asma/fisiopatología , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Broncoconstricción/efectos de los fármacos , Quimiotaxis de Leucocito/efectos de los fármacos , Cisteína Endopeptidasas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Inmunoglobulinas/sangre , Mediadores de Inflamación/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Ratones Endogámicos BALB C , Infiltración Neutrófila/efectos de los fármacos , Fenotipo , Índice de Severidad de la Enfermedad , Factores de Tiempo
13.
Pharmacol Res ; 99: 116-24, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26051661

RESUMEN

Spleen tyrosine kinase (Syk) is essential for signal transduction of immunoreceptors. Inhibition of Syk abrogates mast cell degranulation and B cell responses. We hypothesized that Syk inhibition in the lung by inhaled route could block airway mast cells degranulation and the early asthmatic response without the need of systemic exposure. We discovered LAS189386, a novel Syk inhibitor with suitable properties for inhaled administration. The aim of this study was to characterize the in vitro and in vivo profile of LAS189386. The compound was profiled in Syk enzymatic assay, against a panel of selected kinases and in Syk-dependent cellular assays in mast cells and B cells. Pharmacokinetics and in vivo efficacy was assessed by intratracheal route. Airway resistance and mast cell degranulation after OVA challenge was evaluated in an ovalbumin-sensitized Brown Norway rat model. LAS189386 potently inhibits Syk enzymatic activity (IC50 7.2 nM), Syk phosphorylation (IC50 41 nM), LAD2 cells degranulation (IC50 56 nM), and B cell activation (IC50 22 nM). LAS189386 inhibits early asthmatic response and airway mast cell degranulation without affecting systemic mast cells. The present results support the hypothesis that topical inhibition of Syk in the lung, without systemic exposure, is sufficient to inhibit EAR in rats. Syk inhibition by inhaled route constitutes a promising therapeutic option for asthma.


Asunto(s)
Asma/prevención & control , Compuestos de Azabiciclo/administración & dosificación , Indazoles/administración & dosificación , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Mastocitos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Administración por Inhalación , Animales , Asma/patología , Asma/fisiopatología , Compuestos de Azabiciclo/farmacocinética , Linfocitos B/efectos de los fármacos , Linfocitos B/fisiología , Degranulación de la Célula/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Humanos , Indazoles/farmacocinética , Masculino , Mastocitos/fisiología , Inhibidores de Proteínas Quinasas/farmacocinética , Ratas , Ratas Endogámicas BN , Ratas Wistar , Quinasa Syk
14.
Am J Respir Cell Mol Biol ; 50(2): 337-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24032416

RESUMEN

Long-acting muscarinic antagonists are widely used to treat chronic obstructive pulmonary disease (COPD). In addition to bronchodilation, muscarinic antagonism may affect pulmonary histopathological changes. The effects of long-acting muscarinic antagonists have not been thoroughly evaluated in experimental models of COPD induced by chronic exposure to cigarette smoke (CS). We investigated the effects of aclidinium bromide on pulmonary function, airway remodeling, and lung inflammation in a CS-exposed model of COPD. A total of 36 guinea pigs were exposed to CS and 22 were sham exposed for 24 weeks. Animals were nebulized daily with vehicle, 10 µg/ml, or 30 µg/ml aclidinium, resulting in six experimental groups. Pulmonary function was assessed weekly by whole-body plethysmography, determining the enhanced pause (Penh) at baseline, after treatment, and after CS/sham exposure. Lung changes were evaluated by morphometry and immunohistochemistry. CS exposure increased Penh in all conditions. CS-exposed animals treated with aclidinium showed lower baseline Penh than untreated animals (P = 0.02). CS induced thickening of all bronchial wall layers, airspace enlargement, and inflammatory cell infiltrate in airways and septa. Treatment with aclidinium abrogated the CS-induced smooth muscle enlargement in small airways (P = 0.001), and tended to reduce airspace enlargement (P = 0.054). Aclidinium also attenuated CS-induced neutrophilia in alveolar septa (P = 0.04). We conclude that, in guinea pigs chronically exposed to CS, aclidinium has an antiremodeling effect on small airways, which is associated with improved respiratory function, and attenuates neutrophilic infiltration in alveolar septa. These results indicate that, in COPD, aclidinium may exert beneficial effects on lung structure in addition to its bronchodilator action.


Asunto(s)
Pulmón/efectos de los fármacos , Antagonistas Muscarínicos/farmacología , Nicotiana , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Tropanos/farmacología , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Animales , Modelos Animales de Enfermedad , Cobayas , Inflamación/tratamiento farmacológico , Inflamación/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humo
15.
Nat Cancer ; 5(3): 448-462, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38267628

RESUMEN

Chemotherapy often generates intratumoral senescent cancer cells that strongly modify the tumor microenvironment, favoring immunosuppression and tumor growth. We discovered, through an unbiased proteomics screen, that the immune checkpoint inhibitor programmed cell death 1 ligand 2 (PD-L2) is highly upregulated upon induction of senescence in different types of cancer cells. PD-L2 is not required for cells to undergo senescence, but it is critical for senescent cells to evade the immune system and persist intratumorally. Indeed, after chemotherapy, PD-L2-deficient senescent cancer cells are rapidly eliminated and tumors do not produce the senescence-associated chemokines CXCL1 and CXCL2. Accordingly, PD-L2-deficient pancreatic tumors fail to recruit myeloid-derived suppressor cells and undergo regression driven by CD8 T cells after chemotherapy. Finally, antibody-mediated blockade of PD-L2 strongly synergizes with chemotherapy causing remission of mammary tumors in mice. The combination of chemotherapy with anti-PD-L2 provides a therapeutic strategy that exploits vulnerabilities arising from therapy-induced senescence.


Asunto(s)
Neoplasias Pancreáticas , Animales , Ratones , Neoplasias Pancreáticas/metabolismo , Linfocitos T CD8-positivos/patología , Tolerancia Inmunológica , Terapia de Inmunosupresión , Senescencia Celular , Microambiente Tumoral
16.
Nat Aging ; 3(6): 688-704, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37291218

RESUMEN

Skin aging is characterized by structural and functional changes that contribute to age-associated frailty. This probably depends on synergy between alterations in the local niche and stem cell-intrinsic changes, underscored by proinflammatory microenvironments that drive pleotropic changes. The nature of these age-associated inflammatory cues, or how they affect tissue aging, is unknown. Based on single-cell RNA sequencing of the dermal compartment of mouse skin, we show a skew towards an IL-17-expressing phenotype of T helper cells, γδ T cells and innate lymphoid cells in aged skin. Importantly, in vivo blockade of IL-17 signaling during aging reduces the proinflammatory state of the skin, delaying the appearance of age-related traits. Mechanistically, aberrant IL-17 signals through NF-κB in epidermal cells to impair homeostatic functions while promoting an inflammatory state. Our results indicate that aged skin shows signs of chronic inflammation and that increased IL-17 signaling could be targeted to prevent age-associated skin ailments.


Asunto(s)
Interleucina-17 , Envejecimiento de la Piel , Ratones , Animales , Interleucina-17/genética , Inmunidad Innata , Linfocitos , Piel
17.
Nat Metab ; 5(11): 1911-1930, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37973897

RESUMEN

Transient reprogramming by the expression of OCT4, SOX2, KLF4 and MYC (OSKM) is a therapeutic strategy for tissue regeneration and rejuvenation, but little is known about its metabolic requirements. Here we show that OSKM reprogramming in mice causes a global depletion of vitamin B12 and molecular hallmarks of methionine starvation. Supplementation with vitamin B12 increases the efficiency of reprogramming both in mice and in cultured cells, the latter indicating a cell-intrinsic effect. We show that the epigenetic mark H3K36me3, which prevents illegitimate initiation of transcription outside promoters (cryptic transcription), is sensitive to vitamin B12 levels, providing evidence for a link between B12 levels, H3K36 methylation, transcriptional fidelity and efficient reprogramming. Vitamin B12 supplementation also accelerates tissue repair in a model of ulcerative colitis. We conclude that vitamin B12, through its key role in one-carbon metabolism and epigenetic dynamics, improves the efficiency of in vivo reprogramming and tissue repair.


Asunto(s)
Plasticidad de la Célula , Reprogramación Celular , Animales , Ratones , Vitamina B 12 , Cicatrización de Heridas , Vitaminas
18.
Aging (Albany NY) ; 15(14): 6641-6657, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393107

RESUMEN

Cell senescence has recently emerged as a potentially relevant pathogenic mechanism in fibrosing interstitial lung diseases (f-ILDs), particularly in idiopathic pulmonary fibrosis. We hypothesized that senescent human fibroblasts may suffice to trigger a progressive fibrogenic reaction in the lung. To address this, senescent human lung fibroblasts, or their secretome (SASP), were instilled into the lungs of immunodeficient mice. We found that: (1) human senescent fibroblasts engraft in the lungs of immunodeficient mice and trigger progressive lung fibrosis associated to increasing levels of mouse senescent cells, whereas non-senescent fibroblasts do not trigger fibrosis; (2) the SASP of human senescent fibroblasts is pro-senescence and pro-fibrotic both in vitro when added to mouse recipient cells and in vivo when delivered into the lungs of mice, whereas the conditioned medium (CM) from non-senescent fibroblasts lacks these activities; and, (3) navitoclax, nintedanib and pirfenidone ameliorate lung fibrosis induced by senescent human fibroblasts in mice, albeit only navitoclax displayed senolytic activity. We conclude that human senescent fibroblasts, through their bioactive secretome, trigger a progressive fibrogenic reaction in the lungs of immunodeficient mice that includes the induction of paracrine senescence in the cells of the host, supporting the concept that senescent cells actively contribute to disease progression in patients with f-ILDs.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Animales , Ratones , Compuestos de Anilina , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Senescencia Celular , Fibrosis , Fibroblastos/patología
19.
Cancer Discov ; 13(2): 410-431, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36302218

RESUMEN

Cellular senescence is a stress response that activates innate immune cells, but little is known about its interplay with the adaptive immune system. Here, we show that senescent cells combine several features that render them highly efficient in activating dendritic cells (DC) and antigen-specific CD8 T cells. This includes the release of alarmins, activation of IFN signaling, enhanced MHC class I machinery, and presentation of senescence-associated self-peptides that can activate CD8 T cells. In the context of cancer, immunization with senescent cancer cells elicits strong antitumor protection mediated by DCs and CD8 T cells. Interestingly, this protection is superior to immunization with cancer cells undergoing immunogenic cell death. Finally, the induction of senescence in human primary cancer cells also augments their ability to activate autologous antigen-specific tumor-infiltrating CD8 lymphocytes. Our study indicates that senescent cancer cells can be exploited to develop efficient and protective CD8-dependent antitumor immune responses. SIGNIFICANCE: Our study shows that senescent cells are endowed with a high immunogenic potential-superior to the gold standard of immunogenic cell death. We harness these properties of senescent cells to trigger efficient and protective CD8-dependent antitumor immune responses. See related article by Chen et al., p. 432. This article is highlighted in the In This Issue feature, p. 247.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Humanos , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Senescencia Celular , Microambiente Tumoral
20.
Nat Metab ; 5(12): 2111-2130, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38097808

RESUMEN

Fibrogenesis is part of a normal protective response to tissue injury that can become irreversible and progressive, leading to fatal diseases. Senescent cells are a main driver of fibrotic diseases through their secretome, known as senescence-associated secretory phenotype (SASP). Here, we report that cellular senescence, and multiple types of fibrotic diseases in mice and humans are characterized by the accumulation of iron. We show that vascular and hemolytic injuries are efficient in triggering iron accumulation, which in turn can cause senescence and promote fibrosis. Notably, we find that senescent cells persistently accumulate iron, even when the surge of extracellular iron has subdued. Indeed, under normal conditions of extracellular iron, cells exposed to different types of senescence-inducing insults accumulate abundant ferritin-bound iron, mostly within lysosomes, and present high levels of labile iron, which fuels the generation of reactive oxygen species and the SASP. Finally, we demonstrate that detection of iron by magnetic resonance imaging might allow non-invasive assessment of fibrotic burden in the kidneys of mice and in patients with renal fibrosis. Our findings suggest that iron accumulation plays a central role in senescence and fibrosis, even when the initiating events may be independent of iron, and identify iron metabolism as a potential therapeutic target for senescence-associated diseases.


Asunto(s)
Senescencia Celular , Fenotipo Secretor Asociado a la Senescencia , Humanos , Hierro , Riñón , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA