Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Am J Pathol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705381

RESUMEN

Pulmonary arterial hypertension (PAH) is a sex-biased disease with female gender as a significant risk factor. Recently, we reported that increased expression of the long noncoding RNA X-inactive-specific transcript (Xist), as induced by an intersectin-1s protein fragment with proliferative potential (EHITSN), may explain the sexual dimorphism of female pulmonary artery endothelial cells (ECs) and at least in part, the imbalance sex/ratio of PAH. Xist is essential for X-chromosome inactivation and dosage compensation of X-linked genes. Increased Xist expression was also detected in a subset of ECs and lung tissue samples of male patients with PAH. The role of different Xist expression levels in ECs of male patients with PAH (ECPAH) was studied in several lines of male ECPAH in conjunction with molecular, biochemical, morphologic, and functional approaches. Male ECPAH showed on average 10.3-fold increase in high Xist versus low Xist, a significant association between Xist levels and their proliferative potential, and a heterogeneous methylation of the Xist/Tsix locus. Interestingly, Xist up-regulation in male ECPAH decreases the expression of Klf2, via EHITSN interaction with EZH2, the catalytic subunit of the polycomb repressive complex 2. Moreover, the studies demonstrate that EHITSN-triggered p38/Elk1/c-Fos signaling is a pathologic mechanism central to ECPAH proliferation and the dynamic crosstalk with cell cycle regulatory proteins cyclin A1/cyclin D2 and Xist-EZH2-Klf2 interaction participate directly and differentially in establishing the proliferative profile of male ECPAH.

2.
Am J Pathol ; 192(4): 582-594, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35114193

RESUMEN

Pulmonary arterial hypertension (PAH) is a sex-biased disease with a poorly understood female prevalence. Emerging research suggests that nonhormonal factors, such as the XX or XY sex chromosome complement and sex bias in gene expression, may also lead to sex-based differences in PAH incidence, penetrance, and progression. Typically, one of females' two X chromosomes is epigenetically silenced to offer a gender-balanced gene expression. Recent data demonstrate that the long noncoding RNA X-inactive specific transcript, essential for X chromosome inactivation and dosage compensation of X-linked gene expression, shows elevated levels in female PAH lung specimens compared with controls. This molecular event leads to incomplete inactivation of the females' second X chromosome, abnormal expression of X-linked gene(s) involved in PAH pathophysiology, and a pulmonary artery endothelial cell (PAEC) proliferative phenotype. Moreover, the pathogenic proliferative p38 mitogen-activated protein kinase/ETS transcription factor ELK1 (Elk1)/cFos signaling is mechanistically linked to the sexually dimorphic proliferative response of PAECs in PAH. Apprehending the complicated relationship between long noncoding RNA X-inactive specific transcript and X-linked genes and how this relationship integrates into a sexually dimorphic proliferation of PAECs and PAH sex paradox remain challenging. We highlight herein new findings related to how the sex chromosome complement and sex-differentiated epigenetic mechanisms to control gene expression are decisive players in the sexual dimorphism of PAH. Pharmacologic interventions in the light of the newly elucidated mechanisms are discussed.


Asunto(s)
Hipertensión Arterial Pulmonar , ARN Largo no Codificante , Femenino , Humanos , Hipertensión Arterial Pulmonar/genética , Arteria Pulmonar , Caracteres Sexuales , Cromosomas Sexuales/genética
3.
J Cell Sci ; 133(9)2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409569

RESUMEN

The sex-biased disease pulmonary arterial hypertension (PAH) is characterized by the proliferation and overgrowth of dysfunctional pulmonary artery endothelial cells (PAECs). During inflammation associated with PAH, granzyme B cleaves intersectin-1 to produce N-terminal (EHITSN) and C-terminal (SH3A-EITSN) protein fragments. In a murine model of PAH, EHITSN triggers plexiform arteriopathy via p38-ELK1-c-Fos signaling. The SH3A-EITSN fragment also influences signaling, having dominant-negative effects on ERK1 and ERK2 (also known as MAPK3 and MAPK1, respectively). Using PAECs engineered to express tagged versions of EHITSN and SH3A-EITSN, we demonstrate that the two ITSN fragments increase both p38-ELK1 activation and the ratio of p38 to ERK1 and ERK2 activity, leading to PAEC proliferation, with female cells being more responsive than male cells. Furthermore, expression of EHITSN substantially upregulates the expression and activity of the long non-coding RNA Xist in female PAECs, which in turn upregulates the X-linked gene ELK1 and represses expression of krüppel-like factor 2 (KLF2). These events are recapitulated by the PAECs of female idiopathic PAH patients, and may account for their proliferative phenotype. Thus, upregulation of Xist could be an important factor in explaining sexual dimorphism in the proliferative response of PAECs and the imbalanced sex ratio of PAH.


Asunto(s)
Hipertensión Pulmonar , Arteria Pulmonar , Animales , Proliferación Celular , Células Cultivadas , Células Endoteliales , Femenino , Humanos , Masculino , Ratones , Caracteres Sexuales
4.
Am J Pathol ; 191(6): 1135-1150, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33836164

RESUMEN

Pulmonary arterial hypertension (PAH) is a sex-biased disease. Increased expression and activity of the long-noncoding RNA X-inactive-specific transcript (Xist), essential for X-chromosome inactivation and dosage compensation of X-linked genes, may explain the sex bias of PAH. The present studies used a murine model of plexiform PAH, the intersectin-1s (ITSN) heterozygous knockout (KOITSN+/-) mouse transduced with an ITSN fragment (EHITSN) possessing endothelial cell proliferative activity, in conjunction with molecular, cell biology, biochemical, morphologic, and functional approaches. The data demonstrate significant sex-centered differences with regard to EHITSN-induced alterations in pulmonary artery remodeling, lung hemodynamics, and p38/ETS domain containing protein/c-Fos signaling, altogether leading to a more severe female lung PAH phenotype. Moreover, the long-noncoding RNA-Xist is up-regulated in the lungs of female EHITSN-KOITSN+/- mice compared with that in female wild-type mice, leading to sex-specific modulation of the X-linked gene ETS domain containing protein and its target, two molecular events also characteristic to female human PAH lung. More importantly, cyclin A1 expression in the S and G2/M phases of the cell cycle of synchronized pulmonary artery endothelial cells of female PAH patients is greater versus controls, suggesting functional hyperproliferation. Thus, Xist up-regulation leading to female pulmonary artery endothelial cell sexual dimorphic behavior may provide a better understanding of the origin of sex bias in PAH. Notably, the EHITSN-KOITSN+/- mouse is a unique experimental animal model of PAH that recapitulates most of the sexually dimorphic characteristics of human disease.


Asunto(s)
Hipertensión Arterial Pulmonar/genética , ARN Largo no Codificante/genética , Caracteres Sexuales , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Regulación hacia Arriba
5.
Am J Pathol ; 189(6): 1133-1144, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30926336

RESUMEN

As time progresses, our understanding of disease pathology is propelled forward by technological advancements. Much of the advancements that aid in understanding disease mechanics are based on animal studies. Unfortunately, animal models often fail to recapitulate the entirety of the human disease. This is especially true with animal models used to study pulmonary arterial hypertension (PAH), a disease with two distinct phases. The first phase is defined by nonspecific medial and adventitial thickening of the pulmonary artery and is commonly reproduced in animal models, including the classic models (ie, hypoxia-induced pulmonary hypertension and monocrotaline lung injury model). However, many animal models, including the classic models, fail to capture the progressive, or second, phase of PAH. This is a stage defined by plexogenic arteriopathy, resulting in obliteration and occlusion of the small- to mid-sized pulmonary vessels. Each of these two phases results in severe pulmonary hypertension that directly leads to right ventricular hypertrophy, decompensated right-sided heart failure, and death. Fortunately, newly developed animal models have begun to address the second, more severe, side of PAH and aid in our ability to develop new therapeutics. Moreover, p38 mitogen-activated protein kinase activation emerges as a central molecular mediator of plexiform lesions in both experimental models and human disease. Therefore, this review will focus on plexiform arteriopathy in experimental animal models of PAH.


Asunto(s)
Modelos Animales de Enfermedad , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/patología , Animales , Progresión de la Enfermedad , Humanos , Hipoxia/complicaciones , Hipoxia/patología , Indoles , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Noqueados , Hipertensión Arterial Pulmonar/etiología , Hipertensión Arterial Pulmonar/metabolismo , Pirroles , Ratas
6.
Am J Pathol ; 187(3): 528-542, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28068512

RESUMEN

Murine models of pulmonary arterial hypertension (PAH) that recapitulate the plexiform and obliterative arteriopathy seen in PAH patients and help in defining the molecular mechanisms involved are missing. Herein, we investigated whether intersectin-1s (ITSN) deficiency and prolonged lung expression of an ITSN fragment with endothelial cell (EC) proliferative potential (EHITSN), present in the lungs of PAH animal models and human patients, induce formation of plexiform/obliterative lesions and defined the molecular mechanisms involved. ITSN-deficient mice (knockout/heterozygous and knockdown) were subjected to targeted lung delivery of EHITSN via liposomes for 20 days. Immunohistochemistry and histological and morphometric analyses revealed a twofold increase in proliferative ECs and a 1.35-fold increase in proliferative α-smooth muscle actin-positive cells in the lungs of ITSN-deficient mice, transduced with the EHITSN relative to wild-type littermates. Treated mice developed severe medial wall hypertrophy, intima proliferation, and various forms of obliterative and plexiform-like lesions in pulmonary arteries, similar to PAH patients. Hemodynamic measurements indicated modest increases in the right ventricular systolic pressure and right ventricle hypertrophy. Transcriptional and protein assays of lung tissue indicated p38MAPK-dependent activation of Elk-1 transcription factor and increased expression of c-Fos gene. This unique murine model of PAH-like plexiform/obliterative arteriopathy induced via a two-hit pathophysiological mechanism without hypoxia provides novel druggable targets to ameliorate and, perhaps, reverse the EC plexiform phenotype in severe human PAH.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Hipertensión Pulmonar/patología , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Arteria Pulmonar/patología , Remodelación Vascular , Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Animales , Proliferación Celular , Colágeno/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/fisiopatología , Hipertrofia/patología , Hipertrofia/fisiopatología , Lípidos/química , Pulmón/enzimología , Pulmón/patología , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Arteria Pulmonar/fisiopatología , ARN Interferente Pequeño/metabolismo , Sístole , Transducción Genética , Proteína Elk-1 con Dominio ets/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Circulation ; 133(2): 177-86, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26538583

RESUMEN

BACKGROUND: The blood-brain barrier (BBB) formed by brain endothelial cells interconnected by tight junctions is essential for the homeostasis of the central nervous system. Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. METHODS AND RESULTS: Using a mouse model with tamoxifen-inducible endothelial cell-restricted disruption of ctnnb1 (iCKO), we show here that endothelial ß-catenin signaling is essential for maintaining BBB integrity and central nervous system homeostasis in adult mice. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and central nervous system inflammation, and all had postictal death. Disruption of endothelial ß-catenin induced BBB breakdown and downregulation of the specific tight junction proteins claudin-1 and -3 in adult brain endothelial cells. The clinical relevance of the data is indicated by the observation of decreased expression of claudin-1 and nuclear ß-catenin in brain endothelial cells of hemorrhagic lesions of hemorrhagic stroke patients. CONCLUSIONS: These results demonstrate the prerequisite role of endothelial ß-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective ß-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity, and central nervous system inflammation.


Asunto(s)
Ganglios Basales/metabolismo , Barrera Hematoencefálica/fisiología , Hemorragia Cerebral/metabolismo , beta Catenina/deficiencia , beta Catenina/fisiología , Adulto , Anciano , Animales , Ataxia/etiología , Encéfalo/patología , Hemorragia Cerebral/etiología , Claudina-1/biosíntesis , Claudina-1/deficiencia , Claudina-1/genética , Claudina-3/biosíntesis , Claudina-3/genética , Cruzamientos Genéticos , Citocinas/biosíntesis , Citocinas/genética , Regulación hacia Abajo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genes Reporteros , Homeostasis , Humanos , Hiperestesia/etiología , Inflamación , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Especificidad de Órganos , Interferencia de ARN , Convulsiones/etiología , Uniones Estrechas , Transgenes , beta Catenina/biosíntesis , beta Catenina/genética
8.
J Cell Sci ; 128(8): 1528-41, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25720380

RESUMEN

Recently, we demonstrated in cultured endothelial cells and in vivo that deficiency of an isoform of intersectin-1, ITSN-1s, impairs caveolae and clathrin-mediated endocytosis and functionally upregulates compensatory pathways and their morphological carriers (i.e. enlarged endocytic structures, membranous rings or tubules) that are normally underrepresented. We now show that these endocytic structures internalize the broadly expressed transforming growth factor ß receptor I (TGFß-RI or TGFBR1), also known as Alk5, leading to its ubiquitylation and degradation. Moreover, the apoptotic or activated vascular cells of the ITSN-1s-knockdown mice release Alk5-bearing microparticles to the systemic circulation. These interact with and transfer Alk5 to endocytosis-deficient endothelial cells, resulting in lung endothelial cell survival and phenotypic alteration towards proliferation through activation of Erk1 and Erk2 (also known as MAPK3 and MAPK1, respectively). We also show that non-productive assembly of the Alk5-Smad-SARA (Smad anchor for receptor activation, also known as ZFYVE9) signaling complex and preferential formation of the Alk5-mSos-Grb2 complex account for Erk1/2 activation downstream of Alk5 and proliferation of pulmonary endothelial cells. Taken together, our studies demonstrate a functional relationship between the intercellular transfer of Alk5 by microparticles and endothelial cell survival and proliferation, and define a novel molecular mechanism for TGFß and Alk5-dependent Erk1/2(MAPK) signaling that is significant for proliferative signaling and abnormal growth.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteína Smad2/metabolismo , Animales , Apoptosis , Caveolas/metabolismo , Línea Celular , Supervivencia Celular , Endocitosis , Células Endoteliales/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Receptor Tipo I de Factor de Crecimiento Transformador beta , Transducción de Señal
9.
Respir Res ; 18(1): 168, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28874189

RESUMEN

Intersectin-1s (ITSN-1s), a multidomain adaptor protein, plays a vital role in endocytosis, cytoskeleton rearrangement and cell signaling. Recent studies have demonstrated that deficiency of ITSN-1s is a crucial early event in pulmonary pathogenesis. In lung cancer, ITSN-1s deficiency impairs Eps8 ubiquitination and favors Eps8-mSos1 interaction which activates Rac1 leading to enhanced lung cancer cell proliferation, migration and metastasis. Restoring ITSN-1s deficiency in lung cancer cells facilitates cytoskeleton changes favoring mesenchymal to epithelial transformation and impairs lung cancer progression. ITSN-1s deficiency in acute lung injury leads to impaired endocytosis which leads to ubiquitination and degradation of growth factor receptors such as Alk5. This deficiency is counterbalanced by microparticles which, via paracrine effects, transfer Alk5/TGFßRII complex to non-apoptotic cells. In the presence of ITSN-1s deficiency, Alk5-restored cells signal via Erk1/2 MAPK pathway leading to restoration and repair of lung architecture. In inflammatory conditions such as pulmonary artery hypertension, ITSN-1s full length protein is cleaved by granzyme B into EHITSN and SH3A-EITSN fragments. The EHITSN fragment leads to pulmonary cell proliferation via activation of p38 MAPK and Elk-1/c-Fos signaling. In vivo, ITSN-1s deficient mice transduced with EHITSN plasmid develop pulmonary vascular obliteration and plexiform lesions consistent with pathological findings seen in severe pulmonary arterial hypertension. These novel findings have significantly contributed to understanding the mechanisms and pathogenesis involved in pulmonary pathology. As demonstrated in these studies, genetically modified ITSN-1s expression mouse models will be a valuable tool to further advance our understanding of pulmonary pathology and lead to novel targets for treating these conditions.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Proteínas Adaptadoras del Transporte Vesicular/genética , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/metabolismo , Animales , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Enfermedades Pulmonares/etiología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
10.
Mol Cancer ; 15(1): 59, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27629044

RESUMEN

BACKGROUND: The mechanisms involved in lung cancer (LC) progression are poorly understood making discovery of successful therapies difficult. Adaptor proteins play a crucial role in cancer as they link cell surface receptors to specific intracellular pathways. Intersectin-1s (ITSN-1s) is an important multidomain adaptor protein implicated in the pathophysiology of numerous pulmonary diseases. To date, the role of ITSN-1s in LC has not been studied. METHODS: Human LC cells, human LC tissue and A549 LC cells stable transfected with myc-ITSN-1s construct (A549 + ITSN-1s) were used in correlation with biochemical, molecular biology and morphological studies. In addition scratch assay with time lapse microscopy and in vivo xenograft tumor and mouse metastasis assays were performed. RESULTS: ITSN-1s, a prevalent protein of lung tissue, is significantly downregulated in human LC cells and LC tissue. Restoring ITSN-1s protein level decreases LC cell proliferation and clonogenic potential. In vivo studies indicate that immunodeficient mice injected with A549 + ITSN-1s cells develop less and smaller metastatic tumors compared to mice injected with A549 cells. Our studies also show that restoring ITSN-1s protein level increases the interaction between Cbl E3 ubiquitin ligase and Eps8 resulting in enhanced ubiquitination of the Eps8 oncoprotein. Subsequently, downstream unproductive assembly of the Eps8-mSos1 complex leads to impaired activation of the small GTPase Rac1. Impaired Rac1 activation mediated by ITSN-1s reorganizes the cytoskeleton (increased thick actin bundles and focal adhesion (FA) complexes as well as collapse of the vimentin filament network) in favor of decreased LC cell migration and metastasis. CONCLUSION: ITSN-1s induced Eps8 ubiquitination and impaired Eps8-mSos1 complex formation, leading to impaired activation of Rac1, is a novel signaling mechanism crucial for abolishing the progression and metastatic potential of LC cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteína SOS1/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas c-cbl/genética , Proteína SOS1/genética , Imagen de Lapso de Tiempo , Ubiquitinación , Proteína de Unión al GTP rac1/genética
11.
Am J Physiol Lung Cell Mol Physiol ; 309(4): L425-34, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26092999

RESUMEN

In addition to exerting a potent anti-elastase function, α-1 antitrypsin (A1AT) maintains the structural integrity of the lung by inhibiting endothelial inflammation and apoptosis. A main serpin secreted in circulation by hepatocytes, A1AT requires uptake by the endothelium to achieve vasculoprotective effects. This active uptake mechanism, which is inhibited by cigarette smoking (CS), involves primarily clathrin- but also caveola-mediated endocytosis and may require active binding to a receptor. Because circulating A1AT binds to high-density lipoprotein (HDL), we hypothesized that scavenging receptors are candidates for endothelial uptake of the serpin. Although the low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) internalizes only elastase-bound A1AT, the scavenger receptor B type I (SR-BI), which binds and internalizes HDL and is modulated by CS, may be involved in A1AT uptake. Transmission electron microscopy imaging of colloidal gold-labeled A1AT confirmed A1AT endocytosis in both clathrin-coated vesicles and caveolae in endothelial cells. SR-BI immunoprecipitation identified binding to A1AT at the plasma membrane. Pretreatment of human lung microvascular endothelial cells with SR-B ligands (HDL or LDL), knockdown of SCARB1 expression, or neutralizing SR-BI antibodies significantly reduced A1AT uptake by 30-50%. Scarb1 null mice exhibited decreased A1AT lung content following systemic A1AT administration and reduced lung anti-inflammatory effects of A1AT supplementation during short-term CS exposure. In turn, A1AT supplementation increased lung SR-BI expression and modulated circulating lipoprotein levels in wild-type animals. These studies indicate that SR-BI is an important mediator of A1AT endocytosis in pulmonary endothelium and suggest a cross talk between A1AT and lipoprotein regulation of vascular functions.


Asunto(s)
Células Endoteliales/metabolismo , Receptores Depuradores de Clase B/fisiología , Fumar/metabolismo , alfa 1-Antitripsina/metabolismo , Animales , Unión Competitiva , Células Cultivadas , Endocitosis , Endotelio Vascular/patología , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
12.
J Biol Chem ; 288(36): 25701-25716, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23893408

RESUMEN

Plexiform lesions (PLs), the hallmark of plexogenic pulmonary arterial hypertension (PAH), contain phenotypically altered, proliferative endothelial cells (ECs). The molecular mechanism that contributes to EC proliferation and formation of PLs is poorly understood. We now show that a decrease in intersectin-1s (ITSN-1s) expression due to granzyme B (GrB) cleavage during inflammation associated with PAH and the high p38/Erk1/2(MAPK) activity ratio caused by the GrB/ITSN cleavage products lead to EC proliferation and selection of a proliferative/plexiform EC phenotype. We used human pulmonary artery ECs of PAH subjects (EC(PAH)), paraffin-embedded and frozen human lung tissue, and animal models of PAH in conjunction with microscopy imaging, biochemical, and molecular biology approaches to demonstrate that GrB cleaves ITSN-1s, a prosurvival protein of lung ECs, and generates two biologically active fragments, an N-terminal fragment (GrB-EH(ITSN)) with EC proliferative potential and a C-terminal product with dominant negative effects on Ras/Erk1/2. The proliferative potential of GrB-EH(ITSN) is mediated via sustained phosphorylation of p38(MAPK) and Elk-1 transcription factor and abolished by chemical inhibition of p38(MAPK). Moreover, lung tissue of PAH animal models and human specimens and EC(PAH) express lower levels of ITSN-1s compared with controls and the GrB-EH(ITSN) cleavage product. Moreover, GrB immunoreactivity is associated with PLs in PAH lungs. The concurrent expression of the two cleavage products results in a high p38/Erk1/2(MAPK) activity ratio, which is critical for EC proliferation. Our findings identify a novel GrB-EH(ITSN)-dependent pathogenic p38(MAPK)/Elk-1 signaling pathway involved in the poorly understood process of PL formation in severe PAH.


Asunto(s)
Proliferación Celular , Células Endoteliales/metabolismo , Hipertensión Pulmonar/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Elk-1 con Dominio ets/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Endoteliales/patología , Granzimas/genética , Granzimas/metabolismo , Humanos , Hipertensión Pulmonar/patología , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Pulmón/patología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Estructura Terciaria de Proteína , Proteolisis , Proteína Elk-1 con Dominio ets/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
13.
Apoptosis ; 18(1): 57-76, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23054079

RESUMEN

Intersectin-1s (ITSN-1s) is a general endocytic protein involved in regulating lung vascular permeability and endothelial cells (ECs) survival, via MEK/Erk1/2(MAPK) signaling. To investigate the in vivo effects of ITSN-1s deficiency and the resulting ECs apoptosis on pulmonary vasculature and lung homeostasis, we used an ITSN-1s knocked-down (KD(ITSN)) mouse generated by repeated delivery of a specific siRNA targeting ITSN-1 gene (siRNA(ITSN)). Biochemical and histological analyses as well as electron microscopy (EM) revealed that acute KD(ITSN) [3-days (3d) post-siRNA(ITSN) treatment] inhibited Erk1/2(MAPK) pro-survival signaling, causing significant ECs apoptosis and lung injury; at 10d of KD(ITSN), caspase-3 activation was at peak, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive ECs showed 3.4-fold increase, the mean linear intercept (MLI) showed 48 % augment and pulmonary microvessel density as revealed by aquaporin-1 staining (AQP-1) decreased by 30 %, all compared to controls; pulmonary function was altered. Concomitantly, expression of several growth factors known to activate Erk1/2(MAPK) and suppress Bad pro-apoptotic activity increased. KD(ITSN) altered Smads activity, downstream of the transforming growth factor beta-receptor-1 (TßR1), as shown by subcellular fractionation and immunoblot analyses. Moreover, 24d post-siRNA(ITSN), surviving ECs became hyper-proliferative and apoptotic-resistant against ITSN-1s deficiency, as demonstrated by EM imaging, 5-bromo-deoxyuridine (BrdU) incorporation and Bad-Ser(112/155) phosphorylation, respectively, leading to increased microvessel density and repair of the injured lungs, as well as matrix deposition. In sum, ECs endocytic dysfunction and apoptotic death caused by KD(ITSN) contribute to the initial lung injury and microvascular loss, followed by endothelial phenotypic changes and microvascular remodeling in the remaining murine pulmonary microvascular bed.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Permeabilidad Capilar/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Pulmón/irrigación sanguínea , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Apoptosis/efectos de los fármacos , Células Endoteliales/citología , Técnicas de Silenciamiento del Gen , Pulmón/patología , Pulmón/fisiología , Lesión Pulmonar/patología , Ratones , Fenotipo
14.
J Cell Mol Med ; 15(11): 2364-76, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21129155

RESUMEN

Intersectin-1s (ITSN-1s), a five Src homology 3 (SH3) domain-containing protein, is critically required for caveolae and clathrin-mediated endocytosis (CME), due to its interactions with dynamin (dyn). Of the five SH3A-E domains, SH3A is unique because of its high affinity for dyn and potent inhibition of CME. However, the molecular mechanism by which SH3A integrates in the overall function of ITSN-1s to regulate the endocytic process is not understood. Using biochemical and functional approaches as well as high-resolution electron microscopy, we show that SH3A exogenously expressed in human lung endothelial cells caused abnormal endocytic structures, distorted caveolae clusters, frequent staining-dense rings around the caveolar necks and 60% inhibition of caveolae internalization. In vitro studies further revealed that SH3A, similar to full-length ITSN-1s stimulates dyn2 oligomerization and guanosine triphosphatase (GTP)ase activity, effects not detected when other SH3 domains of ITSN-1s were used as controls. Strikingly, in the presence of SH3A, dyn2-dyn2 interactions are stabilized and despite continuous GTP hydrolysis, dyn2 oligomers cannot disassemble. SH3A may hold up caveolae release from the plasma membrane and formation of free-transport vesicles, by prolonging the lifetime of assembled dyn2. Altogether, our results indicate that ITSN-1s, via its SH3A has the unique ability to regulate dyn2 assembly-disassembly and function during endocytosis.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Caveolas/fisiología , Dinamina II/fisiología , Endocitosis , Animales , Caveolas/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/fisiología , Clatrina/metabolismo , Dinamina II/metabolismo , Células Endoteliales , GTP Fosfohidrolasas/metabolismo , Humanos , Pulmón , Ratas , Dominios Homologos src
15.
Respir Res ; 12: 46, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21486462

RESUMEN

BACKGROUND: The response of lung microvascular endothelial cells (ECs) to lipopolysaccharide (LPS) is central to the pathogenesis of lung injury. It is dual in nature, with one facet that is pro-inflammatory and another that is cyto-protective. In previous work, overexpression of the anti-apoptotic Bcl-XL rescued ECs from apoptosis triggered by siRNA knockdown of intersectin-1s (ITSN-1s), a pro-survival protein crucial for ECs function. Here we further characterized the cyto-protective EC response to LPS and pro-inflammatory dysfunction. METHODS AND RESULTS: Electron microscopy (EM) analyses of LPS-exposed ECs revealed an activated/dysfunctional phenotype, while a biotin assay for caveolae internalization followed by biochemical quantification indicated that LPS causes a 40% inhibition in biotin uptake compared to controls. Quantitative PCR and Western blotting were used to evaluate the mRNA and protein expression, respectively, for several regulatory proteins of intrinsic apoptosis, including ITSN-1s. The decrease in ITSN-1s mRNA and protein expression were countered by Bcl-XL and survivin upregulation, as well as Bim downregulation, events thought to protect ECs from impending apoptosis. Absence of apoptosis was confirmed by TUNEL and lack of cytochrome c (cyt c) efflux from mitochondria. Moreover, LPS exposure caused induction and activation of inducible nitric oxide synthase (iNOS) and a mitochondrial variant (mtNOS), as well as augmented mitochondrial NO production as measured by an oxidation oxyhemoglobin (oxyHb) assay applied on mitochondrial-enriched fractions prepared from LPS-exposed ECs. Interestingly, expression of myc-ITSN-1s rescued caveolae endocytosis and reversed induction of iNOS expression. CONCLUSION: Our results suggest that ITSN-1s deficiency is relevant for the pro-inflammatory ECs dysfunction induced by LPS.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Regulación hacia Abajo/fisiología , Células Endoteliales/efectos de los fármacos , Biotina/metabolismo , Western Blotting , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Pulmón/irrigación sanguínea , Microscopía Electrónica , Óxido Nítrico Sintasa de Tipo II/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo
16.
Circ Res ; 105(6): 549-56, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19679840

RESUMEN

RATIONALE: Disruption of endothelial barrier function and neutrophil-mediated injury are two major mechanisms underlying the pathophysiology of sepsis-induced acute lung injury (ALI). Recently we reported that endotoxin induced activation of RhoA in mice lungs that led to the disruption of endothelial barrier and lung edema formation; however, the molecular mechanism of this phenomenon remained unknown. OBJECTIVE: We reasoned that LIMK1, which participates in the regulation of endothelial cell contractility and is activated by RhoA/Rho kinase pathway, could mediate RhoA-dependent disruption of endothelial barrier function in mouse lungs during ALI. And if that is the case, then attenuation of endothelial cell contractility by downregulating LIMK1 may lead to the enhancement of endothelial barrier function, which could protect mice from endotoxin-induced ALI. METHODS AND RESULTS: Here we report that LIMK1 deficiency in mice significantly reduced mortality induced by endotoxin. Data showed that lung edema formation, lung microvascular permeability, and neutrophil infiltration into the lungs were suppressed in limk1(-/-) mice. CONCLUSIONS: We identified that improvement of endothelial barrier function along with impaired neutrophil chemotaxis were the underlying mechanisms that reduced severity of ALI in limk1(-/-) mice, pointing to a new therapeutic target for diseases associated with acute inflammation of the lungs.


Asunto(s)
Lesión Pulmonar Aguda/enzimología , Endotelio/enzimología , Quinasas Lim/metabolismo , Infiltración Neutrófila , Neutrófilos/enzimología , Sepsis/enzimología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Animales , Quimiotaxis/efectos de los fármacos , Endotelio/patología , Humanos , Quinasas Lim/genética , Lipopolisacáridos/toxicidad , Pulmón/enzimología , Pulmón/patología , Ratones , Ratones Noqueados , Neutrófilos/patología , Edema Pulmonar/inducido químicamente , Edema Pulmonar/enzimología , Edema Pulmonar/genética , Sepsis/inducido químicamente , Sepsis/genética , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA
17.
J Biol Chem ; 284(38): 25953-61, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19622753

RESUMEN

Here we addressed the role of intersectin-2L (ITSN-2L), a guanine nucleotide exchange factor for the Rho GTPase Cdc42, in the mechanism of caveola endocytosis in endothelial cells (ECs). Immunoprecipitation and co-localization studies showed that ITSN-2L associates with members of the Cdc42-WASp-Arp2/3 actin polymerization pathway. Expression of Dbl homology-pleckstrin homology (DH-PH) region of ITSN-2L (DH-PH(ITSN-2L)) induced specific activation of Cdc42, resulting in formation of extensive filopodia, enhanced cortical actin, as well as a shift from G-actin to F-actin. The "catalytically dead" DH-PH domain reversed these effects and induced significant stress fiber formation, without a detectable shift in actin pools. A biotin assay for caveola internalization indicated a significant decrease in the uptake of biotinylated proteins in DH-PH(ITSN-2L)-transfected cells compared with control and 1 microM jasplakinolide-treated cells. ECs depleted of ITSN-2L by small interfering RNA, however, showed decreased Cdc42 activation and actin remodeling similar to the defective DH-PH, resulting in 62% increase in caveola-mediated uptake compared with controls. Thus, ITSN-2L, a guanine nucleotide exchange factor for Cdc42, regulates different steps of caveola endocytosis in ECs by controlling the temporal and spatial actin polymerization and remodeling sub-adjacent to the plasma membrane.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Caveolas/metabolismo , Endocitosis/fisiología , Células Endoteliales/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/genética , Proteínas Adaptadoras del Transporte Vesicular/antagonistas & inhibidores , Proteínas Adaptadoras del Transporte Vesicular/genética , Células Endoteliales/citología , Activación Enzimática/fisiología , Humanos , Estructura Terciaria de Proteína/fisiología , Seudópodos/genética , Seudópodos/metabolismo , ARN Interferente Pequeño/genética , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/genética
18.
Circ Res ; 101(1): 50-8, 2007 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-17525371

RESUMEN

Rho family GTPases have been implicated in the regulation of endothelial permeability via their actions on actin cytoskeletal organization and integrity of interendothelial junctions. In cell culture studies, activation of RhoA disrupts interendothelial junctions and increases endothelial permeability, whereas activation of Rac1 and Cdc42 enhances endothelial barrier function by promoting the formation of restrictive junctions. The primary regulators of Rho proteins, guanine nucleotide dissociation inhibitors (GDIs), form a complex with the GDP-bound form of the Rho family of monomeric G proteins, and thus may serve as a nodal point regulating the activation state of RhoGTPases. In the present study, we addressed the in vivo role of RhoGDI-1 in regulating pulmonary microvascular permeability using RhoGDI-1(-/-) mice. We observed that basal endothelial permeability in lungs of RhoGDI-1(-/-) mice was 2-fold greater than wild-type mice. This was the result of opening of interendothelial junctions in lung microvessels which are normally sealed. The activity of RhoA (but not of Rac1 or Cdc42) was significantly increased in RhoGDI-1(-/-) lungs as well as in cultured endothelial cells on downregulation of RhoGDI-1 with siRNA, consistent with RhoGDI-1-mediated modulation RhoA activity. Thus, RhoGDI-1 by repressing RhoA activity regulates lung microvessel endothelial barrier function in vivo. In this regard, therapies augmenting endothelial RhoGDI-1 function may be beneficial in reestablishing the endothelial barrier and lung fluid balance in lung inflammatory diseases such as acute respiratory distress syndrome.


Asunto(s)
Barrera Alveolocapilar/enzimología , Permeabilidad Capilar , Endotelio Vascular/citología , Endotelio Vascular/enzimología , Inhibidores de Disociación de Guanina Nucleótido/fisiología , Pulmón/enzimología , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Barrera Alveolocapilar/fisiopatología , Permeabilidad Capilar/genética , Células Endoteliales/enzimología , Células Endoteliales/fisiología , Endotelio Vascular/fisiología , Inhibidores de Disociación de Guanina Nucleótido/deficiencia , Inhibidores de Disociación de Guanina Nucleótido/genética , Pulmón/patología , Pulmón/fisiopatología , Enfermedades Pulmonares/enzimología , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/fisiopatología , Ratones , Ratones Noqueados , Inhibidores de la Disociación del Nucleótido Guanina rho-Específico
19.
Clin Transl Med ; 8(1): 25, 2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31512000

RESUMEN

Acute respiratory distress syndrome (ARDS) is a life-threatening inflammatory lung condition associated with significant morbidity and mortality. Unfortunately, the current treatment for this disease is mainly supportive. Mesenchymal stem cells (MSCs) due to their immunomodulatory properties are increasingly being studied for the treatment of ARDS and have shown promise in multiple animal studies. The therapeutic effects of MSCs are exerted in part in a paracrine manner by releasing extracellular vesicles (EVs), rather than local engraftment. MSC-derived EVs are emerging as potential alternatives to MSC therapy in ARDS. In this review, we will introduce EVs and briefly discuss current data on EVs and MSCs in ARDS. We will discuss current literature on the role of MSC-derived EVs in pathogenesis and treatment of ARDS and their potential as a treatment strategy in the future.

20.
Front Physiol ; 9: 1393, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30333761

RESUMEN

Intersectin-1s (ITSN) deficiency and expression of a biologically active ITSN fragment, result of granzyme B cleavage under inflammatory conditions associated with pulmonary arterial hypertension (PAH), are characteristics of lung tissue of human and animal models of PAH. Recently, we have shown that this ITSN fragment comprising two Epsin15 homology domains (EHITSN) triggers endothelial cell (EC) proliferation and the plexiform arteriopathy in PAH. Limited evidence also indicates that the EH domains of endocytic proteins such as ITSN, upregulate compensatory endocytic pathways in cells with impaired vesicular trafficking. Thus, we sought to investigate whether the EHITSN may be involved in this compensatory mechanism for improving the EC endocytic dysfunction induced by ITSN deficiency and possibly contribute to PAH pathogenesis. We used stably-transfected human pulmonary artery ECs expressing the Myc-EHITSN (ECEH-ITSN) and ITSN knockout heterozygous mice (K0 ITSN+/- ) transduced with the Myc-EHITSN, in conjunction with functional assays: the biotin assay for caveolae internalization and 8 nm gold (Au)- and dinitrophenylated (DNP)-albumin perfusion of murine lung microvasculature. Pulmonary artery ECs of PAH patients (ECPAH), ITSN knockdown ECs (ECKD-ITSN), the monocrotaline (MCT)-induced mouse and rat models of PAH, as well as untreated animals, served as controls. ELISA via streptavidin-HRP or anti-DNP antibody (Ab), applied on ECs and lung lysates indicated greater than 30% increase in biotin internalization in ECEH-ITSN compared to ECCtrl. Despite their endocytic deficiency, ECPAH internalized biotin similar to ECCtrl which is twofold higher compared to ECKD-ITSN. Moreover, the lung microvascular bed of Myc-EHITSN-transduced mice and MCT-treated animals showed greater than twofold increase in DNP-BSA transendothelial transport, all compared to untreated controls. Electron microscopy (EM) revealed the increased occurrence of non-conventional endocytic/transcytotic structures (i.e., caveolae clusters, tubulo-vesicular and enlarged endocytic structures, membranous rings), usually underrepresented. Most of these structures were labeled by Au-BSA, consistent with their involvement in the transendothelial transport. Furthermore, ITSN deficiency and EHITSN expression alter the subcellular localization of the EH-binding protein 1 (EHBP1) and cortical actin organization, altogether supporting the increase occurrence/trafficking of the alternative endocytic structures. Thus, the EHITSN by shifting the physiological vesicular (caveolae) transport toward the alternative endocytic pathways is a significant contributor to the dysfunctional molecular phenotype of ECPAH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA